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MATHEMATICAL METHODS IN PHYSICS-II

It is a truism that nothing is permanent except change. As you know, change in the physn:al
world manifests itself in a variety of forms. Whether you consider seasonal variation in
atmospheric temperature, objecls in motion, or the flow of current in electrical circuits, you
come across parameters that change in time and/or space. You can think of many more
examples of change: for inslance, the volume of a gas changes wilh applied pressure, the
fuel in an automobile’s tank changes with distance travelled, and so on. As a student of
physics, you know by now that the change in such functions is represented in terms of the
‘rates of change’ or the derivatives of these functions with respect to some variables.

In your school courses you have studied Newton’s laws of motion and the law of universal
gravitation. By postulating the laws of mechanics, Newton was able to study the motion of a
particle by an equation which involved an unknown function (displacement or velocity) and
its first or higher order derivatives. For instance, consider an object falling near the earth’s
surface. If we consider that only gravity is acting on the object, Newlon’s laws lead to a
model of its motion in which the object’s acceleration is constant. The mathematical
statement of this model is

dv

dt

where v is the object’s speed and g, the magnitude of acceleration due to gravity.

If the object is at 2 distance x from the earth’s surface at an instant 7, thenv = %and the

.equation can be written as

a? " E
You know that we can solve such an equation to determine the object's position (which is
an unknown variable) as a function of time (which is a known variable). So the function x{r)
is an unknown function which can be determined by solving this equation.

Such equations involving unknown funclions and thelr derivatives are called differential
equations

Differential equations serve as useful 1ools in the study of change in the physical world.
Maost of the general laws of nature in physics, chemistry, biology, astronomy, engineering
and many other areas find their most natural expression in the language of differential
equations. 11 is precisely for these reasons that in this 2-credit course on Malhematical
Mecthods in Physics-II, we have focuseli our attention entirely on differential equations.

This course is presented in two blocks. Block 1 deals with ordinary differential equations,
i.e. differential equations in which the znknown function depends on only one variable,
Differential equations involving unknown functions which deperid on more than one variable
are calied partial differential equations. You will study such equations in Block 2.

Our emphasis in this conrse will be on studying various methods of solving ordinary and
partial differential equations with particular reference to their applications in physics. After
studying this course, you may like to go in for a more rigorous mathematical trcatment of
differential equations. In that case, our advice to you is 1o study the mathematics course
MTE-08 entitled ‘Differential Equations’. Finally, a word about how best to study this
course,

Study Guide

In order to be able to siudy this course effectively, you inust have an adequate background
of calcujus. Integration is an importanl tool in solving differential equalions. You may,
therefore, find it useful 10 offer the mathematics course MTE-01 on calculus before studying
this course. Or else, yon must brush up the calculus you studied in your +2 classes. We
would also advise you to keep the course materials of the physics courses PHE-01, PHE-02
and PHE-04 handy, as we will be referring to them time and again in this course. It will also
he helpful if you study the mathematics course MTE - 07 entitled * Advanced Calculus’
along with this course.

Orce again, we repeat what we have said in our ~arlier courses, '_1_’01i must acquire the skill '
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of effectively using the knowledge imparted here through constant practice. Only solving
problems yourself will instil enough confidence. Always study with a paper and pencil in
hand. Work through the text and the solved examples. Solve self-assessment questions
(SAQs) and terminal questions given in the unit. You will need logarithmic and .
trigonometric tables or a ealeulator for your calculations. Resist the temptation of glancing
at the answers of SAQs and terminal questions given at the end of each unit before working
out the preblems !

You are expected to put in a total of 60 hours work in this course. Of these, 45 to 50h, on an
average, would be needed to study the print material, which includes solving the SAQs and
terminal questions in the units. The two blocks are almost equally demanding in terms of
content density. So you would need to spend about 22 to 25h on each one of them. The
remaining time is intended for assignments, counselling sessions, audio and video programmes.
In the margin beside the SAQs and the terminal questions of each unit, we have also
indicated the time you should allow for solving these problems. However, all these numbers
are for the sake of guidance only. Your background knowledge and capability would determine
your actual study time. '

We hope that you will enjoy studying this course. We wish you success.
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BLOCK 1 ORDINARY DIFFERENTIAL
EQUATIONS

T

Introduction

How is the velocity of a rocket affected by the amount of fuel bumed? What is common
between the suspension system of an automobile and an electric circuit? What is the shape
of a power line hanging between two poles? How long will it take a polluted lake to return
10 jts natural state, once man-made pollution is stopped? If we wish to seek the answers to
such questions, we would need to study ordinary differential equations.

Indeed, we can answer such real-life questions by constructing appropriate mathematical
descriptions of the phenomena with the help of ordinary differential equations. For example,
consider the motion of a pendulum. From this concrete physical situation, we pass on to an
‘idealised’ physical model (a bob attached (o a massless string, a pivot of zero friction and
zero air resistance, etc.). Next, we use physical laws (Newton’s laws of motion in this case)
to construct a mathematical description of the idealised mode]. Solutions of the mathematical
problems and their comparison with physical results measured by caréful experiments lead
us to reasonable answers. This process is termed as ‘mathematical modelling’.

In order 1o effectively model physical phenomena (using ordinary differential equalions),
you must acquire sufficient understanding of the concepis related to ordinary differential
equations. Moreover, you should be able lo solve the equations so obtained, To enable you

lo master this art, we present the appropriate mathemalics needed for this purpose in the first
three units of this block.

In Unit 1 we present the basic definitions and the classification of differential equations.
You will also learn some of the methods of solving what are known as the ‘first order’
ordinary differential equations. In Units 2 and 3, you will study the methods of solving
‘second-order’ ordinary differential equations. Armed with the necessary skills and the
knowledge of these methods, you should be able to use them to model simple phenomena in
the changing physical world. This forms the subject of Unit 4.

Ordinary differential equations originated in the works of Isaac Newton (1642-1727) and
Wilhelm Leibnitz (1646-1716). This area of knowledge was further enriched by several
mathematicians in the past ihree centuries. Among others, Fermat, the Bernoullis, Euler,
Riccatti and Clairaul need special mention. Block 1 brings to you a relevant version of a
body of knowledge produced by Lhese great minds.

Before you start studying the units, we would like to refresh your memory about the
abbreviations being used in the text. Sec. X.y stands for Section y of Unit x. Similarly, Fig.
X.y stands for Figure y of Unit x and Eq. {x.y} [or Equation y of Unit x. Thus, Sec. 1.4 is the

fourth section in Unit 1, Fig. 2.1 is the first figure in Unit 2, Eq. (3.10) is the tenth equation
in Unit 3, and 5o on.

The units are not of equal length. On an average, Unit 1 should take 8k, Units 2 and 3, 5h
cach and Unit 4, 6h to study. We hope you will enjoy studying this block.
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UNIT 1 FIRST ORDER ORDINARY
DIFFERENTIAL EQUATIONS

Structure
1.1 Introduction
Objectives
1.2 'What is a Differential Equation?
. 1.3 Classification of Ordinary Differential Equations
1.4 .What is a Solution of a Differential Equation?
General Solution and Particular Solution
Existence and Unigueness of a Particular Solution
General Properties of the Solutions of Linear ODEs
1.5 Equations Reduciﬁle to Separable Form
Method of Separation of Variables
Homogeneous Differential Equations of the First Order
1.6 Exact Equations
Firsl Order Linear Differential Equalions
1.7 Equations Reducible to First Oi‘dcr
1.8 Summary

1.9 Terminal Questions
1.1¢ Solutions and Answers

1.1 INTRODUCTION

You have read about the motion of a projectile and the motion of a rocket in your Elementary

Mechanics (PHE-01) course. You know thal the velocity of the projectile is affected due to |,

air resistance and the velocity of the rocket is affected by the quantity of fuel bumnt. But
can we find out mathematically, how the velocity of a projectile is affected due to air
resistance? And sow does the quantity of fuel bumt by a rocket affect its velocity? A
similar question may also be rised regarding an environrmental issue. You may be aware
that the oil slick formed in the Persian Gulf during the Gulf War of 1991 posed the
danger of sericus environmental poliution. Now, how long will it take the Persian Guif to
return to its natural state once (he oil slick is completely checked? We can obtain an
answer to these and many other questions pertaining to different sitvations by framing and
subsequently solving what is known as the first order ordinary differential equalion for the
concerned system. In this unit you will be studying first order differential equations as they
find many applications in physics. You have already dealt with a few differential equations
in the “Oscillations and Waves™ course (PHE-02).

Here we will first discuss what is meant by a differential equation (henceforth referred
to as a DE) through some simple examples. You will then learn to classify DEs in
variols ways. Next you will learn whal is meant by the solution of a DE.

Our ultimate aim is to Ieam the methods of solving DEs. In this unit we will discuss
various methods for solving first erder ordinary differential equations. You will leam to
solve them by the method of separation of variables and the method of substitution. You
will also learn 10 solve exact equations. Next you will learn the technique of converling
an:inexact equation into an exact equation. This will enable you to solve first order linear
ODEs. In Unit 4, you will study about the applications of some of these equations in
physics.

In the next unit we will take up the study of second grder ordinary differential equations.
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Mathematical Methods
in Physlcs - I1

Emest Rutherford (1871-1937)
did much of the early woerk on
characterising radioactivity.
Recall from Unit 8 of PHE-01
that Rutherfotd also propased
the nuclear model of the atom.

w.r.l. stands for "wilh respect la'.

You can know more about
partial derivatives by studying
Units 2 and 3 of PHE-04
(Mathematical Methods in
Physics-]) or Sec. 5.2 of Block 2
of this course.

Objectives
After studying this unit you should be able to

& define the general solution and the particular solution of a differential equation

® solve first order ordinary differential equations reducible to separable forms

® sclve an exact equalion

* solve first order lineat ordinary differential equations by the methed of integrating faclors

¢ solve ordinary differential equations reducible to first order.

1.2 WHAT IS A DIFFERENTIAL EQUATION?

You must have read about the phenomenon of radioactivity in your school science courses.
The principle of radioactive decay was discovered by the French scientist Henri Becquerel
in the year 1895. He was able to establish experimentally that the rate at which the atoms of
a radioactive substance disintegrate is proportional to the number of atoms (N) present in it.
"Now let us 1ry to express this idea mathematically. We can express the rate of disintegration

of atoms as (_ %N...) , where ¢ represents time. The negative sign appears because N
{3

decreases with £ (5o that % is negative). Now according to Rutherford this rate is
proportional to ¥. So we have

AN _ AN,
dt

dN

— ¢+ AN =0
or x
Using Eq. (1.1) we may obtain a relation between the independent variable s and the
dependent variable N. Notice that Eq. (1.1) contains terms invelving N and its ordinary
derlvative with respect Lo lime. You have also come across equations involving higher
order ordinary derivatives of the dependent variable with respect to the independent variable.
For example, you bave studied the one-dimensional equation of motion of a linear harmonic
oscillator in Block 1 of PHE-02 given as

- :

m d—': + kx =0

dt

where X is a constant

(1.1)

(1.2)

where rm is the mass of the oscillator and & is the force constant. Eq. (1.2) has terms involving x and
its second derivative w.r.L time. Notice (hat Egs. (1.1) and (1.2) involve only ordinary derivatives.
Let us consider another example. Suppose a current i flows through an electric circuit for
an infinilesimal duration of time, 4. Then the charge that Jows during this time is given by

dg = idi (1.3)

Eqg. {1.3) involves the differentials dg and 4r. Equations like (1.1) to (1.3) are called ordinary
differentlal equatlons (ODEs). More precisely,

An equation which contains differentials or only ordinary derivatives of one or more dependent
variables w.r.t. a single independent variable is said to be an ordlnary dlfferential equation.

>
Now, you have also studied the one-dimensional wave cquation in Unit 6 of PHE-02 given by
My 1 %y (14)
ax’ v oar?

Here 1 is a wave funclion and v s the wave speed. Eq. (1.4) involves second order partial
derivatives of 1 with respeet (o the variablese and r. Equations like (1.4) are called partial
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differential equations (PDEs) as‘they involve partial derivatives of one or more dependent
variables W.r.L. two or more independent variables. In this block we shall deal only with
ODEs. We shall take up the study of PDEs in Block 2.

We can now give a general definition of a differential equation:

An equation containing the derivatives or differentials of one or more dependent variables

with respect o one or more independent variables is said to be a differential equation.

You must now identify a few ODEs and PDEs in the following SAQ.

SAQ1

Ten equations from various areas of physics are listed below. Idenufy the ordinary and partial
differential equations.

) L
i — - —
de® &
2
ii) y = ugf — gt
48 g
iii} % T 0=0
a’r  a'r
iv) —t -
ox ay
d’q _dg g :
v) L d;2+Rdt+C-E(I)
w 2w, P i
27 St T T o ™
vii) u = Asin(r—wf) + Bcos (x—wt)
4ar
viii) Z " K(T-Ty
d
ix) m Ev = mg—hkv
x) 18 o4 1 ﬂ g.z_‘i = 0
rar | ar rz| a82) a2

Now there are three major aspects in the study of ordinary differential equations. These are
the formation of an ODE, its solution and its application. These aspects are different for different
kinds of ODEs. So before you study these aspects you must know how ODEs are classified.
This is the subject of Sec. 1.3. We expect that after studying Sec. 1.3 you ought to be
able to classify an ODE just by looking at it. So study It carefully and thoroughly.

13 CLASSIFICATION OF ORDINARY
DIFFERENTIAL EQUATIONS

Ordinary differential equations are classified in a number of ways as shown in Table 1.1.
We wiil be using Table 1.1 quite a lot in our discussion. So, first a word about bow to usc it
As you can see, the second column of the table lists several examples of ODEs. And the
first row lists the various ways in which CDEs are classified. Now as you study this section
it would be'better if you concentrate on the particular example and the way of classification
béing discussed in the text. During that discussion, ignore the rest of the information
presented in the table. Do you see the blank spaces in he table? You will be asked to fill
them up once you have studied this section! Let us now continue our study,

The most fundamental way of classifying ODEs is on the basis of their order-and degree.

Differential Equations
Spend .
5 min
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Mathematicat Methods
in Physics - 11

Aoy function which cannol be
expressed as a solution of a
polynomial equation of the form

Pz + Pl +

P, {xxi+Pfx) = 0

is called 8 transcendental
functlon. The logarithmic,
trigonometric, hyperbolic
functions and their comresponding
inverses are examples of
transcendental functions.

Tn many books on ODEs, you
will come scross the 1em
‘inhomogencous ODEs'. It has
the same meaning as the lam
'non-bomogeneous ODEs’.

10

Order and degree of an ordinary differentlal equation

The order of an ODE is the order of the highest derivative appearing in it.

The degree of an ODE is the power of the highest order derivative appearing in the
equation, after it has been expressed in a form such that no derivatives have fraction-
al or negative powers. )

Let us consider equation(4) in Table 1.1. What are the order and degree of this equation?
The highest derivative is the second order derivative y". So its order is 2. Now let us remove
the fractional power 1/2 in the equation by squaring it. Then, the power of ' is 2, so that
the degree of this equation is 2. Likewise you can venfy the order and degree of the
equations (1) and (3) in Table 1.1.

So you have leamt to classify an ODE in terms of its order and degree. We can also classify
ODE:s as linear or non-linear.

Linear and nonlinear ordinary differential equations

Consider equation (3) of Table 1.1. In this equation the function y and its derivatives are
a!l of degree 1. It does not contain products like yy, yy', y'y'' etc. It also does not
involve any transcendental functions like sin ), In yetc. It js an example of a linear
ODE. We call an ordinary differential equation linear when the fellowing conditions
are fulfilled:

i) The unknown function and ils derivatives occur only to the first degree

i) In the equation there are no products involving either the unknown function and its
derivatives or two or more derivatives.

iii) There are no transcendental functions involving the unknown function or any of

its derivatives.

An nth-order ordinary differential equation, iinear in y, may be expressed as

an ()Y + an-1 () ¥V 4. ot ay (x)y’ + ao (x)y = f(x) (1.5)

Here fand the coefficients ag, ¢y, . . . , @, are functions of x only, on some interval ofx, and
d, (x) = Oon that interval. In writing Eq. (1.5), we have adopted the notation

, dy dz.)’ (A d"y
¥y dx,y’ e ¥ o

de?’
A differential equation that is a0t linear is said to be monlinear. You can verify that
ODE(1) in Table 1.1 is lincar and ODEs(4) and (7) are nonlinear. A linear ODE can further
be classified as homogeneous or nonhomogeneous.

Homogeneous and nonhomogeneous ordinary differential equations

If in the RHS of Eq. (1.5), we have f(x) = 0, ther it is 2 homogeneous linear ODE and if
f(x) » 0, then it is called nonhomogeneous.

For example, ODEs (1) and (6) are nonhomogeneous because f(x) = E and f (x) = e”,
respectively. Since f(x) = 0 for ODE (3), it is homogencous. .

Note: The term homogencous has another meaning when used for a first order ODE.
We will explain what a homogeneous first order ODE means in Sec. 1.5.2 of this
uml

So you hdve learnt to classify ODEs in four ways: by way of (i) order (ii) degree (iii)
linearity/nonlinearity (iv) homogenelity/nothomogeneity. Henceforth, in your study of
ODEs, you must meke it a habit to classify an ODE the moment you sec it. This means that
you must be able to tell what its order and degree is, and whether it is linear or nonlinear.
Moreover, if it is linear you must be able to say whether it is homogeneous or nonhomogeneous,
For-example, ODE (1) in Table 1.1 is a linear, nonhomogeneous fisst order ordinary
differential equation of degree 1. :
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Table 1.1 : Classification of ODEs

‘ ‘ Linear | Nen- .
) {Ly |bomeo-
Non- .
No. ODE Crder | Degree I_i::a.r f;i_;;,us Remarks (if any)
(NL) | Homo-
geneous
®
This can be made homogensous
A . by taking E to the LHS and
1 |IL i Ri = E 1 1 L NH | making the substitution
‘ ' io=i-2
& e
{2) MF'H':;*'&.-FMW -
@) A +2'+y =0 2 1 L H
It is nonlinear becauss its degree
is 2. Sinco it is nonlinear, the
@ |a+6P% -y 2 2 NL - | question of clessifying it as
- homogeneous or non-
homogencous doea pet arise.
%) |0 +ny/-y -0
o Tt is onhomogeneous becauss
® |y'+y-e NH of ¢" on the RHS.
' . It is ponlinear because sin y iz a
(M |9+ Ty =siny 2 1 NL - Leanscendental funetion in y.
@ [y -2/ +3y =0 -
You may now like to work out an SAQ on what you have leamt so far.
SAQ2

Fill the blank boxes in Table 1.1. You-need not fill in the ‘Remarks’ column,

So far you have leamnt the basic terminology associated with ordinary differential equations.

In the process you have also lcarnt to classify ODEs, Now your major goal in this course is
to be able to solve differential equations appearing in physics. But before trying to solve
DEs you must undesstand what is meant by the solution of a differential equation.

1.4 WHATIS A SOLUTION OF A DIFFERENTIAL

EQUATION?

Let us consider the following ODE:

Yy +y=0

Now if we put

y = sinx

we have

and Eq. (1.6) becomes an identity. In that case we call the functiony = sinx a solutlon of

y = cosx and y” = -sinx

(1.6)

{7

Eq. (1.6). This solution exists for every x in the interval { — %, « ). Now consider another
example. The equation '

is a solution of the ODE 2yy’ = —1. We can verify this by differentiating Eg. (1.8). We get

Vix e 4

.8

ﬁnﬁ. Order Ordinary
Diferentia]l Equations
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Mathematical Methods
ta Physics - II

2+ 1 =0
which is identical to the given ODE. Now Eq. (1.8) may also be expressed as
y= *xV4—x

which essentially defines two functions. Each one of them is defined for every x in the
interval (— e, 4). You can see that this interval is different from the previous one. So
depending on the context, the interval on which the solution of a DE exists can be any of the
intervals (— =, ), {¢, ®), (-®,a),[a..4 ].(a. b), and so on. We can now define the solution
of an ODE as follows:

F

A funclion

y= ¢ _
is called a solution of a differential equation in y on some interval, say,a < x = b,
if ¢ (x ) is defined and differentiable throughout that interval and is such that the
equation becomes an identily when y is replaced by ¢ (x) in the DE.

=

We also say that the differential equation is satisfied by y = ¢ (x). The two types of solutions,
(1.7) and (1.8}, are typical of those we encounter in ODEs. In Eq. (1.7), we have y given as
an explicil function of x. Such a solution is called an-expllclt solution. And'Eq. (1.8) is an
implicil relation between x and y. We say that Eq. (1.8) is an implicl¢ solutfon. In other
words, a solution of a differential equation in the form ’

G(ry) =0 (1.9)
is called an implicit solution.

Now if you look back at Eq. (1.6), you will be able to verify easily thaty = cosxis alsoa
solution of that differential equation. In fact, a differential equation may have many
solutions. The principal task of the theory of differential equations is 1o find all the solutions
of a given differcntial equation. Then we invesligate the physical significance of these
solutions. Let us study about that in some detail now.,

1.4.1 General Solution and Particular Solution

We have already illustrated through Eq. (1.6) that a differential equation may have many
solutions. Let us 1ake another example. We consider the differential equation

L

¥y =cosx (1.10)

You may easily verify that each of the funclions

_?=sinx,y=sinx+5,y-si.n.::——9,y=sin.r+-8*

is a solution of Eq. (1.10). You can cxp-rcss them generally as

y=sinx +C ’ (1.11)
where C is an arbitrary constant. .
Eq. (1.11) is called 2 general solution of Eq. (1.10). Eq. (1.11) ¢an yield any number of
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solutions of Eq. (1.10). We have represented a family of such solutions graphically in
Fig. 1.1,
Likewise, you may also verify that

Al

y = Acosx + Bsinx (1.12)

where A and B are arbitrary constants, satisfies Eqg. (1.6).

A solution involving arbitrary constant(s) is known as the general solution.

You must have observed that Eq. (1.10) is a first order differential equation and its
general solution (1.11) has one arbitrary constant. Eq. (1.6) is a second order differential
equation and its general solution (1.12) has two arbitrary constants. So the number of
arbitrary constants appearing in the solutlon of a differential equation is equal to
its order.

Let us now impose the f(;ll_owing condition on Eq. (1.11): y = Owhenx = 0. Then we get
from Eq. (1.11) that '
0=0+C or C=0 and y = sinx.

So by imposing a condition on Eq. (1.11), we can assign a specific value to C. The solution
thus obtained is called a particular solution. s

If a definite value can be assigned lo each arbitrary conslant appearing in a general
solution, then we get 2 particular solution.

For example, ¥ = sinx + 2 is a particular solution of Eq. (1.10)andy = 2cosx + 3sinx
is a particular sofution of Eq. (1.6}

As you have just seen, particular solutions are determined from a general solution by
imposing condition(s) on the solution function. Now, two questions arise in this cornection.

(i) Does a particular solution always exist?
(ii) If it exisis, is the solution vnique?

Let us now discuss these questions briefly. This discussion is just to make you aware of
such questions. We will not be going into the details here. | i}

1.4.2 Existence and Uniqueness of a Particular Solution

In this discussion-we will be using certain new terms which we would like to explain first.
You have learnt that a gereral solution of an rth-order ODE contains # arbitrary conslants.
So to obtain a particular solution of an nth order ODE, we have to impose # conditions on

the solution function and its derivalives, We can then solve the # simultaneous linear

equations so oblained for the n arbitrary constants. Now there are two common methods of
specifying the conditions. We will mention them briefly.

1) If the conditions on the solution of & DE, or its derivatives, are specifted for a single
value of the independenl variable, they are called initial condltlons. The DE with its
initial conditions is called an inltial-value problem (IVF).

2) If the conditions on the solution of a DE, or its derivatives are specified for iwe or’
more values of the independent variable, they are called boundary conditlons. The
DE with its boundary conditions is called a boundary-value problem (BVP).

For example,

a) y' + 2y = 3, wilh the.initial condition y (0) = 1, is a first- order initial-value problem.

b) y" + 3y = 0, with the initial conditions y (1) = 2, and y' (1) = -8, isa
second-order initial-value problem.

€} " — 2y + 6y = x> with the boundary conditions y (0) = 2, y(1) = —~1isa
second-order boundary-value preblem. -

First Order Ordinary
Differential Equations

You will encounter the term
*particular integral' in Upit 2.
Da not confuse it with the term
‘particular solution’ being
discussed here.

In the text books an ODEs, you
will also come across dnother
kind of soluior of an ODE, Lhe
singular solution. It is that
solution of an ODE which
contains no arbilrary constaot
itself. Moreover, il cannol be
oblaiged by assigning any value
10 the arbilrary constani in 1he
general solution. For example,

X, .
y - T is a singular solution off

the ODEy" — xy + y = 0.1t
contains po arbilrary constant
and cannot be oblained by
imposing a condition on the
general solutiony = ex — ¢ of
this ODE.
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Maihematical Methods
to Physics - 11

Let us now deal with the questions of existence and uniqieness. Let us consider-an example.

" You have seen that the general solution of " +y = 0 is given by

-

'y = Acosx + Bsinx

Now what can we say about the solution of the boundary-value problem ¥ +y = 0,
y({0) = 0, y(t) = 27 Using the given boundary condition in the general solution, we get

OmAcosO ¥ Bsin0 and 2w Acosn + Bsinn

Tke first equation yields A = 0, while the second equation yields A = = 2. Since A cannot
be equal to both G and -2, no solution is possible for this boundary-value problem (see
Fig. 1.2a). You may easily verify that the boundary value problem

Yy +y =0, y(0)my(n)=0, -

will yield A = 0 unambiguously. However, no value gets assigned to B. Thus, there are
infinjtely many solutions represented by y = B sin x (see Fig. 1.2b).

¥ A
‘ — y = 251.“ '!
(m2) Faah v ot
L 7/ y=snx
- 0 ' 'r'l'l' - X
©9 * \ /
\\_/,H"' y= —\_/'S_ain x

(b)
Fig. l.ﬂl)tﬂopphoﬂh(:)fomy = A cosx + B sin x will simolianecusly pass throngh the
polnts (r,2) and (0, 0); (b) corves of the form y = B sin x on the interval [0, n],

From the above examples we understand that a selution may not exist for a
boundary-value problem. And if it does, the solution may not be unique. In fact,
there is no simple theory which can ensure a unique solution to a boundary-value
problem. However, there exists a theorem that specifies necessary conditions for
which a unique solution will exist for a first order initial value problem. Since our
aim is just to sensitise you to these concepts, we will not go into these details bere. If
you are interested in such details you may like to study Sec. 1.3 (Unit 1) of the
Mathematics course MTE-08 eatitled Differential Equations. As a matter of fact, a
more advanced course in differential equations at the post graduate level would
focus on considerations of existence, uniqueness and general behaviour of solutions
of DEs. So, henceforth in this block we shall consider only those DEs for which a
solution exists.

So far you have leamnt what is meant by the general and particular solution of an QDE.
You also have some idea of what is meant by the existence and uniqueness of solutions.
We will now discuss some properties associated with the solutions of linear ODEs. You
will find these properties very useful when you actuaily solve linear ODEs,

1.4.3 General Properties of the Solutions of Linear ODEs
Let us consider the following ODEs
a,()y" + a, (x)y" + gp(x)y = 0 (1.13a)

and
a()y' + a(x)y + ap{x)y = fx) S (1.13b)

Eqgs. {1.13a) and (1.13b) are both linear second order ODEs. The former is
homogeneous and the lalter is nonhomogencous. We shall discuss the properties with
reference 10 these second order ODEs primarily for the sake of simplicity. The other
reason behind this is that you will come across linear second order ODEs quite often in
physics. You will realise that the properues bemg discussed are true for linear ODEs of
any order
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First Order Ordinary

Properties of the solutions of linear ODEs . . Differential Equations
. e . , - Two functions y,{x) and y.{x) are
i) y = 0isasolution of Eq. (1.13a). This is called the trivial solotion. said 10 be Lineacy depen ieat on
ii) Ify and y, are linearly independent solutions of Eq.(1.13a), theny = ¢y + e is en interval [ whero both
also a solution of Eq, (1.13a), where ¢, and ¢; are conslants. functions are defined, if and only

if we can find nonzero constants
iid) If y,qs a solution of (1.13a) and y, is a solution of (1.13b), thenz°'= y, + y;is a ky and k, such that

. ki yi(x) + Jya (x) = O for all
solution of (1.13b). - on . Thus, lincarly dependent 3
iv) Thedifference (y, — y o) of twosolutions y, and 2 of (1.13b) is a solution of (1.13a). functions are proportionalon f.

[f the funclions are not
proporticnal on {, they are said 1
be linearly independent. Thus,

The proofs of thesc properties are fairly straightforward. You can work them out for linearly independent ™
functions the relation:

yourselt‘ if time permits. You may now like to work out an SAQ on what you have 3 + €29, = Oissatisfied
! Jearnt in this section. . only forc, = ¢; = 0.-
p - ‘Spend -
SAQ3 . 10 min _
(a) Verify thatx? + y> — 1 = Qs a solution of the differential equation yy’ = —x on the
fy y quation yy :

interval [-1,1]. State whether this solution is implicit or expliciy T,

(b) Verify that
y = Ax + cos A, forconstant A
is the solution of the ODE

y=xyteosy < ,
Identify the type of the solution (i.e., whether general or particnlar).

17T RS

Now that you have learnt the meaning and the basic properties of the solutions of linear
ODEs, you can study the different methods of solving first order ODEs. We have given
several SAQs in the subsequent discussion for the sake of practice. You must do them if you
want to grasp these methods. We shall start with the ODEs that can be reduced to separable
forms. .

1.5 EQUATIONS REDUCIBLE TO SEPARABLE FORM

For several first order ODEs, you will find that the equation may be rewritien so that the
concerned variables stand separated. It can then be solved by working out the integrals of
the separated perts. Let us see how, .

e ST

1.5.1 Method of Separation of Variables
Let us consider a general first order ordinary differential equation of the form
Y = fly) (1.14)

If we can write f{x, y) as

REUESE AL M ]

L I TN

M(x] o

T, 1.15
then Eq. (1.14) takes the form ;
M{x)dc—N(y)dy = 0 o (L.16) ]
The forms (1.14) and (1.16) are interchangeable. For example, tiie equations ;
Y )
y T+x and (1+x)dy—ydr =0
mean the same thing. An ODE of the form y’ = % is said to be a separable equation.
‘

In the form (1.16), the variables x and y are separated. On integrating Eq. (1.16), we get

f M(x)dx -_fN(y)dy -c . 1.17)
' 15
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Let] = J‘ydy
y ¥ 2

Weputu = y' + 2
Sodu = 2y dy

1 du
f-.ffu'

1 ]
- Eln I¥*+2]

1
3ol

.Remember that

fe-m

Checking the solution

Let us quickly check the solution
of the ODE in Example 1.
Differeatialing the solution we

gel
S +2)"
;—;(y'+2)""2}y'-0
S y+2)"
Py e2)™
- -2 v'+2)

or y =

which is the given ODE. Hence,
the solulion is comect.

Spend
Smin

16

where C is an arbitrary constant. Eq. (1.17) is the requued solution of the ODE and it can be
obtained if we can work out the mtcgrals Let us consider an example.

Example 1

2
Solve lh; equation % -— %’
Solution
Comparing f (x, y) of this equation with the form (1.15), we have

y
242

5 -
M@x)=-—.NG) -

S0, we can rewrite it in the form (1.17) as

SIE"'fy_;iy-“C
x y+2

or S5in |x|+%ln|y2+2|-c
~ I xfP[y2e2|M
or 32 +2)" = Cy, where C, = exp(C)
is the required solution. ) “ :

Note : An important step in solving an ODE is to check the solution. You should
always substitute the solution back into the ODE and check whether you get an identity.
Sometimes, you get the ODE by simply differentiating the solutian as in the case of
Example 1.

Thus, we see that the method of separation of variables essentially consists of the two steps
summarised below.

—

The method of separation of variables
Step 1: Wrile the first order ODE in the form y' = M) or

, N
MxX)de —N(y)dy = 0
Step 2: Integrate to oblsin the solution.

SAQ4
(2) Find the general solutionof the ODE(y + 1) y' + x = 0.
(®) SolvetheIVPy = - 2xy, y(0) = 3.

Remember to check the solutions.

Some ordinary differential equations may look non-separable. But on making some
substitution they become separable.

Solution by the method of substitution
First we shall teke up the case where substitution can be done by mere inspection of the

. a .
equation. For example, let us consider the ODE, A cos (¥ +y ). The given equation is

non—scparablc because of the faclor (x + y ) So we put,

g=x+y
dy dy  du
dx=1_+d‘x or dt-dr_l

Hence,

TG LT
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: . First Order Ordinary.
du - dr . Differentisl Equations
2 cos? = - |

2

T‘Eus,. we have separated the variables u and x. Now, the above equation may be rewritten as

1 g U Checking the solntion
2 %€ 2 du—dc=0 Differentiating the solution |
. ) w.r.t. x, we have
1 ol
or 0 secidu-— dr = C mf(x+y)(l+)").1
2 2
X _ - : or J"-Zoos’(ﬂ)—l
or . tan 5~ C 2
- cos{zr + y)
x+y s .
or 1an — x-= C which is the ODE being solved.

This is the required solution. Now how about trying an SAQ?

SAQS _ Spend
Solve the ODEs: 10 min
@ (x-2-1) = (x=2+7Y |

(® (l+cosB)dr = rsin0do

Remember to check the solutlons.

'Lct us now study a.very typical case of substitution suitable for ODEs of the form
¥ = f(y/x), where fis a functicn of y/x, e.g.’(y/x ), sin( y/x), etc. Let us consider
an example.

Exaruple 2 . I
Solve the differential equation

(x*+y)de—xydy = 0
Solution

We can rearrange the equation as

2 2
dy x4y x .y
dt  xy ¥y x

Now, this form suggests a substitution, % = v where v is a function of x. Thus, we get

y=vx and %- v+x%
Checldng the solntion
dv 1 . . .
V+X— = —4y Differenliating the solotion wrt, .
de v xnwege .
or vdv & 0 te G (y2d)
- 207 20
Thus v and x are separated. On integrating, we get :
2 or | = %[y' _X]
L m|x]=cC i \
2 ' n~ 4
. ) or ¥ y*:x
or x=Cy exp ( v2/2 ) - Cl exp{yzmz) which is the ODE being solved.
Having solved Example 2, you may well ask : How can we find out whether an ODE can be
made separable by the substitution ¥ = 1x? We will answer this question in the following
section. ‘
17
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Remember that we bave defined
higherorder homogencous
ODEs in a different manner in
Sec. 1.3,

18

1.5.2 Homogeneous Differential Equations of the First Order

The substitution y = vx can be made 10 separate variables in homqgéneous first order
ODEs. What is a homogeneous first order ODE? A first order ODE of the form

M(x,y)de+N{x,y)dy =0 ' (1.18)

is also called homogeneous if M and N are homogeneous functions of the same degree.
Now, what is a homogeneous function? A function f(x, y) is said to be homogeneous of
degree nin x and y, if, for every &,

flkx,ky) = &"f(x, ),
where k is a real parameler. For example,
a)  flx,y)=x+xy+y’isa homogeneous function of degree 2 since
flkx,ky) = (kx)s (kx)(ky)+ (ky)
m k(P +xy+y?) = KPf(x,y)
b) flx,y) = \/J:_—ylis homogencous of degree %since
flex,ky) = V(kx—ky) = ¥*Vx=y = *f(x)

c) flx.yl=¢ Y + tan % is homogeneous of degree zero since

flx,y) = 5y tan% = e+ tan'j;:i = Bf(xy)

d) flx,y) = 2ryde 4 is not homogeneous since

flhkx ky) = B3+ kY + 4.

Since M and N are homogenecus functions of the same degree, say n, % is a homogeneous
function of degree zero, as

Mkxky) _ K'M(xy)_ M(xy)
N(kxky) K'N(xy) N{xy)

Thus, we can say for Eq. (1.18) that % = ahomogeneous function of degree zero, and it is
a homogenecous first order ODE which can be solved by making the substintiony = vx.

For example,

(8) the differential equation ydx+(x+y)dy = 0ishomogencousas M (x,y ) {=y}
and N (x, y) {=x +y } are bomogeneous functions of degree 1,

(b) 1he differential equation y' = €% + cos { y/x ) is homogencous as y' has been
expressed as a homogeneous function of degree zero. .

To sum up, this method consists of the [ollowing steps.

Method of solving a homogeneous first order ODE
Step 1: Wrile the ODE in the form
M{x,y)dx+N(x,y)dy =0
Step 2 : Determine whether M(x,y) and N(x,y) are homogeneous functions of the
same degrec. ‘ . '

Step 3 : Separalc variables by making Lhe substitutlon y = wx.

Indeed, you can' now see that the ODE of Example 2 was a first order homogeneous ODE.
This method of solving a first order homogeneous differeatial equation can also be applied
to ODEs having linear coefficients. Such ODEs can be made homogeneous by a typical
substitution called linear substitution. ’

ODEs with linear coelﬁcienls 1
Suppose the functions M and N in Eq. (1.18) are linear functions of x and y, i.e.

F o] e
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M(x,y)=ayx+byt+ec; and N(x,y) = arx+b¥+cp, (1.19)

where a1, a2, by, b, €1, ¢z are constants. We can make such an equation homogeneous by
making a linear subslitution: x = x'+4;y = y'+ k where /t and k are constanis to be
determined. Int this case x’ and y' are variables, and not derivatives. Let us illustrate this with
the help of an example.

Example 3

‘Solve the differential equation
{(y—-x=-2)de+(x+y+1)dy = 0

Solution

Weputxr = x* +handy = y' + k&, so that we have
dx = dv' anddy = dy

The equation takes the form
(yV-x+C)dd"+ (X +y' +Ca)dy =0
where Cym=h+k-2 Crmh+k+l

We take the values of / and & to be such &s to simultaneously satisfy the equations C1 = 0
and C2 = 0,i.c.,

—h+k-2 =0 oandh+k+l =0
The solution to this system of equations is = —%,k - % And we have

(y—x')dr'+(x+y)dy' = 0
@f x‘_yf

or )

dd "Xy

This equation is homogeneous in x’ and y/.

You may now complete this example by putting ' = vx’. Do not forget to express the final
solution in terms of x and y using the values of /i and &

-

SAQé6 '

(a) * Complete the solution to the differential equation given in Example 3. Do not forget to
check your solution.

(b) Identify the homogeneous first order ODEs from the following :
i). xz% - yz—ixy+5x2 ‘
ii) (x2+y)dx+(x+y)dy = 0
i) (y+xsin(y/x)}dr—xdy= 0
iv) xyde+ (x2+4)dy = 0
v) xde+(y-2x)dy = 0

vi) xdy—(y+'\/.tz_—?)dx-0

So far we have discussed quite a few methods of solving first ordér differential equations. In -

8ll cases, we had taken the general form of the equation as
M(x,y)dc+N(x,y)dy = 0

Now if the left-hand side is such that it can be expressed asd [z (x, y ) ), then we get
d[z(xy)] = 0 )

and the solution is

First Order Ordinary
Differentia]l Equations

You can sec that ile; = ¢; = 0
in Eg- (1.19), Eq. (L.1B) i=
homogenoous of degree zero.

s apth b
Apgain, |l'a: E,3:'1:}|.u:im
make the substitution
= ayx+ by, just by

inspection, as you have done in
SAQ 5(s).

Spend
10 min

LIa- = )
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You must have studied about,
partial derivatives and tolal
differential of a fusction ia Unit
2, Black 1 of Mathematical
Methods in Physics-1 (PHE-04}.
Recall that 1he total differential
of a function f{ x, y }is

df - gfd.n-%dy.

20

z(x,y) = C = aconstant.

A first order ODE which can be expressed in the form (1.20) is called an exact equation. ,
Let us study such equations. ' ‘ .

1.6 EXACT EQUATIONS

From the definition of an exact equation, we can see that an equation of the form
M(x,y)de+N(x,y)dy = 0

will be exact if there exists a function z ( x, y ) for which

Miu"-l - M(xy) and a—z%’;d’—l - N(x,y) (1.21)
Then we can express the ODE as- '
oz - az
.axdz+ayay-0 (1.22a)
or - . d{z{x,y)] =0 {1.22b)

and the required solution of the ODE is
z{x,y) = C = aconstant.

Now, bow do we find out whether a given ODE is exact or not? From Eq. (1.21), we have

oz
Ma— and N =—
%
or M _a(a) &z
) dy aylar dydx
| aN 8 (az\ oz :
and — =] .
ox ax | ay axay
Now we know thatifz = z{x,y) lhen—az-z— o'z In other words
ly 1} ayax ax‘ay' '

Mdr+Ndy = 0is an exact ODB if

M N
Lay dx

(1.23)

o

Eq. (1.23) is a necessary and sufficient condition for M dx + N.dy 10 be exact, provided M
and N are continuous and have continuous partial derivatives.

The question now is how to solve an exact equation.
The method of solving exact equations )
We can solve an exact equation in the following way. Integrating the first of Eq. ¢1:21) with
respecl to x while holding y constant we have

2(x,y) = | Mz y)dz+f0)

Here the arbitrary function f(y) is the ‘constant’ of integralion. To determine f(y) | we
differentiate Eq. (1.24a) w.r.t. y and use the second of Eq. (1.21).

(1.24a)

9z 3 q
2.2 [ Moyl - Nexy)

e oves & o KB
Thlsgwesdy N(x,y)—any(x,y)dr (1.24b)

Finally, we integrate Eq. (1.24b) w.r.t y and substitute the result in Eq. {1.24a). The solution
of the ODEisz(x, 3y} = C.
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First Order Ordinary

Note : In the :ibove method we could as well have started from the second of
Dilferential Equationa

- Eq. (1.21):- g—; = N(x,y). The analogues of Eq. (1.24a) and (1.24b) would be,

respectively, ' -

2(,y) = [ Nxy)dy+500 (1.240)

and -‘;‘!—’E-=M(x,y)--5i-fN(x,y)dy. (1.24d)

Let us now illustrate this method with an example. f

Example 4

Show that the differential equation

3x{xy-2)de+ (x3+2y)dy = Oisexact,
Henrce, solve it.
Solution )
Here, M=3xy_6r, N=x*+2y

% = 3x2, %1:— =
So the equation is exact.

Now, we have to solve the ODE. Since the ODE is exact, there exists a function z (x, y ),
such thatdz(x,y) = Mdx+Ndy = 0. We can now usc cjther Egs. (1.24a) and (1.24b) or
Egs. (1.24¢) and (1.24d). From Eq. (1.24a) we gel

2= [ Menyydesf0) = [ (35960 ) e+ 1) = =362 £0)
Since . g—; = N(x,y) ,wehave

3 daf 3
X+ dy X +2y
- g.[ =2y or f(y)= y2+ k ) Checking the solation
4 DifTerentiating it w.r.t. x,
where & is an arbitrary conslanL we gel

Thus, zwxy-3ct+yiek Iy $xy -Gr+ 2 = Q
or 3x(xy-2)+(x+2)y =0
5o the required soluli_on isxay - 3x2+y2+ k = = aconstant or Ix(xy=2)dr+ (X +2p)dy=0
or xay _ 3x2+y2 = 2 constant. which is the ODE being solved.
Let us summarise the method of solving an exacl equation.
The method of solving an exact equation’
Step 1 : Write the differential equation in the form
M(x,y)dx + N(x,y)dy = 0and check to make sure Lhat%i}—‘- - %;—
Step 2 : Evaluate (i) z(x, y ) = fM(x,y ) dx + f() or (ii) z(x,y)=fN(x,y)dy+g(x)
(treating y and x, as constants in the integration processes (i) and
(i), respectively.).
Step 3: Evaluate the arbitrary functions f (y) or g(x) that occur in Siep 2 by
. 0z az
t —_—- — = "
putting 3y N(x,y) or F™ M(x,y)
.Step 4 : Write your solution in the formz(x,y ) = C.
You may now like 10 work out an SAQ on solving exact equations.
) 21
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Spend
10 min

SAQ7
Check each of the following ODEs for exactness and sofve the one that is exact

(a) (xcosy—y)de+(xsiny+x)dy =0
(®) (e*+y—1)de+(3@+x-7)dy =0
Remember to check the solution,

Yon have now learnt to solve an exact equation. But what to do when %— = e ic., the
L]
equation is inexact?

In fact, an inexact ODE can be made exact by multiplying itby a suitable function
P(x,y) (= 0). Such a function is called an integrating factor of the ODE. We can
determine integrating factors for linear first order ODEs in a systematic way.

1.6.1 First Order Linear Differential Equations

You may recall from Sec. 1.3.2 that a first order linear nonhomogeneous differential .
equation dcfined on an interval in x has the form

ay(x}y +aglx)y = fx), (1.25)
where a,(x) = 0. On dividing both sides of Eq. (1.25) by a1(x), we get

¥ +p®)y = q) (1.26)

This is the standard form of a first order linear nonhomogeneous differential equation. We
can now show that Eq. (1.26) can be solved by oblaining an integrating factor v(x) which
depends only on x. Now, if such a factor exists, then on multiplying Eq. (1.26) by w(x), we
should get an exact equation. In other words .

vy +v(Dp@y = vq()
must be an exacl equation. We rewrite it as
[vix)px)y-vix)g()]jdr+v(x)dy = 0
From the condition of exactness [Eq. (1.23)], we get

2 ptay @] = e = Z @2

Hence, from Eq. (1.27), we get

dv(x)
dr

d
divBl _ o ax

or v (I)

Integrating botb sides, we get

In |v(x)]' = f plx)de

= v(x)p(x)

~ v(x) = exp[h(x)], where A{x) = f plx) dx

We bave deliberately left ont the conslant of integration as we wish to have only one, the
integrating factor v(x). Now multiplying Eq. (1.26) by the integrating factor we get

iy +py] = &g

Since from Eq. {1.28), ' = p, we can write this equation as

Liye1-dq

* Integrating both sides of the equation and dividing by &', we oblain

y e &t [I e"qu+C], hm _fp(x)dr {1.29)

(1.28).
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This is the general solution of a first order linear nonhomogeneous ODE of the form (1.26).
Let us apply this method 10 an example.

Example 5
Solve the equation .
Codi . .
L i +Ri = Egsinwt
Solution

We may rewrite the equation as
di + Ei - -E—osin wl
d L L

.. Integrating factor = exp[f %dt] =
On multiplying the ODE by this factor, we get

L £+R_i - J%eﬂ‘”‘simmt

di

'
.4 . g Eo rn
"dr(wm/) LeW sin wt

cin B [ j g i

where C is an arbitrary constant
Thke required solution is
Epsin{(wt—08)

!.=

R+ 0i?

The procedure for solving a first order linear non-homogeneous ODE can be summarised as
follows. .

The method of solvlng first order linear ODEs

Step 1 : Put the equation into the standard form y' +p (x) y = ¢ (x).
(MNote; The coefficient of y' must be 1).

Step 2 : Identify p (x) and compute v (x) = exp[fp{x) de]

Step 3 : Multiply the standard form of the equation by v (x ). The LHS of the equation
will always be an ordinary derivative of the product [yv (x} ], w.r.1. the
independent variable.

Step 4 : Integrate both sides of the modified equation and solve for y.

With some experience you can also find the integrating factors by inspection for first order
ODEs of other types. However, we will not fest you on this count. '

You may now like to work out an SAQ on Lhe above method.

SAQS
xy'+2y = X
~ Note: Check the solution you obtain,

Solve

Thus, you have leamnt some commonly used methods of solving first order ODEs.
There can be higher order ODEs which can be reduced to first order and solved by
applying any of these methods. We shall discuss some of them before ending this
discussion.

First Order Ordinary
Differential Equations

Letf = [ sincardr
Integrating by parts, we get

:-J‘"[_M]

w
R "
+mef cos wf dt

na C05 0
11}

sin @f
fﬂ. -
T

LR
Lay
R P inax d
L‘”I sin of dif

L

& .
, or l-m’l. [R sin o —wl cos wi ]

— R/ L
L™ .
- (Faor) (Reow
-l coswt )
- R
B - ——
Putting o5 0 = T
andsin = —u
VR 'L
J;_La“sin(me'—a)
(RI_'_m]L?)h
where 8 = tan™ (wl/R }

or J

Spend
10 min
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Spend
3 min

1.7 EQUATIONS REDUCIBLE TO FIRST ORDER

Here, we shall consider two cases, each corresponding to a second order ODE.
iy Ifasecond order ODE inx and y is devoid of y, then it can be expressed as

FO".y.x) =0 ‘ (1.30)

We make the substitution w = y' = % Thus, Eq. (1.30) takes the form of a first
order ODE _

F(W,w,x) =0 (1.31)
To illustrate this technique, we consider the ODE '

Y'+2y = 0 (1.32)
Weputw = y', sothat’

%+ 2Zwm 0 (1.33)
You can solve this equation by the method of separalu:m of variables. Let us now consider
the second case. -
jiiy Ifa second order CDE in x and y is devoid of x, then it can be expressed as

F(y"y,y) =0 | (1.34)
We again make the substilution w = y', Then we express y" as follows:

n-éi dw @__42 dw
A M S i

Thus, Eq. (1.34) becomes
dw
F(Wg,w,y) (1.35)

which is a first order ODE in w with y as the mdependent variable. To illustrate the method,
we consider the following ODE

)P =0 (1.36)
L} rr d_.i
We putw = ), so that y ﬂwdy
So, we get
dw 2
w—t+w =0 (1.37)
e

Now this can be solved by the method of separation of variables.

SAQ9
Complete the solutions of the ODEs (1.33) and (1.37).
Note: Check the solutions.

In this unit you have studied various methods of solving first order ODEs. Henceforth,
whenever you come across a first order ODE, begin by classifying it. Then you could consider
the following questions:

® Do the variables separate?

- [s there an obvious substitution which simplifies the ODE?

® Is the ODE exact?

¢ Is the equation linear, nonhomogeneous?

e o e T T
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More often than not, the answers 1o these questions will tell you what method to use for Firat Order Od?w
solving the given ODE. Of course, some ODEs may be solved by more than one method. Differential Equations
Then you could opt for the easiest one! - .

Let us now sum up what we have learnt in this unit. -

1.8 SUMMARY

¢ Equations that contain ordinary or partial derivatives or differentials of one or more
dependent variables w.r.t. independent variables are called differential equations.

* We classify a DE by its type: ordinary or partial; by its order and degree, and by
whether it is linear or nonlnear. A linear ODE may be homogeneous or
nonhomogeneous,

¢ A functiony = ¢ (x) is a solutlon of a differential equation on some interval if ¢ (x) is -
defined and differentiable throughout that interval and is such that the DE becomes an
identity when y is replaced by ¢ (x) in the DE. A solution involving arbitrary constant(s)
is called a general solutlon. If definite value(s) can be assigned to the arbitrary
constant(s) in a general solution by specifying certain conditions then it becomes a
particular solution. Depending on the way the conditions are specified we get an inftlal
value problem or a boundary value problem. '

® The method of solution for 2 first order ODE depends on an appropriale classification
of the equation. We summarise four methods.

' — Ancquation is separable if it can be put into the form N (y}dy = M (x)dx. The
solution is obtained by integrating both sides of the equation.

- Thedifferential equation M(x, y ) dx + N(x, ¥)dy = 0is said o be
homogeneous of first order if M(x,y) and N(x,y) are homogeneous functions of
' the same degree. It can be made separable by making the substitution y = vx.
Further, if M atid ¥ are linear functions of x and ¥, the ODE car also be solved
by making the substitutionsx = x' +/,y = y' +k ' = vx' , where x' and y'are
variables and not derjvatives. :
L]

— The differential equation M (x, y ) dx +N(x,y)dy = 0issaid to be exact if
M(x,y)dr+N(x,y)dyis an exact differential [dz(x,y }). When M and N are
continuous and have continuous partial derivatives, then aM/ dy = dN/arisa
necessary and sufficient condition for M dx + N dy to be exact. Then there exists
some function z for which M{x,y) = 3z/8xand N(x,y) = 8/ dy. The method
of solution of an exact ODE starts by integrating either of these latter expressions.

— Ifa first order linear ODE can be put in the form
Y+p)y = ql),
it can be reduced to the exact form by multiptying it with the integrating factor

exp [I p(x)t#]. We can solve this equation by integrating both sides of the
equation & [ {exp 1l p(x)dr)}y} - {exp (f plode) } )

¢ An ODE may be reduced to one of the familiar forms by an appropriate substitution or
change of varinbles,

¢ Second order ODEs of the forms F (3", y",x) = 0and F(y",y,y) = 0 may be reduced
to first order and hence solved by making the substitution y' = w.

1.9 TERMINAL QUESTIONS ' | Spend

30 min

1)  Obtain the general solution of the first order ODE
2y' —4y = 166"

G 1T ST AET

[ ITES T IPE




Mathematical Methods
in Physics - II

Lets _J‘ (L+v)de

V+lv—1

E Wepute = v +2v—1

oodu = (2ve2)dv
- 2(v+1)dv

1 du
or 1-2 "

- 2afu|

or J‘d_qj'sﬁrim - n|C]
r 1+cosB

or inlr|+Injl+cos@|=In|C]| [ :—B(1+cosﬁ) = —sinB]

r{l+cosB)=0C -
6) ) dyt X -y 1-y/x
de'  X+y  1+y/x
We put yo=w' %-vﬂc’%
dv  1-v
..v+x’dx,= T+v
or .t'EE- - 1-v v 1-2v~-v?
de’  1l+v 1+v
or it_= (l+v)av
x 1-2v—v?
or &, (rv)d
X vVa2v—1
o [E L[y
x Vi2y—1

or hnj¥|+ -;-ln]ul =In|C| u=vV+2v-1

oo xua”=¢
x'(v2+2v—l)w=C1 - .
(y:2+2yrxi_xr2 )lf.z = Cl

o yr+2yx -x? = Ci
2 2
et -

e, x° —y2 —2xy+4x—2y+A = 0Ois the required solution,where A = Ci+ 2

=3
1

b) (i), (iii), (v), (v1)
Ta) M =xcosy-y, N =xsiny+x

—— = —xsiny-1 -aﬂ-siny+1
ay ’ ax

aM N

dy

Hence, the cquation is inexact.

b) M = e*+y—1,N = 3 +x-7

aM aN

—_— — m 1
dy .1’ ax
aM

— = iManci the equation is exact.
ay
3 % - e‘+y—landg—; =3+x-17

From the former, we get

z= e'-i-xy-x+f(y)
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Hence, we have

4

z g
=3 +x-T = x+
y . dy

9z

a
A
dy

or f(y)=3-Ty+C1

The required solution is z(x,y ) = C'
or e'+xy+3e-—x-Ty+C =0.

8) Thegiven ODE may be expressed as

2
yrzy=x

First Order Ordinary
Dilferentinl Equations

The integrating factor = exp(f %dr) =exp[2In]x|] = exp[In]x?]] = x*

So, we have

d a
E(xT}’)"I

or x¥ =fx4dr+C

5
or x¥ - % = C isthe required solulion.

9} From Egq. (1.33), we get

dw
-2;+dx =0

or % dw +f dx = C, where C is an arbitrary constanl.
w .

or lln|w|+x = C

2
W ou Ae_h. whcmA = e?.c
or i—y = Ae ™. The required solulionis y = —%e"" +B,

where B is an arbitrary constant.
From Eq. (1.37), we get

Wy

On integration, we getIn (wy} = Corwy = e

&, L] a where A = ¢¢

L

¥

--- &
or fydy=fAdr

2

So, the required solution is LA Ax+ B,

2

Terminal Questions

1}  You can see that the given ODE is a linear non-homogeneous first order ODE. So we
can use the method discussed in Sec. 1.6.1. Rewriting the equation in the standard

form, we gel

R ST
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Checking the Solution
We can rewrite the general
solution asy + Vy +x = C (i)
or ¥+y = (C=y}
- 4y =20y

of ¥ = C-20y (i)
This gives us

2cdr = <2C dy

or  dy = ~Edr (i

Substinting V2 + " from (i),
and dy from (jii} in the ODE, we
get :

x[—%dx)—d:(y—C+y)_—0

Dfir{-’g-zywl -0 ()

Substituting (i) in {iv) gives us
an identity. Thus, (i) is a solution
of the given ODE,

30

¥y —2y = 8"
We note that p (x) = - 2. So the integrating factor is
v(x) = exp [—f de] = exp(—-2x)
Multiplying the given ODE (in standard form) by &7, we get
ey 2y =8e™
or %(ye;z') = Be™
or diye™) = Be™dx
Integrating both sides yields
ye & m —8e7+C
So the general solution is

y =~8e"+Ce*

The equation may be written as

dy _y-VLy
X

e which is a first order homogeneous ODE,

- L 1)
We pul y = v x, so that dmVtEo

1..'.vr:-.r:'4/1+|r'2 - v—\[l-l-_vz

And the right hand side = .

So we get,

'|.J+.1:g'l'i = v=Y 1+

dx
dv dx

Vi x

f—l"\,:_?»,ff—umm

or In|v+Vi'+1|+In|x|=In|C}
or In|x(v+V ¥ +1)| =1n|C]|

x[v+V vii]=C

ie, y+V y2 +x* = C isthe required general solution.

or

'y

Itis giventhal y=4forx=3
4+V&#432 =C or C=9

Hence, the particular solution is
y-i-m =9

én‘iﬁ HQHEQ -vd—vanding:)
&l dil d

B L e TS THN

PR TR RT TSR Y




Eq. (1.2) may thus be written as - -

v% +0% =0
or vdv+oxde = 0
On integrating, we get
v? oi?

2 + > - C, where C'is an arbitrary constant, i.e.,

VeroX?a C', whereC' = 2C
But %-v-O,whenx:a -
C' = wa?

v2 = 0%(a?-x?)

dx N 2
or v dt TV a 12
ar_ —'ﬁ:_—-mdr
=V a*—2?

= wf+8& whered is an arbitrary constant.

i X
sin! =
a
or = wl+d
1Xx ’
cos =
a
£ sin{(w+d)
Thus, Pl or
cos(wt+d)

Thus, the required solutions are

x=asin{wr+8) and x = acos{wt+d)

) First Order Ordinary

Dilferentlal Equations

31
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UNIT 2 SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS
WITH CONSTANT
COEFFICIENTS

Structure

2.1 Introduction
Objectives

22 Some Terminology

2.3 Homogeneous Linear Equaﬁons With Constant Coefficients

2.4 Nonhomogeneous Linear Equations With Consta n.l Cocfficients
The Method of Undetermined Multipliers
The Method of Variation of Parameiers

2.5 Summary

2.6 Termina! Questions

2.7 Solutions and Answers

21 INTRODUCTION

In Unit 1 you have learnt to solve first order ordinary differential equations. These
equations provide a useful means of studying physical systems. For instance,
radioactive decay, free fall of a body, fluid flow, current growth in electrical
circuits, etc could be studied using these equations. But many systems require
solutions of ordinary differential equations of order higher than onre. From Unit 1 of
PHE-02 course on Oscillations and Waves, you would recall that the equation of
motion of an undamped harmonic oscillator is a homogeneous second order differential
equation with constant coefficients. Similarly, to determine the depression in
horizontal beams, we have to solve a second order differential equation with
constant coefficients. You will learn to solve such equations in Sec. 2.3. But can
you study time-varialion of charge in maintained RLC circuits or (ke phenomenon of
fesonance using a homogencous second order differential equation? In such cases we
have to solve nonhomogeneous second order differential equations with constant
coefficients. But even this is not (rue in general. For instance, when we wish to
sludy field distribution around a charged sphere or a cylinder, we have to solve
second order differential equations with variable coefficients, Similar situations are also
encountered in heat, optics, electromagnetic theory, encrgy production in a nuclear

reactor, quanium mechanics, etc. In such cases we seek power series solutions or use.

Frobenius method. In the next unit you will learn these methods. But in this unil, we
have discussed the basic teckniques of solving second order differential equations
with constant coefficients. Some of their applications will be discussed in Unit 4.

Objectives
After studying this unit you should be abie to

¢ compute the Wronskian of a given ODE

* obiain linearly indepcndcn'l solulions of homogeneous sccond order ordinary differential

equations with constani coefflicients

¢ use the method of undetermined coefficients and variation of parameters o obtain
lincarly independent solutions of non-homogeneous second order ordinary differential
equations with constant coeflicients.
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2.2 SOME TERMINOLOGY

While studying first order ordinary differential equations (ODEs) in Unit 1 you have learnt
some basic terminology. You would come across some common lerms, which you do not
Know &s yct, In ilic context of second order differential equations as well. It is important t'or
you to be familiar with them. This section is intended tor wis purpose,

You know that a second order linear ordinary differential equation can be written as '
d? d ' '
PGPl = 80) e

The function g(x) is termed as the forcing function, and p,(x) and py(x) are coeflicient
finctions These are continuous over the interval where the solution exists.

_Linearly Independent Solutions and the Wronskian

From Unit 1 (Sec. 1.4.3) we recall that if y; and y» are linearly independent solutions of the
homogeneous equation

Y epy ey =0 | @2

then their liénear combinalion
y=Cin+Cys ' (2.3

where C, and C, are arbitrary constants, is a general solution of Eq. (2.2). For example,
you know that y) = sin w¢ and y» = cos wt are linearly independent solutions of the ODE

2 F
for an undamped harmonic oscillator: %{+ w?y=0. So the general solution of this
equation is
¥(t) = C sin ot + Cy cos ut

You may ask: What do we mean by linearly independent solutions? How do we test linear

" independence? Will a linear combination of linearly independent solutions necessarily lead

to a different solution? When does a set of solutions constitute the general solution of a
linear differentia} equation? and so on. Let us now discover answers to these questions for
ODEs of second order. We say that two solutions y) and y; are linearly independent on an
interval if the idenlity

Cin+Cry,=0 . (2.9)

is satisfied only when € = C; = 0. For, if C) and Cz were non-zero constanls Eq. (Z.4)
would yield y»/y; = constant, i.e., y1 and y2 would be proportional on some interval. Then,
by definition, y; and y2 would be linearly dependent functions on that interval. In other
words, linear independence of y1 and y means that the ratie y2/y; is not a constant This implies
that the differential of this ratio

Y2 Ni=Yi Y2 _ . 2.5)

"

is not identically equal to zero, Therefore, we can write the condition of linear indeperdence
of two solutions y; and > as -

. o _
Woyd=| =0 (26)

noon
The determinant W(y, , y;) is called (he Wronski determinant or the Wronskian of the
given differential equation. We may, therefore, conclude Lhat

Two solutions y, and y, a_}c linearly independent on an intervai [a , b ], ifand onty if,

their Wronskian is non-zero.for @ s x s b,

For a harmonic oscillator, this means that

33
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- sin @t cos @ .
Wix} = 1 =—-w

 cos wf — @ Sin o
showing Lhat sin ¢ and cos @f are Iineaﬁy independent. We also say that y; and y; are

linearly dependent soluhons on an interval / . if and only if their Wronskian is 2£r0 fof some
x = xginl

5AQ1
The solutions of the equation
.y"-+ 4y =0

are given by y; = sin 2rand y, = cos 2x. Are these solutions linearly independent?

Particular integral and complementary function

From Sec. 4.2 of the course Oscillations and Waves (PHE-02), you would recall thal the
equation of motion of a forced damped harmonic oscillator is

my" + yy' +ky= Fycos
which is usually rewritien as

Y+ 20y +wdy = fycos ot . - )]
where 2b = y/m, @} = k/m aadfy = Fo/m.

?hys:cally, the actual motion of this system is a sum of two oscillations: one of the
frequency of damped oscillations and the other of the frequency of thc driving force.
Mathematically, WE EXpress itas

YO =y + (2.8)

L.

where y) is a solution of the homogeneous equation _
yi' o+ 2by{ + iy =0 (29)

On substituting Eq. {2.8) in Eq. (2.7) and using Eq. (2.9) in the resultant expression, you
will find that y; satisfies the equation

yi + 2by; + @iy, = focos
In the language of mathematics, y; is called the complementary function and y; is called
the particular integral. We can write the general solution of a second order non-
homogeneous linear differential equation with constant coefficients as the sum ofa
complementary function and the particular integral:

y(x) = ylx) + yp(x) (2.10)

You know that the solution of a second order differential equation consists of only two arbitrary
constants. This implies that the particular integral will not contain any arbitrary constant

We hope that you are now equipped with ali the necessary basic terminclogy. Let us now
proceed to solve homogencous linear ODEs of second order with constant coefficients.

2.3 HOMOGENEOUS LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

A second order homogencous linear ordinary differential equation with constant coefficients
finds wide applications in engineering, biologicat and physical systems. In particular, you
know its use in mechanical and electrical vibrations. Many techniques of solving such
cquations have been developed. These include the reduction of order technique,which you
learnt in Unit 1, and the method of exponential functions, which we will discuss now.

Achomogeneous second order ordinary differential equaum:gwllh constant coet'ﬁclenls can
be expressed in the form

~

=]
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Second Order Ordinary

ay' +by' +cy = 0 ) o . (211)  Differential Equations with
: . Counstant CoeMcients
where a, b and ¢ are real constants. .
From Unit 1, you would recall that the solution of the first order homogeneous linear ordinary* From Eq. (2.11), you would note
differential equation(y’ + y = O)isan exponential function of the form - thaty,y andy” are lincarly
o : dependent. This demands that y
y = Aexp(-kx) be an exponeatial function. For,
) : the derjvative o[ der of
Let us, therefore, seck a solution of Eq. (2.11) of the form . “;o:':ﬂ;r;u:ﬂﬁﬁ ‘-:;]: ;rl:,n

dependent with itself, i.¢., some
(212) multiple of the original
exponential.

y = Aexp(mx)

where dimensions of m are inverse of those of x. This ensures that the power of exponential
is dimensionless. . .

Substituting this and its derivatives ‘ . ' -

y o A m exp{m x)
' and

¥y’ = A m2exp(mx)

in Eq. {2.11), you will obtain ‘
(q:mr:2 + bmt + c)Aexp(mx) = 0

Since Aexp{mx ) is ﬁmjte_, this equi.llion will be satisfied only if
am®+ bm +c= 0 ' . (2.13)

This quadratic equation is called the characteristic equatlon {or auxillary equation). Its
rools are

-b + Vbz—-4ac —-b-VYbi-4ac

m = 2 anc} my = >
For exa:_hple, the auxiliary equation for

Y 45y —Tym0is m2+5m—-T=0
So you will agr.ee that

yix) = Aexp(m, x) . (2.143)
and

yalc) = A explm; x) , ‘ (214b)

are so]uﬁéhs of Eq. (2.11). Using the principle of superposition, you can write its most
general solution as

yix) = C exp(mix} + C;exp(mx) (2.14c)
for a suitable choice of constants C and C determined by initial or bouridary condiiions.
The Wronskian of these solutions is

Aexp(mx) A exp(mo x)
W) =

ny Aexp(m x) myA explm, x)
= (my—my) Bexpf (m +m)x] (2.15)
where B is a constant. This shows that for m; - a1y, the solutions will be linearly independent.

You must have noticed that the process of solving a homogeneous Jinear second order ordinary
differential equation with constant coefficients using an exponential function as & solution
reduces to finding the roots of a quadratic equation. The roots of this equation can be

1. real and distinct for 5>~ dac > 0 or b > 4dac
2. real and equal when b* — dac = 0.0rb? = dacand
3.  complex conjugate for b>—dac < 0 or b2< dac
35
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Let us now discover solutions corresponding to these roots.
Distinct Real Roots

For distinct real toots, exp(m, x), and exp{m; x) are linearly mdcpendent and the general
solution is given by

y = C,exp(m, x) + C, exp(m, x)
= exp [ ( ) ] [C, exp{ax) + C, exp{—ax) | - {2.16)

Vb —dac

where o = %a

The constants C, and C, can be determined by using given initial and boundary conditions.
We now illustrate this method with the following example.

Example 1
Solve the equation

Y+l +2y =0
subject o the initial conditions y(0) = 1 and y'(0) = 2.
Solution '
In this case, the auxiliary equation is

m2+3m+2 = 0

“which has roots m = —1andm = —2 Therefore, the general solution is

y=0C ex+Cpe ™ : (i)
To determine C) and Cz , we first use li:e condition thatatx = O,y = 1, This gives
' 1= C+Cy (i)
Further, since - -
y = —C e*-2C,e
we find that
y(0)=2a -C-2G - (iii)

You can readily solve (i) and (iii) for C, and C, to obtain C;, = 4 and C; = — 3. Hence, the
desired particular solulion is

y = 4e*-3eF

M;I

When two rools are equal (m; = my), W(x) = 0. This means that ™~ and ¢7** are linearly
dependent. What does this imply? It implics that (i} Eq. (2.14) does not hold and (ii) our
starting assumption is false. You may now ask: How can we oblain two linearly independent
functions when auxiliary equation of a second order differential equation has two equal
rools? In such a situation, we use the method of reduction of order to construct a second
linearly independent solution. This is illustrated below.

Repeated Real Roots -

When a second order dilferential equation has two equal roots, we obtain the com_aci form
of the second solution by assuming that

y2 = u(x) exp(ms) : - (217)

-where m is a root of the auxiliary equallon (Eq. (2.13)). Dl[ferenllalmg Eq. (2.17) wilh

respect lo “x, we get
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R ys = u' exp{px) + mu exp(mr) -

and
2

| yi =t e™+2mu €™+ miue™

Substituting Ih;:se in Eq. (2.11), we have
(am+bm+clulr)e™+(2ma+b)e™u rae™u" = 0

The first term in i.his expression vanishes in view of Eq. (2.13). The coefficient of &’ is zero

since ;z = - b/2a in this case. Hence, the above expression simplifies 1o
exp(mx) au” = 0

Multiplying by exp( —mx ) and-infegr‘ating, you will get

' u =K .

where K is an arbitrary constant of integration.

Integrating again, you will get
4=wKx+C

Hence, the desired solution is

=Xé€

X

xe (2.18)

Y2 =

where the arbitrary constants X and C have been dropped (since we are secking only a
second linearly independent solution). Hence, the general solution of a second order
differential cquation, when auxiliary equation has repealed real rools, is

y(x) = Cle'w+ sze'w

= (2.19)

= {C; + Cyx) exp|—

—bx/2a

To test that are linearly indepéndenl, you can compule their Wronskian

. : b
| 3 e

W)=
] Aol )l
2a Pl " 2a -
= e ® L0 for

and x %

and x ¢ ™%

(2.20)

asxs<b

—{bx/a)

It implies that & are acceptable solutions. The arbitrary constants C)

and Cz occurring in Eq. (2.19) can be determined using specified initial or boundary

conditions.

You may, therefore, conclude as Follows:

When the auxiliary equation for a second order ODE with constant coefficients has
repeated real roots (m, = m, = m), the general solution is given by

y = (C, + Cyx) exp(mx)
where C, and C; are arbitrary constants.

You may now like to solve'an SAQ 10 be sure that you have grasped Lhis method.

SAQ2
Solve the initial valtre problem-

Y +6y'+9y = 0; y(0)= 2and y'(0)= 1

Second Order Ordinary
Differentin] Equations with
Constant CoefMclents

Aliernatively, you can also
arrive al Eq. (2.18) by
constructing the lollowing linear
combination of ¢ *1" and ="
et -aal

i, —my
[n the fimit oy, — my (= m), this
1akes the form

- akly

[

t S e

- —™

dm
- xe™

Spend
10 min
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" The hyperbelic functions are so
pamed becauss x = a ensh®, and
»=a sinh 9 defino 2 reclanguler
byperbolax’ —y* = a”. Compare it
with the paramettic equation of the
circle 2+ ¥ = o which is defined
by x=gcos Oandy = asin®.

x{0)

decaying exponential. As a result, the d:sPIaoemcnl imcreases initislly, attains a maximum and
thereafier decays.

X

Fig.2.21 Displacement-time E‘l]ilfll‘ an h Fis 23 Displicenicrs e ya wpa o o ~—itirally damned

overdamped spring-mass system spring-mass system
Fig 2.2 shows two typical over-dampec! motions for %Ql = 0 and __j__ldrmﬁ >0
Case 2 N
When we have repeated real roots, the general solution of Eq. (2.24) s given by
x(8) = {Cy + Cyf) exp(—br) (2.26)

Note that here €, has dimensions of length and C, those of velocity. As before, these

constants can be determined by specifying initial conditions. Yon can easily verify that for
initial conditions giver in SAQ 3, C;, = 0and C, = vy 5o that the complete solution is

x(8) = vorexp(—br) ' (2.27)
Such a system is said to be critically damped. Typical graph of a critically damped system
for%o) 0a d—(- ):-0 is shown in Fig. 2.3. '

Case 3

When the roots are imaginary, let us write )

Vii—uf = Vo1 (f-0*)? = ioy
where i = V —1 and wg = V w§—b? is a real positive quantity. Hence, the displacement is
given by ) :
2() = exp(-b1) [C; exp(iwst) + Cpexp(=imy 1) ]

= Cexp{—brycos (wyt+¢) ] {(Z28)

- C,+C.
where C = V C} +C} and¢ = cos it .
V0, Cy

You will note that Eq. (2.28) represents oscillatory motion whose amplitude decreases
exponentially at a rate governed by b. Such a system is said lo be weakly damped. The -

- displacement of a wealdy damped system is depicted in Fig. 2.4.

e

. —C’/ _Cc'a‘
Fig. 24 : Ossillaticns of & weakly damped spring-mass system
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Let us sum vp what you have learnt so far:

1. “We cansolve a second order homogeneous linear ordinary differential equation with
constant coefficients using exponential functions. The form of the solution depends .
on the roots of the characteristic eqoation.

2. When we have distinct real roots, there exist two linearly independent functions of
the form exp{m, x} and exp{m, x} and the general solution is given by

yix) = C, exp{m, x} + C, exp(ms x)

3.‘ When we have real equal roots, the two linearly independent funciions in the general
soluticn are of the form exp (mx ) and x exp { mx ), i.e,, '

y(x) = (C, + Cp.x) exp{mx)

4. W]:lcn we have a complex conjugate pair of roots, the two linearly independent -
- solutions are of the form exp{ax) sin fx and exp{ctx) cos fix, and the general solution
can be written as ’ .

y(x) = explax) (C, sin fx + C; cos fix})
= Cexp(ar)cos(fr-¢)-

So far we have considered homogeneous linear equations with constant coefficients. These
equalions do nol satisfactorily model forced mechanical and electrical systems. In fact, such
sysiems can be fairly accurately represented by nonhomogeneous second order linear
equations. We now wish to obtain solutions of such equations. Can you use the method
discussed in the preceding section to solve non-homogeneous equations? No, we bave 1o
look for new methods. Let us learn some of these now.,

2.4- NONHOMOGENEOUS LINEAREQUATIONS WITH
CONSTANT COEFFICIENTS

From Sec. 2.2, you would recall that the general solution of a second order nonhomogeneous -
lincar ordinary differential equation with constant coefficients is composed of the particular
integral (PI) and the complementary function (CF). You can easily verily this by substituting

¥ = ¥+ ¥, in the equation

ay"+by +Cy = g(x)
You can obtain y, (x) by using the method of the preceding section. For instance, CF for the
equation '
y'—2y' -3y =sinx
is given by
I y. = Cle s Cae™

(You can check this by direct substitution.)

This means that finding the parlicular integral'is al the heart of (he melhod of solving a
ron-homogencous ¢quation. But how lo get 3,7 One systemalic approach to find y, is based
on the method of reduction of order, which you have leaml in Unit 1. The other commonly
used methods are the method of undetermined coefficients and the variation of
parameters, Let us now learn these. '

241 The Method of Undetermined Multipliers

The basic idea of this method is 1o first construct the general form of the particular integral
_from the forcing function. Tnen we determine coefficients for y, that allow it to satisfy the -
_given differential equation. In the following example, we'bave illustrated this concept

41
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Spend
0 min

Fig. 2.5 1 Displacement time
plot of undemped forced
vibrations -
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SAQS J

Find the gefieral solutions of the following differential equations:
@) yay=s?

(ii) y'+4y = 3cosx

(i) y"+y' +2y = de™+ 22

From Unit 4 of PHE-02 course, you would recall that non-homogeneous linear’
differential equations find an immediate application to damped spring-mass systems
acted upon by external forces . Suppose that the applied force causes the weight in a
spring-mass system to move up and down in some prescribed manner. Denoting the
external applied force by F(1), 1he differential equatlon describing one-dimensional
motion of such a systém is

mx+yx+kx =_fF(r)
Suppose the forcing function is given by F() = Fycos w4 where Fy is the constant
amplitude and w is the angular frequency. Then, you can write

mI+yx+kx = Fycos of \ - (2.29)
Since the soluticn of this equation depends on the damping force, we have to consider

separately the cases y = 0 (undamped) and y > 0 (damped). Let us consider the first case
oW, ’

Undamped Forced Vibrations

If there is no damping force, the dlffercnual equation describing the motion of the
spring-mass system becomes

mX+kx = Fgcos wt : ‘ (2.30)

Let us assume the weight to be initially at rest and that @ w wq r Vk/m. By the method of
undetermined coefficients, you can show that the general solution of this equation is

] F
x(£) = C €08 gt +CySin g f 4 ——52rmn

5= COS O
m{ag—w)
Then, using x{ 0} = x{0) = 0, we get
Clh—'_I:—uz and C, =0
m(wj-w)
The desired solution is then

x{f) = m( 3_ (cosmt cos Wot) -

If we use the identity cos A —cos B = -2 sin("ql ; B ) sin (A ;B ), this expression can be

rewritien in the form

x(¢) =

2 2

m (i)
Since the two sine functions are of different frequencies, there will be occasions, especially
when o is close to wg, when their amplitudes-will either magnify or cancel one another
(see Fig. 2.5). This magnification and cancellation occurs at reguiar intervals and is called
beat. In acoustics, these fluctuations can be heard when two tuning forks of slightly
different frequencies are set into vibration simultaneously. The same phenomenon occm:sm
electronics, where it is called amplitude modulatlon. )

You must have noticed that the mettiod of undetermined coefficients is litnited to those
equations whose driving functions are of very speciel form. Let us now discuss the so-called
variation of parameters method that is applicable to all linear differential equations with
constant coefficients.

2Fp .(mo+m]‘-siﬂ[cm:—‘w)r R -(2-.:31)-
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2.4.2 The Method of Variation of Parameters

Let y1 and yz be any lincarly independent solutions of the homogeneous equation -

corresponding to the given non-homogencous equation. To find the particular integral, let us
assume that ' .

4

yp-uy1+vy2 (2.32)

where u and v are unknown functions of x. To detennme these, we d:fferentxate Eq. (2.32)
with respect to.x . This gives '

yJJ = u'y,+ay] +vy, + vy—j {2.33)
We seek a solution sucli that ‘

Wy +v'y, = 0 ) (2.34)
Using this condition in Eq. (2.33), you wiﬁ get

Yo = uyl+vy (2.35)
Differentiate this expression again. The result is |

yp = uyi'+vy +u' yi+ vy (2.36)
On substituting y, , y, and y," for y, y' and y", respectively in the equation

ay'+by +cy = g(x) -
you will obtain ‘

Cauyl vvyf ewy] 4V y) by tvyhcluy +vy) = gk)

This can be reamanged as

ulayl+ by +cy)+v(ayy+byi+cy) +a(u y+v'y3) = glx) (237

Since yi and y2 are solutions of the homogeneous equation
ay”+bj:'+cy = 0
the terms in both parentheses drop out. Hence, Eq.(2.37) reduces to

a 'yl +v'y;) = glx) _ (2.38)

This means that & and v’ satisfy the system of Eqs. (2.34) and (2.38) These can be solved
by Cramer’s rule. Thus

0 »
)

- )]
yr »m ’ aW
i ¥

and

b 0

o - L nek) (2.39)
¥y aw - :
ooy

You will note. that the denormnalor in this equation is the Wronskian of two linear inde-
pendent functmns y1and yz and is non-zero.

These eqblamns can be integrated to obtain

Second Order Ordinary
Differential Equations with
Constant CoefMcients -

For iwo simultaneous linear equations of

the form a, x, +a,x = b,
and  ax 4o x, = b,

Cramer's rule 1ells us that the solutions

for x, and x, are

X om
and

- —p—
where

Dw
£y Ay

is 2 non-zero determinat. -
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2. Solve the differential equations

i) _%t{+y-secx
2
if) _%‘;-y-xe’

2.7 SOLUTIONS AND ANSWERS

SAQs
1. The Wronskian for these functions is

sin 2x cos 2x
W(x)= .
. 2c052x  ~2sin2x

= ~2sin®2x - 2c0s%2x
-_2 ‘

Since W(x) = 0 for all x, the functions sin 2¢ and cos 2x are linearly independent.

2. The auxiliary equation corresbonding fo the given ODE is
mi+6m+9 = 0 -
which has a double rootm = -3, Hence, the general solution is
yx) = (C;+ Cyx)e™
The mndiﬁon ¥ 0) = 2 gives
2=C

Differentiate (i) with respect to x. This gives

b, Cre™™-3(Cy+Cpx)e™

dx

Using the condition 9}% = 1, we get
1=20C,-3C,

or )

) Cznl+3C1-1+Gl-?

Hence, the desired solution is

yx) = 2+7x)e™

3. x(6) = exp(-br) [Cy exp(Pr) + C; exp(-p1)]
At 1 = 0,x = 0, This gives
- 0=0C+G
or ’
Cr = -Cy

Differentiate the given expression with respect to time. The result is
dx
Pl b exp(-br) [ C, exp(Be) + C exp(—fe) ]

+ exp(-br) [ B C, exp(B1) ~ B C, exp(-pe) |

dx (0)
di

Using the condition = ¥y ,we find that

@

(i)

(iii)
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Vo= —b(C1+C2)+ﬂ(C1-CQ)

or

Cl- 2_B,- —C‘2

Hence -

x(@= 22 exp(-bt) [ exp(Bi) - expl-0) ]
- —‘l;ﬂexp(-br) sinh ﬁr

This shows that the resultant motion of a heavily damped oscillator is determined by
tbe interplay of a decaying exponential and a hyperbolic function.

4. Assume that the PI is of the form

Yp = Co+C1x+Cyx? - (i)

Substituting it and its second derivative
2
L 20,
dx?
in the given ODE, you would gel
2 .
- 2C2—(C0+C1x+62x2)-x+% (i)

For (i) to be an acceptable solution, (ii) should be an identity. This gives

-

Therefore

2
yp(%) -—%-—x-l .

5. (i) The solution of the homogeneons equation

2

is found to be
yAx) = Cicosx+Cysinx
. A particular integral is assumed to have the form
Yplx) = o Ax2+Bx+C
This is substituted into the original differential equation to gi-ve
24 +Ax?+ Bx+ C = x°

Equating coefficients of the various powers of x, we have

Coefficient of x°: 2+C = 0
Coefficient of x* ; B=20
Coefficiont of x°: A=1

Second Order Ordinary
Differential Equsilons with
Constant Coefficients
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g::;ﬁ:-:l]ﬂl Methodstn Thése equations are solved siml_lllahcously to give the particular sé]ul;ion
— ' yx) = x*-2
. Fﬁally, the general solution is
y&) = yx) + y,(x)
- Clcosx+C25inx+;:2-2

(ii) The solution of the corfesponding homogeneous equation y” + 4y = 0 which has roots
£2i, is _
¥ = Cysin2x +Cycos 2

To find a particular solution of the given equation, we assume that the general form
ofyp is :

yp = Asinx+Beosx

This is the correct expression since neither of these functions is in y.. Substituting y,
and y,’ into the given differential equation, we obtain

(-Asinx-Bcosx)+4{Asinx+Bcosx) = Jcosx
Expanding and collecting like terms yields
34 =« 0,and 38 = 3
which has the solution A =0 and B = 1. Hence, y, = cos x and the general solution is
y = Cysin2x+ Cyco5 2x +cosx
(iii) Assume the particular solution to have the form
Yplx) = Ae”+ Bx*+Cx+ D
Substitute this into the given differential equation, The result is
Ae*+ 2B +Ae*+ 2Bx +C + 2Ae"+ 2Bx2+ 2Cx + 2D = 4%+ 2x%
Equating the various coefficients, you would obtain - -

Coefficient of " : A+A+24 = 4

-

Coefficientofx®: 2B+C+2D =0

Coefficient of x' : 28+2C = 0
Coefficient of x* 28 =2 N
From the above equations, we find thatd =1,B8=1, C= -i and D = -14. Thus,
ypx) = €™+ xi-x-1a
Terminal Questions
1. The given differential equation is
'm':E+7.i:+kr-Fomsox | 6]

where dot over x denotes derivative with respect 1o time. As such, you have learnt
to solve it in your PHE-02 course. But we repeat the solution for the sake of
completeness. The corresponding homogeneous equation is

mxX+yx+kx =0

which is the same as Ibe equation describing damped vibration without a forcing
function. s solution depends upon the sign of v2- 4mk. Thus

If y2- 4mk > 0

x{) = Cre= @B Cy el By

If y2- 4mk = Q

50
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' Second Order Ordinary
x()= e (C 1+ Cy) Differential Equations with
Canstant Coelficients
Ify?~ 4mk < 0
x ) = e™™(C, cos w't + C, sinw't)
= Ce ™ cos (0t - 8)

wherea = 1/2m, B =~V ¥ - dmk o' = LV amk—7, ¢ « VT4 3

andtan & = Cp/C,.

Since no constant multiple of the driving fﬁncﬁon Fgcos wt is a term of x. (), the
particular solution is of the form

x,(t) = Acosax + B sin e
- Differentiating twice with respect to time, we get
x,(f) = —t0 A sin wt + B cos wr
X{1) = —w?A cos wr - w? B sin wr
Substituting these in (i) and collecting the coefficient of sine and cosine terms, we have
[(}‘_mmzm +©yB | cos wf + [ — wyA + (k- mw?) B ] sin wt = Fycos of

Equating the coefficients of the sine and cosine terms on both sides of this equality,
we get

-w'yA+(k-mm2)B =0
and (k- mw?)A +wyl = F
Solving these for A and B, you will get

Fo (k- mw?) and 5 . yo Fo

A =
(J'q:—arzr1c|:|2)2+(|uz~,'2 (I.c-r:nuuz)z-l-cnzy2

Recalling that V-k/m = wo, we can write A and B as

A= Fom (03-w?) and B = wa:'o
m?(wf - w° P + 0 m (0§ - w2 ) + iy

We choose to write xp(2) in the form

x,(1) = Ccos (wt - 5)

where C = Fy /‘\/ﬂr:z(w%—m2 )2+0J2‘{2 andtand = wy/m (mﬁ—wz).

For large values of ¢, the motion is essentially described by x,(1). For Lhis reason,
x,(t) is called the steady-state solution.

2.(i) Since two linearly independent solutions of the corresponding homogeneous equation
are cos x and sin x, the general solution of the given equation is

y=Cicosx+Cysinx+y,

where y, = # cos x + vsin xand «’ and V' are, respectively given by

0 sinx cos x ¢
secx CO5 X —sinx secx
d_“ - and i"_ -
dx coS x sinx dx coS X sinx -
—sinx cosx. —sinx cosx
du

Therefore, o = —tan x and i._"' = 1, from which it readily follows thal# = In | cos x|
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(i)

i L
and v = x. The general solution is, therefore,

y = Cyoosx+Cpsinx +In|cosx |cosx +xsinx

Note that the method of undetermined coefficients could not be used to obtain ¥p
because sec x is not a solution of the homogeneous linear differential equation.

The corresponding homogeneous equation y” —y = 0 has the general solution

y = C;e*+C,e™ Because of the natre of the driving function, yp could not be
found by the method of undetermined cocfhcients. In the method of variation of
parameters, we puty; = e*andy, = ™" in the expressions for 1’ and v' to obtain

0 | & 0
x& _&* 1 xe
4 m — and V= ——
& e e e
& - - e —-e*

Therefore, #' = x/2and v' = ﬂzﬂ_@ﬂ from which it readily follows that

e XPhady = — (xez"/ci Y+ ( A ). The general solution is then

Zex_ie:_i_}_ex
4

: >, 1
y=Ce +Cze’+zx 5

Finally, we note that C,e” and %e’ can be combined as(C, + % Ye" = Ce™ and the

general solution may be written as

y =Ce"+Cop™- %xe‘+%x23’ .
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UNIT 3 SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS
WITH VARIABLE COEFFICIENTS ,

Structure

3.1 Introduction
Objectives

3.2 SomeTerminology

3.3 Power Series Method

"' 3.4 'The Frobenius’ Method

3.5 Summary
3.6 Terminal Questions

3.7 Solutions and Answers

3.1 INTRODUCTION

In Unit 2, you have leaml how to solve second order ODEs with constant coefficients. The
solutions of these equations are simple exponentials, Lrigonometric or hyperbolic functions
known from calculus. But in many physical and engineering problems, we have to solve
second order ordinary differential equations with variable coefficients. For example, we

have to solve such equations to study the field distribution around a charged sphere or a
cylinder;and energy production in a reactor. Similarly, when we wish to know how high

a vertical column of uniform cross-section van be extended upward unul it buckbes tinder its
own weight, we have lo solve a second order ODE with variable coefficicnts. In such cases,
simple algebraic or transcendental solutions do not exist and metheds discussed in Unit 2 do not
work. We, (herefore, look for other methods. .

One of the most elegant and efficient methods of solving such ODEs is the power series
method. This is so particularly because it facililates numerical computations. Even so, it
has limited utility when coefficients of the given differential equation are not well
defined at some point. In such cases, we use an extension of the power series method,
called the Frobenius® method. You will leam these two methods in this unit. The
properties of power series and certain other mathematical concepts are given in an
Appendix at the end of this unit. It would be better if you study the appendix before
studying this unit. .

Objectives

After studying this unit, you should be able to

¢ define ordinary and singular points

¢ locate an& classify (he type of singularity

® use power series method to solve a second order ODE about an ordinary point

* use Frobenius’ method to solve a second order ODE about a regular singular point.

3.2 SOME TERMINOLOGY

While studying Grst and second order ODEs with constant coefficients, you bave learnt.
some basic terminology. You would come across some more common terms, which you do
not know as yet, in reference to second order ODEs with variable coefficients. This section
is intended to familiarise you with these concepts,
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- Heze ‘coelE is being used as an
abbrevation of ‘coelicient”.
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Solution

On comparing the given equation with Eq. (3.2), you will note that p(x) = 0 and g (x) = x*
sothatx = 0 is an ordinary point. So we assume that .
Q n - 2 0)
y(x) = 2 g x"m ggra xtazx i+ ..,
n=0
and differentiate it with respect to x. This gives
Yy = a+2ax+3a3x’+...

In the summation notation, we can write -

¥ = i na,x""!

A=l
The lower limit on the summation index has been shifted from n = Oto #n = 1. This is

because the term corresponding 1o # = 0 in (i) is constant and its derivative with respect to
x is zero. Similarly, you can write

y' w 2@ +6a3x+ 1264X2+'...

@ (it)
or Y om 2 anr(n—1)x""2
=2
Substituting for y and y" in the given differential equation, we find that
(Qay+6a3x+12a,x%+20 asx®+, Y+ {apx’va, x>+ azx*+ )= 0

or En(n—l)a,.x"'2+za,.f*z=0

n=2 n=0
Next, let us collect like powers of x. This gives N .

2a2+6a3x+(12a4+,ao)xz'+(20as+al)xs+... =0

Since the RHS is identically zero, we equate the coefficient of every power of x on the LHS
10 zero, : ,

Coeff.of x” 2a=0=ay =0
Coeff. of x' Ga; =m0 = a1=0
Coeff.of x* : 12a4+a0=0=:~a4-—f—;-
Coeff.of x* : 20a5+a1=0=:>a5=---;—$
Coeff.of x* : Wag+a, =0 = g5 =0
Coeff.of »° : 42a;+a; =0 = a; = 0
Coeff. of x"*2: (n+3)(n+d)a,,4+a, =0
or Apod = 1 for n=0

- aﬂ
(n+3)(n+4) _

Withaz = 0, it folows that allernative even coefficients beyond as ( a5, ayg, ) will be zero.

Similarly, since #43 = 0, it readily follows thate7 = a;; = ... = 0. Hence, you can write

5

4 .
y)= ag+ayx +aax +asx +asxs+a9x°+....

=ap+a1x=0 8L S, 00 B, 81 S,
12 20 672 1440
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‘ " Second Order Ordinary

4,8 e 9 ) " Differeniial Eqoations with -
=a|1-Z+ X 4. jva|x-E + X 4. ' :
( 12 672 ] 1_( 20 1440 ] Variable Coefficients
"= agy (x) +a;y,(x)

Are these solutions linearly independent? You should check it by computing thejr
Wronskian. : .
You may now ask : Can we not use the power series method to solve first or second order
ODEs with constant coefficienis? The answer is: Yes, we can use the above steps as
outlined for second order equations with variable coefficients. You can easily convince
yourself about (his by solving the [ollowing SAQ.

o ‘ ) Spend
SAQ2 : 15 min

Use power series method to solve the following equations.
a) yﬂ + m% y = 0
D) Yexy = xi-2¢ -

As pointed out carlier, the equation given in Example 1 is of particular interest in physics
and nuclear engineering. It is known as Legendre’s equation. Let us obtain its two linearly
independent solutions using Lhe power series method. -

Example 3
. Oblain series solution of the Legendre's equation given in Example 1
(l—xz)y"-z.ry'+m(m+l)y =0
Solution

To solve Legendre’s equation using the power series method, we first rewrite it as

" i m(m+1) =0 :
s S S @)

From Example 1, you would recall tha the functions p (x) = — % and
i-

qix) = m_(m;"_il_)have regular singularities at.x = =1, However, they arc analytic at -
—-X

X = [ and we can, therefore, use power series method to solve Legendre’s equation in the

rarge -1 <x <1. Let us write

y(x) = i a,x" = gy +a;x+a,x%+ ... (i)
n=0 S
Substituting this and its derivatives
yi(x)= a; +2la2x+3;a3x2+
and
Y x) = 2a,+6a3x+12a,x%+ ...
in Legendre's equalion, we gel |
(1-2*)[2a2+6a3x+12a: 2 + )2y +2a3x + 303 + ... |
+k[an+a1x+azx2+...] =0

or (l—xz)i u(n-l)a,,x"'z-Zri na,,x"_l+ki g, x" =0
’ n=1 \

n=2 a=0 ~

where we have putm(m+1) = k.

=7
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You can rewrite it as

S i nr-(n—l)a,,x"'z- i n(n-1)a,x"-2 i fian-'-‘"*'k i a,x" =0 (i)

=2 ne=2 w=} n=1

. In1the expanded form, you can write

' (2a2+6gax+12a4x2+ v )= (280 x%+ 6a3 x + 120, x4+ ...)
- —2(a1x+202x2+3a3_x3+-...)+k-(a“+alx+az.r2+...) =0

As before, let us collect the coefficients of each power of x. This gives
(2az_+kag)+(ﬁa__:,-2al+kal)x+(1244—202-4ag+kaz)xz+... =0

. Again the coefficient of each power of x is zero. Thus,

. Coeff. of £° : 20;+kay = 0 = ap = _.;.an N )
Coeff. of x : §a5+(k—2)a1-0=:-a3-—-k;2a1 ' T ) -
Coeff. of x? : 1204+(k—6)a2-0=a4--"1'_26a2 (vi)

In general, for the » 1hpower of x, you can write

Coeff. of x": (n+2)(n+1)ay2-n(n=1)an=-2na,+ka, =0
n{n-1)+2n-k,

m+1)(n+2)

- nln+l)-k , . p.0,1,2,3,..
(rR+1)(n+2)

You can readily verify by putting 4 = m(m + 1) that the numerator can be written as
{m-n)(n+m+1) Hence, this expression takes the form

an+2-"'(m_-n)(m+"+l)a"; n-0,1,2,...l (V-ii)
(n+l)(n+2) :

This cquality enables us to determine each expansion coefficient in terms of the second one
preceding it, except for a, and @) (which are arbitrary). Such a relation between the
coefficients is called a recurrence relation or recursion formula.

ar [

The recurrence relation (vii) implies that coefficients with even subscripts can be expressed
in terms of ap and those with odd subscripts in terms of a3, That is,

m__m(n;;l)aD as = - (m-l%fm+2)‘ll
m“_(Jv:r:—Ziémr:+3)a2 as = — (Jv:u-.?‘;‘gmr:+4)a3

(.|'ﬂ—2)r.'1(1r1'=+1)(m-l-S)ao - (n'l—‘.’a)(lr:r:—l)(1!:»:+2)(1':'1_+«fl)a1
- 41 - 51

and so on.
By inserting these values for the coctficients in (id), you can write

y0) = oy (4 6 ya(x) o (viii)
where

P T

y = 1_m(m+1)x2+§g-2)m(m+i)(m+3)x4_
2! 41 h

and

yp = 1={m=1)(m+2) 3 (m=3)(m-1)(m+2)(m+4),5_ .
31 . ’
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arc two solutions over the interval -1 <x < 1. You may now again ask: Are y; and y2
linearly independent? To answer this question, we note that y; contains only even powers of
x whereas yz contains only odd powers of x. As a result, the ratio y1/y» will not be constant,
implying that y; and y2 are linearly independent solutions. And (vm) is a general solution of

. Legendre's equation. '
SAQ3
The equation
Yy -2y +2my =0

plays a particularly important role in statistics, Its solutions are known as Hermite
polynomials. We would like you to obtain the coefficients of the power series solution of
this equation.

-
-

-Before proceeding, let us summarise the steps you should follow to solve a second order
ODE for whichx = 0 is an ordinary point.

Power Serles Method )
Stepl : Assume a power series solution of the form

yxr=y a,x"

Step2 : Substitute the assumed so!uhon and its derivatives into the given differential
€quation, L

Step 3 : Equate the coefficients of each power of x to zero for a komogeneous eguation.
This results in a recursion relation, which helps us in determining successively
the coefficients occumng in the power series in terms of two arbitrary
constants, '

Step 4: Write the explicit form of the series solution which satisfies the given
cquation. - -

So far we have refrined from mathematical rigour. It may, however, be pointed out here
that the mathematical justification of power series method is contained in Fuchs® Theorem.
We state it without giving proof:

Ifx = xgis an ordinary point of the equation
Y +p@)y +qx)y = 0

then there ex:sts 8 unjque function y (x) which is analytic and satisfies the given equation in
the neighbourhood of xo as well as the initial conditions y () = dgand y' {xp) = a, where
ag and aj are two arbitrary constants. '

Severzl second order ODEs with variable coefficients appearing in many important
physical problems have coefficients which are not analytic functions. Ia particular,
these equations may have a regular singularity atx = x; For such equations, power
series solution of the form given by Eq. (3.2) is not physically acceptable and we use an
exténded power series which alwnys provides at Jeast ofie solutior around a regular
singular pomt

y@) = (x-x0) i ay(x-~xg}"

LY

'i a(x-x)"" o G4

A=l

Such a series is also called Frobenius series with index r. Here r may be any (res! or
complex) number so that ap w 0. You will note that the series given in Eq. (3 4)reduces toa
power series (Eq. (3.3)) if r is 2 non-negative integer.

éacmd Order
Dilferentia] Equations with
Variable Cocfficlents

Spend
15 min
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34 THE FROBENIUS’ METHOD

We illustrate the use of Frobenius’ method when x = Ois a regular singular point of
Eq.(3.2): ‘
Y +pk)y +q(x)y = 0

Since p (x) and g (x) are pot analyticat x = O butx « 0 isa regular singularity, letus
rewrite this equation in terms of b(x) = x p(x) and ¢ (x) = xzq(x) , which will be Mytic
atx = 0. So, we multiply throughout by 10 obtain

X2y +x*pln)y +xq(x)y = 0

or
- 23 4 xb@)Y +e(zy = 0 ' G
‘Since b(x) and ¢ (x) are analyticatx = 0, we can write
) ' ® (3.6‘)
b(x) = by+byx+byx?# byx®+ ... = E b, x"
nul}
and
c(x)m o+ xtpxicse.. = 2 c,,.f" (3.60)
. T} . v

You will note that if it happens thatby = cy = ¢, = 0, thenx = 0 deﬁn&s an ordinary
point rather than a regular singular point. :
Differentiating the serics expansion given in Eq, (3.4) forxo = 0 term by term, you will get

’ A+r=1

y -ngo(n+r)a,,x

and

y' o= i (r+r)(n+r-1)ax"* -2

n=_

Substiruting for y(x}, y'(x), ¥’ (x), b(x} and ¢ (x} in Eq.(3.5), we get

x’E (n +r)(n+r—1)a,,x"+x'[2 (u+r)a,,x"][2 by x™]
a=0 A=0 ) m=0
1:’[2 c,,,x"'][E a,x"] =0
m=0 =0 ,
As before, let us equate the sum of the coefficients of each power of x to zero. This yields a

system of equations involving the unknown coefficients a,’s. The coeHficient of x T, which is
the lowest power of x, is obtained from the 7 = O term. Equating this coefficient to Zemo,
you will obtain

Coefficientof x":  [r{r-1)+rby+cylay = 0
Since ag = 0, this equality will be satisficd if
r2+(bo—1)r+cu =0 EN)

Eq.(3.7) is called the Indiclal equation comesponding 1o the given differential equation.
Since the indicial equation is quadratic, it will have two roots. This means that there should
be two Frobenius series solutions. Will these solutions always be linearly independent? Not
necessarily. In fact, the roots of the indicial equation give us some idea of the nature of
solutions of the ODE of interest. In practice, the desired solutions are obtained using the »

-steps outlined for the power series method, However, before plunging into these details, we

would like you to go through the following example.,

ey
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Example 4 - Differential Equations with
. Determine the roots of the indicial equation around the origin for the differential equation Varisble Cosfficients
2y s xy + (‘xz—- %)y =0
Solution '
Tobe able to compare the given equatmn with Eq. (3.2), we dmde throughout by . x* Th:s gives
yradys [x_-l_/9) y=0 0)
X x '
You would readily recognise that this equation bas a singularity atx = 0. Is it regular or
ifregular? To discover this, compare (i) with Eq. (3.2). You will note that p (x} = %
. ,‘___xz_ —_
and g(x) = —9— sothatxp(x) = 1 aiid x2g(x) = x2- (1/9). In the limit x — 0,
xplx) = 1 and x q(O) = —(1/9). That is, b(x) and c(x) are analytic at x = 0. Thus,
x = (}is a regular singular point.
We can, therefore, assume a solution of the form
(x) - 2 a, xu+r
m=0
Differentiating it with respect to x, we get
Y@= ap(mer)emr1
MZO
and ¥ (@) = E a (m+r)(m+r=-1)x"*""2
. m=l
On substituting these in the given equation, we get
Q mar < m+r c mer+2 l o m+r
E(m+r)(m+r—1)a,_x +2 (m+r)ayx +2 Oy X —92 g X
m=0 m=0 m=0 m=0Q
To arrive at the indicial equation, we equate the coefficients of the lowest power of x, i.e., X
to zero. This gives :
ao[r(r—l )+r—%] -0
For gy = 0, the indicial equation takes the form
rP-lag
b
which has roots 7 = = -5 . That is, Ime root of the indicial equation are distinct. Moreover,
they do not differ by an integer.
- Let us now pause for a minute and ask: Will the roots always be distinct? Certainly not.
Moreover, even when they are distinct, they may differ by an integer. In fact, there are three
possibilitics. The indicial equation may have (i) distinct roots not differing by an integer,
(ii) double roots, and (jii} distinct roots dlﬂ'ermg by an integer. To discover these, you
should solve the following SAQ. .
SAQ4 o
e Spend
Dclca(;mme the roots of the mdlm.l equations corresponding 1o the folluwmg ODEs about 10 min . -
X wy,
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The condition for equal roots of a
quadratic equation ax® br+¢ = 0
is b' = 4ac = 0. This means thal the
term under the radical sign will
vanish,

. P l '
. 56 \ _1y7 3 i ] |
y1(x) = agx 1*}_‘.1( 1) (4‘) p!lx4x7....(3p+1)] '=.

Forr = r» = 1/6 also, all odd coefficients will vanish and we leave it as an exercise for
you to verify that

yg(x) = dnxV5+ E dz‘,x:‘”’( 6)
Pl

where

.-
dyp = (-1)7[3 g
4) pl2x5%x8..(3p-1)

Case2: Double Root of the Indicial Equation

‘When roots of the indicjal equation are equal, we cannotobtain two linearly independent
solutions using the procedure outlined above. In fact, there can be only one Frobenids series
solution. To determine this solution, we first find r from Eq. (3.7 :

r_-(bu--l):V(bo-l)z-‘T-Co

.2
Using the condition for equal roots, you will find that the common root is — bo-1 _ .1."2_b°.
Hence, it readily follows from Eq. {3.4) that one of the solutions will be of the form
n@=x Y a,x"
n=0
_ 1-bo)2 5: ax" \ (3.9
n=0 .
where a,’s are unknown constants.
The second lincarly independent solution is
= phz+| ¥ a, [ > a,..x’"]
n=0 m=1
= y,(x) In x+x’2 Ax' (3.10)

|
where A; is some other conslant.
Case3: Roots of the Indlclal Equatlon Diﬂeﬁn_g by an Integer

When the roots (r1, r2) of the indicial equation are distinct but differ by an integer, we can
always delermine the first Frobenius series solution as before. If ry (= r)andr2 (= r - p,
where p is a posilive integer) are the two roots, then

L .
nx)=x"y a,x"
. nEO
The other linearty independent Frobenius solution is
’ mw
yalx) = &; ) (x) Inx +x™ E Dpx"
. me=D

Let us now summarise what you have studied in this unit.
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. A second order ODE with va1riable coefficients

35 SUMMARY .

y'+pE)y +q(x)y = 0 _ o
is said tohave an ordinary pointalx = xpifp(r)and q(x)areanalyticatx = xp.Otherwise,
the point is said to be singular. The singularity is regular ifxl_ir.nk(x-xg)p(x) and

lim (x—xg)2q(x)are finilc at x = x;,
x—*Xxp ]

e We can solve a second order ODE with variable coeflicients-around an ordinary point at
-]

x = 0 by assuming a power series solution of the form y(x) = 2 a,x". The constants
n=0
a,'s are determined using the recursion relation.

# The solution around a regular singularity atx = 0 is obtained using Frobenjus method by
assuming a solution of the form
yy = x" N a,x
nzo

¢ The indicial equation is obtained by equating the sum of the coefficients of the lowest
power of x to Zero.

¢ The roots of the indicial equation give us an idea of the nature of solutions of the ODE.
The roots of the indicial equation may be distincl, repeated or differ by ani integer:

o For distinct roots, two linearly independent solutions are

. () = x" 2 lanx"

ne0

and

@ =S d"

n=0 .

3.6 TERMINAL QUESTIONS

1. Like Legendre’s equatior, another ODE that arises in advanced studies in physics and
applied mathematics is the Bessel's equation of order m:

xzy"+xy'+(x2—m2)y =0

In Example 4, we solved Bessel’s equation of order 1/3. Use Frobenius’ method to
solve this equation.

2. Solvethe ODE
yl'I +y - e:

around the pointx = Q.

3.7 SOLUTIONS AND ANSWERS

SAQs
1(a) X3y +3xy' +y = 0

To compare it with the standard form { ¥ + p{x)y’ + g{x)y = 0), you should divide it -

by £2. This gives

Second Order Ordlnary
Differentisl Equations with
Variable Coefficients

EIEnT

1ty T I PTAI e TY

[RPU -




Mathematical Methods in
Pbysics - I

N\ Coeff.of x* 303t01-1=$a3-1_T"1-%.
Coeff. of X* : 4a4+02-0==»a4-,-%-."‘"38;2
Cocff. of "1 : NG +ay_,=0=a, = -La, ofornzd

n

Heration of this formula for = 4 yields

‘14--la2-_l _do+2 _aa+2
4 4 2 4x2
1 1 1 1

s ™ ——d3 = -| = Zlm =

’ 5 3. (5](3) 5x3
1 ag+2-

Qg = —ffy w -

y 6 ‘ 6Exdx?2

g; % -Lgs = _ _G0+2
7 Tx5x3

aa--laﬁ-—.—ﬂtz_
8 8x6x4x2
1 1

g ™ =2y L

? 9 7 IxTx5x3

The solution can then be written as

Y@= S gt

n=0

a°+2x2+l13+a°+2x‘— 1 ,5_ ao+2 x4 1 7,
3 4x2 5x3 6x4x2 Tx5x3

L.rz— 1 x4+ 1 x6+...
2 4x2 6xdx?

o L1 PR 1 x- ...
3 5x3 Tx§x3

= gy -

You would readily recognise that x = 0 is 2n ordinary point of the given equation. So
we assume a solution of the form :

y(x) = i a,x

a=0

Then
Y (x) = 2 nﬁ,,x

nm]

-1

and

Y@= Fn(n-1)a,x"?

nm2




4(a)

Substituting these in the given equation, we find that

En(n 1)a,, "= -ZEna,,x +2m2a,,x =0
R=2 LEL]
In the expanded form,

(28, +6a3x+ 120,42 + .+ n(n-1)a,x""%+...)
—2(alx+202x2+3a3x3+...+na,,x"+...)
+ 2:n(ao+al.r+azx2+...+a "+ . ) =0

Collecting the coefficients of each power of x, we gel
(202+2mao)+(6a3-2a1+2ma1)x

+(12a¢—4az+?:ua2)x2+

+[(n+2)(n+1)a,,+2—2na,,+2ma,,].r"+... =0

Next we equate the coefficient of each power of x to zero. The result is

Coefl. of 1°: 2 +2may = 0= gy = 200
2x1
Coeff. of x': 6a3+(2m-2)a, = 0= aq; = 2(31x1m) a1
Coeff. of 12:12£4+(2m—4)a2— O=>g, = (ixr;) _Zm‘giam) o

Coeff. of x” (n+2)}(n+1)an2-2(n-m)a, =0

or a,,+2.=_2.(ii)__
(n+2)(n+1)

x{x-1 Wi+ (3x-1)y +y =0

Let us first rewrite this equation in the standard form by dividing throughout by
x(x-1)

yu+(3x—l)yll+ 1

x{x-1) x(x-l)y-o

You can readily identify that

pix)= %)_ and g¢(x) = 1
rix

-1) £{x-1)

Both functions diverge atx = O as well asx = 1. Butlim xp(x)= 1, lim x*4q(x)= 0,

r—{ x—=0
hm Tx-1)px) = 2and!un (x-1)*¢(x) = 0s0 thatx = Oandx = 1 are
regular singularities. Forx = 0, let us, therefore, assume a solution of the form

y(.r) = i aﬂ_rn-l-r

H=0

sothal y'(x) = E (n+rya,x™*"

nellw
[--]

and  y'(x) = E (n+r)(n+r-1)a x"*?
n=0

On substituting for y (x), y’ (x) and y” (x} in the given equation, we find that

Second Order Ordinary
Differential Equations with
VYariable Cocfficients

69

Toats

—ww T

TR AT

= wnp-n

PRI T

clm—




Mathernatical Methods kn
Physics - I .

(®)

70

x{x-1) i (1r:+r)(n+r-.1)::,,.1:"‘”"'2

=l

" +(3x-1) 2 (ﬂ+r)a,,.r:""'1 + i ax"* =0

nu=l a=0

i- (n+r)(n+r-1)a,x""" - i (,,...,-)(,,.,,,._l)anxnrq,

nel aw0 .

+3 E (n+r)a,,x"”-2 (1r=+1v-)|::,,.t"*"'1 + 2 a,x"*"=0

n=Q n=0 =0

You will note that the lowest power of x is x" 1 By equating the sum of its
coefficients to zero, we have :

[-r(r-1)-rlapy =0

Since g, w 0, we must bave a0
Hence, this indicial equation has a double root: r = 0.

(x’-l)xzy"-(lx2+1)1y’+(x2+l)y -0
" Letus divide lhroughoutby(xz- 1)x?to put it in the standard form ((Eq. (3.2))
U 121'1 ' ¥ x24-1 y= 0
(F-1) 2F(F-1)

You will readily recognise thatx = Oisa regular singular
us, therefore, assume a solution of the form

ylx) = i a,x
n=0

n+r

sothat y'(x}= S (1'1+r)a,,11:"'+"l
;Z;
and

yx)= i (n+r)(n+,-_1)a"xn+r-z
n=l

Substituting these in the given equation, we find thal

(xz-l)i (n+r)(n+r-1)a,,x””—(.r2+1 )i (A+r)a,x"""

n=i L)

+ (xz+1)2 a,x""" w0 |

n«l

Performing the multiplication, we find that

i (n+r)(n+r—1)a,,.r"+”-2—i (n+er)n+r-1)a,x"""

n=0 n=0

w o
—2 (n+r)a,,x"+”2-2 (n+r)a,x"*"
a=0 n=0

«a )
+ 2 a"xn+r+2+2’anxn+r -0
n=0 a=0

Combining the first, third and fifth series together, and second and last series
together, we find that

point of the given ODE. Let
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_ SumndOnkrﬂmﬂnuy
@ : Dt tial Hons with
2[(th+r)(arz+1r--1)-(JP:+1!')+1]15',,::""'"2 Vganl;TeCertfi“;:imu
n=0 .

- 2 [(n+r)(n+r-1')+(n+r)—1]a,,x""= 0
n=0 .
On simplification, we find that

(n+r-1)2gx"*+2_ E(n+r-1)(n+r+1)'a,,x"” =0
A=0 . Py .

The lowest power of x in this equation is .
oblain the required indicial equation:

(r+1)(r_—l) - [

By equating its power to zero, you will

whose roots are }1 =
by an integer.
Terminal Questions
The family of ODEs

.rzy"+.xy’+(.tz—m2)y = 0

is known as Bessel’s equations. The parameter m is real and non-negative. You would
readily note thatx = Qisa regular singular point of the equation. So we assume that

land r; = ~1. You will readily recognise that these roots differ

ye) = 3 au | )

Substitute y(x) and its derivatives in the given equation. This yields

E (n+r)(n+‘r—1)a,,.t"”+2 (n+r)a,..t""+E a,,.r.’”-”z-E ma, X"*" - 0
n=0 a=0 =0 ‘ A=0 ’

. Changing the first summation so that the ex

ponent on x is #+r and collecting other
series, we have -

i [(n+r)(n+r-—1)+(n+r)-m2]a,,x"”+§ G, 2x""" =m0 (i)
Am2

A=0

The smallest power of x is (n=0). Equating the coefficient of ¥’ lo Zero, we get
(r(r-1)+r-m*)ay = 0
Since g, m 0, we have the indicial equation
r’-m’= ¢ (iii)
which has roots r; = m and rz = -m, |

Depending on the value of m, the solutions can differ vastly:

(iv)
N ="y g,x™"
and
o v
yolx} = 2 Bpx"™™ ®
n=0

To Gind y), let us write (ii) in the expanded form
id| (rz—mz)ao+[(r+1)2-—m2]alx
+[(r+2)2—m2]a212+...+l(n+r)2—m2}a,.x"-i: .
r¥{al+a;Prarct+ et 2X"+ ] =0

m
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T2

Equating the coefficient of each power of x to zero, we get
Cm:ﬂ'.off. : (rz-mz)ao=0
Coeff. of ¥*' : [(r+1)Y-m]m =0
1
(ir'+_1'!)2--,|'112'!:‘ln
1
_(n+r)2—m2

Coeff. of ¥ *2 : [(r+2)2—m2)02—ﬂo =0=a = -

Coeff.of XY *" : [(n+r)’-m’)a,+ax-2 = 0=>0a, = @n-2

For r = m, we find thata; = O since the bracketed quantity does not vanish. Then
recursion relation implies that @3 = as = a7 = O = ... That is, all odd subscripted
coefficients vanish, For even subscripted coefficients, we find that
M
(m+2)-m’
- a0

(m+2-m)(m+2+m)

a2=—

-0

2 (m+1)

Similarly,

- az = do
2x2(m+2) 2*x2(m+1)(m+2)

_ dq | - ag

2x3(m+3) %x3x2(m+1){(m+2)(m+3)

a4 =

ag =

In general,
az, = (=)'ao - n=0,1,2,...
Pai({m+1)Y(m+2)...(m+n)

The solution corresponding 10 r; = -m is found by simply replacing m by -m provided
m is not an integer.

Lettingy = E a,x", we find that
n=0

y ‘ngoan-"}l_l

and

y =-§:Za,,n(n—l )x" 2

From Table 3.1, you would recall that series expansion for ¢” is

]
x
Xz
e_ = E nt
ubstituting in the given differential equation, we oblain
|3 B €q

E n(n—l)aﬂx”'2+i a,x" = i %

n=0 n=0 a=0
Rearranging the terms, you will obtain

2 u(n-—l)a,,.r"'%i (a,,—L‘)x"= 0

LEM n=i ne

Since the right-band side of the equalily is identically zero, we equate each coefficient
of every power of x on the lefi-hand side to zero. To evaluale an, the 'exponents in the
two series must be made the same by shifting the index. Here, we choose to replace n
with » —2 in the second series. Thus,
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n(n-1)a,x" 2+ )
>, nin 2

n=2 H=2

We combine the two series 1o obiain

< n=-2 _ _ 1 -
ngzx [n(n 1)a,+a,_» —(n-Z)I] 0

The coefficients of X" for n = 2 must be equal to zero. Thus,
) 1
n(n-1)a,+Gr-2———— =0
) (n=2)1

Solving for ay, we obtain the recursion formula

1 1
gy B = A, 5, ﬂ=2,3,4...
" nl n(n-1) " ? ’

iteration of this formula yields

1 _(_1 1_1
~ da B = On B — =0,
) (2x1)° 20 20"
1_{ 1
Ay = — = a, = —--2g
T 3:-:2] TR Ty

&

u
i o

I

=]

&

]
B

1

A, T e T e,

—
—

[~

[X]

n
| =

&

and 50 on

Since y(x) = E a,x" ,and aoand a; are arbitrary, we get
) n=0

y(x) = ag+ a1x+2 a,x"

L L]
_ 11 2 {1 1 3,1 4. 1 _ .5
ag+alx+[i ﬁag)x +(3_1 ﬂal)x +Haox + ﬁ:;'1Jc + ..
= ao(l ~ 12l ...)+a1(.r-Lx3+Lx5+ )
21 41! 3t 51
+ L y2 1,3

= @y, (x) +a; y,(x) +¥

where y1 and y; are, respectively, infinite serics of even and odd terms, and

yo=Lxte l 3y 1,6, 1,7, 1 gu0, 1 1y |
2! 31 6! 71 10! 11!

Since this differential equation is linear and of the sccond order, the form of the
solution is y = y_ + y,, where y. consists of a linear combination of two linearly

independent functions and y, is a particular solution to the given nonhomogencous
equation,
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APPENDIX A: POWER SERIES

A power series abouit a point x, is an infinite series of the form

E g, (x-xo}" ) ' (A1)

=0

where the numbers @o, a1, az, ... , an, ... are called the cocfficients of the power series, A
power series does not include terms with negative or fractional powers,

We say that the power series converges if

lim 3 a,(x-x)" (A.2)
3= mﬂ =i}
exisis. The value of the limit is called the sum of the power series at the point x = xg. If the
Iimit does not exist, the power series is said to diverge. The interval of values of x for which
& power series converges is called the interval of convergence and is denoted as

|x=xq | < R, where xg is called the centre of the power series and R is called the radius of
convergence. If R = 0, the series converges only atxg: if R = oo, the series converges for
all values of x, '

Within a common interval of convergence, two power series may be added term by term.
That is, '

i 4, x"+ 5" b, x" = i (a,+b,)x" _ (A.3)
n=0 a=0 n=0

Further, within the interval of convergence, Lhe power series represents a function whase
derivative and integral may be found from lerm-by-term differentiation and integration,
That is, if

f@ =Y a.(x-xp)"

n=10
then
£ = 3 na,(x-x0)""!
n=0D
and

“h n+1

X
[ s = S g, x=x0)™

X0

A power series expansion of f(x) around x = 0 is called 2 Maclaurin series. The
Maclaurin series of f(x)is given by

f(x) = i ‘(Lj(ﬂ) —

nop !

where £ (0) means the value of the nth derivative of f atx = 0. Recall that f(0) = f and
0!'=1
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4.1 Introduction
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4.3 First Order ODEs in Physics
Applications in Nowtonian Mechanics
Simple Blectrical Circuits

4.4 Second Order ODEs in Physics
Rotational Mechanical Systems ‘
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4.5 * Coupled Differential Equations
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Charged Particle Motion in Eleclx"ic and Magnelic Fields

-4.6 Suﬁlmary '

4.7 Terminal Questions

4.8 Solutions and Answers

41 INTRODUCTION

-

In Units 1 to 3 you have learnt various techniques of solving first and second order ODEs.
Recall that we have studied these techniques so that we are able to answer real-life questions
such as the following: Does the quantity of fucl burned by a rocket affect its velocity? How
long does it take a polluted gulf to retum to its natural state, once man-made pollution is
stopped? What is the response of an LCR circuit to an applied signal? You are now on the
verge of being able to answer such questions, This unit on applications of ODEs will further
help you in this respect.

This unit is primarily concerned not with iiow to do mathematics but with siow fo use it.
Here we shall be applying the techniques you have learnt so far to solve a variety of real
problems involving differential equations. These problems have both their origin and
solutions outside mathematics. Doing the mathematics is only a part of the process called
mathematical modelling. Today, as scientists seck to further our understanding of nature,
the technique of representing our "real- world" in mathematical terms has become an
invaluable tool. Indeed, the process of mimicking reality by using the language of
mathematics is known as mathematical modelling.

In this unit, you will first learn what is involved in the process of mathematical modelling,
especially with ODEs. As the unit progresses, you will realise that mathematical modelling
with ODE:s finds immense use in various areas of physics. We hope that having studied the
unit, you wilt be able to answer the kind of guestions posed above and many others you arc
likely to come across as you delve deeper in physics.

In this block you have studied varions methods of solving first and second order ordinary
differential equations and their applications in physics. In the next block, we shall discuss
partial differential equations (PDEs). You will learn how to model physicel systems with
PDEs and various methods of solving them. '

Objectives
Afler studying I.lns unit you should be able to )
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¢ usc first and second order ODEs to mathematically model known 'physical phenomena

® solve coupled differential equations pertaining to coupled oscillations, coupled electrical
circuits and charged-particle motion in electric and magnelic fields,

42 MATHEMATICAL MODELLING

Are you familiar with the process of mathematical modelling? If you are, you may skip the
following discussion. Just go through Fig. 4.1 and study Example 1. If not, you may like to
understand the process of mathematical modelling with the help of an example. It may
appear simple to you bat it will help you to concentrate on the modelling process jtself,
Consider the following real world prablem.

Suppose yon and a couple of your friends have (o attend a counselling session at the Study
Centre. However, the bus in which you are travelling gets stuck up at a railway Crossing
with about 25 km still to go. The session is to start in about 45 min. The problem is: At
whal time would it be pointless to continue on to the counselling session if you are still
stationary? You know that there is a wayside restaurant about 5 km ahead. Would it be betier,
instead, to get down at the restaurant for a self-help meeting over a cup of tea or coffee?

Now look at the problem closely. Wouldn’t you first ask yourself tow long should you
remain in the stationary queue before il becomes pointess to travel further? You have taken
the first step in the process of mathematica) modelling by specifying the real problem.

The rext thing that you would like to know is whether you can reach the Study Centre if
and when the bus gets moving. You ask the driver about this. He estimates that once the bus
gets going ils average speed would be about 50 km h™'. And a margin of aboul 10 min
should be kept for the remaining stops en route. In this way, (he journey can be simplified
into two parls —one in which the bus actually moves, second in which time taken at
bus-stops is accounted for. For cach part numerical values are assumed for the speed and
time. The driver’s estimalte could be called a model of the remaining journey. So the second
stepistoset up amodel. =~ -

You can see that the mode! kas helped in representing the real situation (the remaining
Jjoumey) in a simple manner, so that you cdin solve your problem specified in Step I. Thus, a
model is a simplified representation of some aspect of reality. It is constructed for a specific
purpose, such as to solve a real world prablem.

This simple model leads you (o a related question: How long would it take to complele the
remaining journey? It is a mathematical problem. So the third step is to formulate the
mathematical problem.

The next step obviously is to caleulate the fime neceded for the remaining journey in the

* framework of this model: Time taken to travel 25 km is 60 min x 22 Km _ 30 min, time for

50 km
Stops cn route = 10 min, giving a total of 40 min. The fourth step then is to solve the
mathematical problem.

Now you would like to interpret your result. You may do so in different ways. You could
wait in the bus for another § min if you want to reach on time. If you arc prepared to arrive
late (say by 10 min) you can wait for 15 min. So it is worth going on if you are not stuck at
the crossing for more than 5 min (or 15 min if you don’t mind being 10 min late). The fifth
step then is to interpret the result

Next you would like 1o compare the model and the solution with reality. Are the speed and
distance correct? You could question the model- Could not the driver drive faster and spend
less time at stops? Are the stmplifications in this model suilable? You could tevise the
simplifications and repeat the process with different data. So the sixth step is to compare
the solution with reality.

Finally, when the bus starts moving you would use your results to decide on whether 1o proceed
(o the Study Centre or not. If you have been stuck for less than 15 min, you can go to (he Study
Centre. Otherwise you could get off at the restaurant for the self-help session. You would of

- course have only 6 min to decide! The final slep in the process is to use the results.

These modelling steps can be represented by a modelling process shown in Fig, 4.1. It also

shows the salient features of each step in the modelling process, which you should keep -

in mind. Study it carefully before going further,

=1
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We hope you are clear about the various steps in the mathematical modelling process. -Since
we are considering applications of ODEs, we'will be modelling with differential equations,
i.., in step 3 of the process, we simply formulate th

. differential equations.

s -

in Physics

e mathematical problems in terms of

Step 1 : Specify the real
- problem

Step 2 : Setup the model

Step 3: Formulate the
mathematical problem

Consider the
» purpose of the model

» gutcome

» sources of facts

« formulate conceptual model
(e.g., draw a diagram)

s choose variables (make a liss,
~ give definitions)

v find relations between them

» simplify model

« check relationships

Some Applications of ODEs

(use appropriate laws)
Step 6 : Compare with reality Step 5 : Interpret the solution Step 4 : Solve the
. mathematical problem
* does your interpretation . » seek paiterns and * use various techniques
agree with data ? behaviours -
Remember ro

= does the model fulfil its * make predictions Check Your Solution
. purpose?

» are the predictions
» can it be improved ? reasonable ?

Remember : Accuracy, domain

of validity
Step7: USE THE RESULTS

Fig. 4.1: The process of mathematical modelling showing the salient features of éach step.

Letus now illustrate the modelling process with an example from physics, which is of use
in everyday life. In working this example, we shall foHow the steps listed in Fig, 4.1.

Example 1: Heating and cooling of buildings

A godown for storing cement has to be built. It will have no cxternal heating or cooling
arrangement. How can it be designed so that its temperature changes by a specified amount
in a given period of time?

Solution
Let us follow the modi:lling cycle stepwise 1o solve this “real world” problem.
Step 1: Specify the real problem

We have to answer the following question: How long does it take to change the building
lemperature by a specific amount? .

Step 2: Set up a model

Our model must describe the 24-h lemperature variation inside the building as a function of
time and the oulside teraperature. In the simplest model we can view the building as a single
entily, i.e., we do nol take individual rooms inio account. Now, recall from Fig. 4.1 that we
must idenlily the variables important to our problem. We can immediately see that the
inside temperaturc T and time ¢ are the two main variables. We have to {ind 7(), ie, the
temperature inside the building at time t. What are the factors that affect T(¢)? Two factors
come to mind immediately: )

In seiting up a model, you have
10 discard those variables that
have very little or po effect on
the process. For example, in
studying the moticn of a falling

bady, its colour is of no inlerest.
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Newton's law of cooling stales
that the rate of change of
temperature of a cooling objoct
is proportionel to the difference
in Iemperdture of the object and
the temperature ol the
surroundipg medium, provided
thet this dilference is not very
large.

Checking the Solution

Using Eq. (4.45), the LH.S. of Eq. '
{4.1) becomes (for the simplilied
model}

g - —KCe™®

The RHS.ofEq. 4.1is

KTo=KTo-KCe™ = —KCe™®
Thus, LHS = RHS

78

1) The heat produced by people, lights, machines inside the building will increase T'(x).
Let H (¢) be the rate of increase in T'(¢) due to this factor. T

2) Theeffect of outside temperature Ty(fyon T(®) .

Having identified the variables, we must find the relationship between them. To model the
effect of T;(t) on T(s), we can apply Newton’s law of cooling, if T.()< T{f)atall times.

We get that the rate of change in the inside temperature T (¢) is proportional to the differcnce
between T (1) and the outside temperature 7 (¢). Thus, the time rate of change in T{¢) due to
() is{ -K [ T()- T, () }}. K is a positive constant which depends on the physical
properties of the building, such as the number of doors and windows, colour scheme, type of
insulation, etc. K does not depend on Ts, T or £. Note that K has the dimension of reciprocal
of time. The minus sign is used to show tkat the temperature of the building will decrease.
We can now formulate the mathematical problem and solve it.

Step 3: Formulate the mathematical problein
From our model, we get the following first order ODE:

). K[ T.0- T()]+HE) _ @1

Step 4: Solve the mathematical problem

Eq. (4.1) is a first order linear nonhomogeneons ODE. It can be solved psing the method of
Sec. 1.6 of Unit 1. We rewrile Eq. (4.1) in the standard form

;‘T&.I(LL POT () = 20 (4.23)
where
Pi)=K, QW=KT.W0O+H({) (4.2b)
The integrating faclor is exp (fK dt) = ™. The solution of Eq. (4.2a) is
(4.3)

T(@) = ™ Ue"'[xr,(z) +H{)de +c]

Let us simplify our model further to solve Eq. (4.3). Let H (t) be negligibly small and 7, {f)
be a consfant Ty . So with H{f) = 0 and 7;(f) = T, we get

T(t) = e'“’[fe'" KT o dt +c]

= M ToeM+C) = T+ Ce™® (4.42)

Eq. (4.4a) is a general solution of Eq. (4.1) in our simplified model. You can check the
solution by substituting Eq. (4.4a) into Eq. (4.1) with H ¢) = O and T, (r) = T Letus now
specify the initial condition to delermine C and get a particular solution. Let T = T, att = 0.Then

To= To+C, or C = Tp-Ty
Thus, the pan.icu]ar'solulion is

T() = T+ {To-Tg)e™ (4.4b)

Let us now interpret this solution.
Step 5: Interpret the solution

Since Tg < Ty, T(f) decreases exponentially from To. As t increases, the exponential term
falls off and 7'(f) tends to Ty, (see Fig. 4.2). Recall the problem we speci fied in Step 1. Let
us determine the time it takes for the temperature difference ( T - T;p ) to change from

To- :
(Ty—-Tq) o (Le—rﬂ) . This ime is'called the time constant of the building. From Eq. (4.4b)

at =0, T-Ty=T;-Typ
1 tm— T-= =
and a t K‘T To -

T T
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So the time constant of the building is 1/K. Thus, we can interpret the solution as follows: Some Applications of ODEs
The building temperature decreases exponentially with a time constant 1/K." in Physics

A typical valuc of the time constant of a building is 2 to 4 b. It can be made much

shorter if the windows are open or if there are fans circulating the air. 11 can be made

much longer if the building is well insulated. Let us now look at the last two steps of the.
process. y °

Steps 6; Compare with reality : .

This can be done by collecting data on several similar buildings and comparing the results
of this moedel for different time constants.

y i R

Step 7: Use the result

This simple model may be used to design buildings like warehouses, godowns or garages.
The model can be further refined to take into account the heat inside or time varation of
outside temperature. The effect of external heating (heaters) and cooling (coolers or air
conditioners) can also be incorporated,

Fig. 42

Now let us quickly summarise what you have studied in this section. We bave
introduced the idea of mathematlcal modelling — it is a simplified mathematical
representation of reallty created to solve a specific problem. The process can be
broken down into seven steps shown in Fig. 4.1. However, modelling need not
always follow such a logical sequence. These steps only suggest the kind of things
you should be doing in a logical sequence. A good strategy is to begin with a simple
model which produces a solvable mathematical problem. Then go around the modelling
process again, refining your model until the comparison with reality is satisfactory
and you can use the results.

Using these ideas you should now attempt an SAQ on modelling with differential equations.
You will need a log table or a calculator for the calculations.

Spend
SAQ1 10 min
A sleel casting at a temperature of 20°C is put into an oven that has a temperature of 200

"C. One minute later, the temperature of the casting is 30°C. Determine the temperature profile

of the casting. How long will it take the temperature of the casling to reach 190°C? [Hint:

The rate at which heat is absorbed by the steel casting is proportional to the temperature

difference of the casting and the surroundings. } y

Now that you have grasped the process of modelling, you would like to apply it to
some more physics problems. Let us take up the applications involving some first
order ODEs. :

43 FIRST ORDER ODEs IN PHYSICS

In Unit 1 you have studied two simple applications of first order ODEs in physics. For
instance, you have studied about radioactive decay and the LR circuit (Example 5). In
Example 1 of Sec. 4.2 you have modelted a process using Newton’s law of cooling, which
also involves a first order ODE. Newtonian mechanics and electric circuils are some other
‘areas where modelling with first order ODEs is often used. Let us study applications of first
order ODEs in these arcas.

4.3.1 Applications in Newtonian Mechanics

Mechanics, as you know, is the study of motion of objcets and the effect of forces
acling on objects. Newtonian mechanics deals with the motion of objects that are large
compared to atoms, and move with speeds much less than the speed of light. A model
for Newlonian mechanics, can be based on Newton’s laws of motion. For details of these
laws and other concepts of Newtonian mechanics you can refer to the course Elementary
Mechanics (PHE-01). Here we shall consider two specific examples on (i) motion under
resistive forces that depend on velocity and (ii) velocity of escape.
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We do not 1ake the negative root
of Eq. {(4.9b) asitdocsnot give a
‘physically meaningful soluticn.

2Gm
"R
Ifv <0, then in Eq. (4.9b) v =0
for
L 2GM

_—

Let v

vV, -

2GM
R

W e ZGM+‘%_ZGM
r R

ThusC = vi-

and the particular solution becomes

(4.90)

Now, in order that the projectile escapes from the earth, v should remain positive for all values
of r. On examining the right-hand side of Eq. (4.9b), we find that v > 0 always, if and only if,

V- 26M =0 (4.10)
R
. 2GM . . . ..
For, if v§ - R < 0, then there will be a value of r for which v = 0. In such a situation the

projectile would stop, its velocity v would change from positive to negative and it would return
to the earth,

Thus, if a projectile is launched with an initial velocity vg, such that vp =V 2GM/r, it will
escape from the earth. The minimum velocity of projection [with magnitude
ve( = V2GM/R)] is called the velocity of escape,

Let ug now study the application of first order ODEs in simple electrical circuits.

43.2 Simple Electrical Circuits

.In your school courses you have studied about some simple electrical circuits in which we

have an emf source, along with resistors, capacitors or inductors. If { () denotes the current
in the circuit at time ¢, the voltage drops across the resistor, capacilor and the inductor in an
electrical circuit are shown in Fig. 4.6, Here, g (¢) is the charge on the capacitor at any
instant ¢,

ST =MW 1

L R <

Inductor

inductance L: henrys {H)
voltage drop across

inductor ;i1 i
di

Resistor

resiseemce R: ohms ()
voltage drop &cross
resistor iR

. CaiJaci:or
capacitance C: farads (f)

voltage drop across
capacitor 1 4
[

Kirchoff's voltage law:

Al any instanL the algebraic sum
of the voliage drops around any
closed circuil is zero. Or, the
voltage impressed on a closed
circuit is equal to the sum of the
vollage drops in the rest of the
circuir.

Fig.4.6: Elemenls in an efectrical circuit.

Thus, voltage drop across (he resistor, V = iR

voltage drop across the inductor, V; = L%

and voltage drop across the capacitor, Vi = gC(,—I)

Here, R is the resistance of the resistor, L the self-inductance of the induclor and C the
capacitance of the capacilor. You know that any electricai circuit can be modelled by a
differential equation which results from KirchofP’s voltage law. Using these basic ideas,
let us consider an ac cireult comtaining a capacitor and resistor, beller known as the

RC circuit.

Example 3: RC Circuits

A sinusoidally varying source of emf is applied to a series RC circuit (Fig. 4.7). Determine

the current through the circuil as a function of time.
Solution

Using Kirchofl’s law, we can model the circuit by the following differential equation:

Ri()+ 9’—2‘—) - E()

~ (4.11a)
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Since E (1) varies sinnsoidally, we have Some Applications of ODEs

mPhysics
E(f) = Epsin wt ’
Since i(f) = ar " dividing Eq. (4.11a) by R, we can write it as
] R
dg . q _ Lo + (4.11b)
dt RC R
You have solved an equation analogous to Eq. (4.11b) in Unit 1 (Example S in Sec. 1.6.1). £ 0 —+c
So you can write down the solution of Eq. (4.11b) as -
g(r) = %e-mcfexmc sin wr dr + C' VR
Fig. 47 1 A series RC- cirenit
E,C . —/RC - (4.12a) {ln which the resistor and
or q) Neywro sin{ot-8)+Cre capacitor are connected in
series)
where 8 = tan”! (wCR) (4.12b)

Hence, i(f) = % - ———Eig-c—cos(wt-ehcze'mc (4.13)
vV 1+0?REC?

The second term on the right hand side of Eq. (4.13) decreases exporf®ntially as ¢ increases,
It is called the transient term. The first term represents the steady state corrent which is

sinusoidal.
S5AQ3 Spend
Let E (r) be zero in the circuit of Fig. 4.7, The capacitor will discharge its charge through the 5 min

resistor. Let its mitial charge be go. Determine the charge ¢ {f) on it in terms of g, ¢, C and R.

In this section you have studied some applications of first order ODEs in physics. Lel us
now take up some situations in which we need second order ODEs to model physical
phenomena.

44 SECOND ORDER ODEs IN PHYSICS

In Unit 2, you have modelled the natural, damped and forced motion of the spring-mass
system using second order ODEs. You have also studied applications of second order ODEs
in the physics courses of Elementary Mechanics (PHE-01), and Oscillations and Waves
(PHE-02). In this section, we take up some more applications of second order ODEs, which
you may not have yet studied.

'4.4.1 Rotational Mechanical Systems

Let us consider a mechanical system in which gﬁc only motion is rotation about a fixed axis.

Z

Fig. 4.8 : Rotational mechanlcal system consisting of a apring (§) governed by Hooke’s Law, an inertial
cylindrical element {f) and a damping element (D). AB Is the axis of roiation. . .
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Fig. 4.91 Asignal E () Is
-imposed on an LCR drcuit,
which is an elecirical
clrenit having an inductor
(L), resistor (R) and
capaditor (C) as Its
elements. These elements
are in series in the above
dramf.

This system consists of a linear spring S, an inertial cylindrical element having a constant
moment of inertia / agd a linear damper D (Fig. 4.8). The brakes in automobiles and the
suspension type galvanometer can be modelled by similar systems. For this system, we have
to deal with angular quantities only.

Let us set up a coordinale system about the fixed axis of rotation AB. Let 8 be the angular
displacemgnt with 8 = 0 comresponding to the fixed axis. Now suppose an external torque ©
is applied to the inertial element (the cylinder) as shown in the figure.

The rotational analogue of Ne\wlon s second law tells us tha the net external torque on the
cylinder equals the rate of change of ils angular momentum, i.e.,

2 4.14a
Text = ‘ j Fs L=ty f jo : ( )
r
The net external torque on the inertial element is
Tow = TH+C+ T ‘ (4.14b)

where ¥ is the torque applied by ke spring and % is the torque due to the damperD These
are, respectively, given as

tx = K8 (4.14¢c)
where K is (he stiffness constant of the spring
and T - -Bw= -8 ‘fﬂo (4.14d)
Then, we have
d?'O 9 (4.13a)
dz =v-8_"-K@

A A
Since® = 0 AR and AB is a constant vector in the direction of the axis of rotation,

therefore, we can write Eq. (4.15a) as \
2
Id—e+3@-+K0—r (4.150)
drt C dt

This is a honhomogeneous linear second order ODE. The mathematical model of the system |

is complete if we specify two initial conditions like the following:
8{n)==Co, 0 (rn)=C

You may like 1o solve this equation under given conditions. Try the following SAQ.

SAQ4

Solve Eq. (4.15b) given thatT = tq cosw, 0(0) = 0, 6'(0) = 0.IfB = 0, what is the
resonance frequency wy and the solution 9(¢) for the system? [Hint: Use the method
discussed in Sec. 2.4.1 of Unit 2.) :

Now that you have solved SAQ 4, you can draw an analogy with the LCR circuit on which a
sinusoidal ac signal has been impressed (Fig. 4.9).Using Kirchoff’s voltage law, you can
model the circuit with the following nonhomogeneous second order QDE with constant
coelficients:

4 +Ri+ ai = Eft) = Eycos wt

C dt
d < d‘ 4.16
Jf.—qr Eq c = Ejcos wt, ','1(!)=—q% (4.16)

You can see that its general solution will be analogous 1o the general solution of Eq. (4.15b)
obtained in SAQ 4. Let us now cons:der another application of second order ODEs in
mechamcs
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4.42 Planetary Orbits

Let us consider the motion of a planet of mass 77 in the gravilational field of the sun of mass
M. Let us assume the sun to be stationary and neglect the effect of the gravitationa! field of
other planets on this planet. You have solved this problem in Unit 6 of PHE-01 using a
different method. And from Unit 7 of PHE-01, you know that these assumptions are valid.
We can model this system by Newton’s second law from which we have

F=ma

GMm 2 A ) (4.17a)

or

where r is the unit vector pointing from the sun to the planet (Fig. 4.10). Since F is a central
force, the planet’s angular momentum is constant. Therefore, its motion is resiricted to a
plane and it is convenient to use plane polar coordinates to solve this equation (refer to Unit
3 of PHE-04). In the plane polar coordinate system, acceleration a is given as (refer to Unit
4, PHE-01 or Unit 3, PHE-04):

a=(F-ré)r+(ré+2/9)0
On substituting a in Eq. (4.17a), we get two differential equations

m(Ford?) = _G,';{;n (4.17b)

m(rg+2rg) = 0. (4.17¢)
We can multiply Eq. (4.17c) by r and write it as -

d 23

Zz(mre)=0

which gives on integration
mr’g = constant
The term mr24 is nolhmg but the magnitude of the angular momentum of the planet about

the sun. YouknowlhatL—rxp mrrx(rr+r96) mr e(rxé)-mr Bk,
where K is a unit vector normal lobol.hrandB.Thus, mrrg = L.

We now have to solve Eq. (4.17b) to determine the path of the planel in space, i.e., the
shape of its orbit. Thus, we have to find r as a function of 8 .To do this, we first have lo
eliminate ¢ from Eqs. (4.17b) and (4.17c). Let us make the substitutions

r= land dB L L “2

, mr
in Eqs. (4.17b) and (4.17c). Then, differentiating r with respect to £, we gel

& Llde 1 fda)fdOY _ _ L du

de “2 dt "2 d0 dr | dB
Differentiating again, we get

Sy _L(d%) (4 " L i

@t m| a9? || an m2 de?

Thus, Eq. (4.17b) becomes

2 2
-—.£u2(g—”2+uJ = —% = - GMmu?
m r .
2 2
or a;‘_em2 tu = GM;n - A (4.18a)

This is again 2 nonhomogeneous.lineat second order ODE. Bul we can remove the
nonhomogeneity in this equation by subslituling &’ = u - A. Eq. (4.18a) then becomes

L4

Some Applications of ODEa
in Physlcs

‘We would advise you to refer to
Uniis 4,6 and 7 of the Physics
course "Elementary Mechanics®
before studying this section.

Fig. 4.10 : Force of gravilation
on the earth doe to the sun Is
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f 4,
%&%Hl' = 0 (4.18b)

Its general solution is i
u' = Beos(0-6p)
or 'u=A+Bcos(9-éo)
Here g signifies a phase lag. So by suitably shifting the origin of O-axis, we can put §p = 0.

Thus, we gel

¥ = A+Bcos@,or %"'A'I'BCOSB (4.19)

This is the equation of a conic section (cllipse, parabola or hyperbola) with focus at
r = 0 (Fig. 4.11). The shape of the orbit is determined by the relation between A and B.

For - -

Spend
5 min

7\
]

Fig. 412 : Deflection of & beam
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* A > B, orbit is an ellipse
B = A, orbit is a parabola
~ 0 <A <B, orbit is:a hyperbola
ty
{y iy
Y
/’:x - .
= : A
e \\\'
//I hN
//, \
’ \\
(2 (b) 9 '

Fig. 411 (a) Elipse; {b) parabalay (¢) byperbola.

The constant B can be determined for planetary ox.'bits using'energy considerations, It bas
been determined in Unit 6 of PHE-01, though in a different form. It is given by

m?(GmM)2 2mE
ry +

B? =
L L*

So far we have considered initial value problems involving second order ODEs, i.¢., the
differential equations are solved by specifying the initial conditions. In certain physical
situations, we come across boundary value problems. You may like to work out such a
problem yourself based on what you have studied so far.

SAQS

A beam of length L is supported at its ends and weighs w kg/ unit length. The ODE
governing the deflection of the beam is

2 w(:i_L_x)

where C is a constant which depends on the elasticity of the material of the beam and its
geometry. .
Solve this equation given thaty = Owhenx = Oandy = O whenx = L.

So far we have aken up applications of ODEs in which a single differential equation
describes the system being modelled. Now suppose we wish to study the motion of a
mechanical system involving two (or more) «bjects. In such cases, we will need to solve
linked or coupled dilferential equations i nore than one variable. Lel us consider some
applications of this kind in the final part ofwe unit.
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45 COUPLED DIFFERENTIAL EQUATIONS

Many physical situations can be described in terms of coupled differential equations. Let us
study a few typical and simple appllcauons These are related to coupled oscillators in
mechanics, coupled electrical circuits, and the motion of electrons in electric and magnetic

fields.

4.51 Coupled Oscillators

You may have studied about coupled oscillators in the course ‘Oscillations and Waves’
(PHE-02). Fig. 4.13 shows two identical pendulums, each having a mass m suspended on a
rigid massless rod of length L. The masses are connected by a spring of stiffness constant k.
Its natural length equals the distance between the masses when neither is displaced from the
equilibrium. Such a system can be used to model lhe vibrations of two atoms set in a crystal
lattice. The atorns experience a mulual coupling force.

Let us assume that the amplitude of oscillations is small and these are restricted in the plane
of the paper. If.x and y are the dlsp]accmenls of the masses, then the equations of motion are
( refer 1o Block 1, PHE-02):

e x . - .
mx = -mg-k(x-y) (4.202)

and my = ‘-mgf+k(x-y) |  (4.200)

These are the differential equations representing the normal simple harmonic motion of

each pendulum plus a coupling term & ( x — y ) from the spring. Writing wo = \/ f, where
wp is the natural angular frequency of each perdulum, gives

.'r'+cu%x=—%(x—y) - (4.20c)
. k
y+moy=+;(x—y) ) (4.20d)

LY

You can see that these ODEs are covpled together. Each of them involves x and y, and so
cannot be solved independently. We can solve these equations by uncoupling them. With
the choice of suitable coordinates X and ¥, we can oblain two independent equations in X
and Y. Let

Xmx+y, Ymx-y

In fact, you can yourself uncouple these equations and solve them.

SAQ6

From Eqs. (4.20c) and (4.20d) oblain the two dillerential equations in the new variables X
and ¥, and solve them. (Hint: Add the equations and subtract one from the other).

From your solutions, you can see that if ¥ = 0, x = yatall times,j.c., the pendulums always
swing in phase (Fig. 4.14a). Then the motion is completely described by the equation

X+ wd X = 0. The coupling has no effect and the frequency of oscillation is the same as
that of e¢ither pendufum in isolation.

Some Applications of ODEs
In Physics

y X
Fig. 4.13 : Two identical penduloms
coupled by a spring of stiffhess £,
Each light rigid rod of length L
supports a mass . The natural
length of the spring is equal to the
separation of the masses a1 zero,
displacement.

Spend
5 min
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Fig. 415 : Resislively voupled

RL electrical drouits.

Spend
15 min

(a) ®)
Fig.4. 14 («) The *in phinse’ mode of asclllation described by X + wg X' = 0, where X is the normal co-ordinate
X = x+yuwndoi = g/L ;(b) ‘out of phase’ mode of oscllation desaribed by ¥ + (w3 + 2k/m) Y = 0, where
Yisthe pormal courdiateY = x—y,

If X = 0,x = —y, at all times, the pendujums are always out of phase and the equation of
motion is Y:F( wp + % Y = 0. Now the coupling is effective, the spring is either compressed

or extended (Fig. 4. 14b). Consequently, the frequency of oscillation is greater than we.

" 4.5.2 Coupled Electrical Circuits

Fig. 4.15 shows two loops in an electrical circuil joined together by a resistive coupling.
Applying KircholT’s law to 1he left and right Joops, respectively, we get

L1‘g‘ +Ry (I, -h) = EQ) (4.21a)

"2%+R2!2+R1(!2 Il) = 0 ' (421[))

Here, we have used the fact that the current in Ry is (I - I2) relative to the left loop and

( f2 — I1 ) relative 1o the right loop. These are once again coupled equations. We can
climinate either 1) or f2 {rom these equations, Let us rewrite Eqs. (4.21a) and (4.21b) as
follows:

Ll%mm “Rib = E{0) . (4.21c)

and

. —R111+L2%+(R1+R2)[2 = ). (4.21d)

Mﬁlliplying Eq. (4.21¢) by R, and opcrating on Eq. (4.21d) by (L; % +Ri ) , WC gl

RiL %+R?!1—R¥h = Ry E(D)

dl

-Ril— r

1 —R111+L1in

+[R1+R2)L1%2-+R1(R1 +R2)1; =

LY

Adding the two equalions, we pgel

LIL'; +(R1L2+R1L1+R2L1)
dr*

+R Ry = RLE() (4.22)

Eq. (4.22} is a second order nonhomogeneous linear ODE with constant coefficients. Why
don’t you solve il lor some given values of L1, L2, Ry, R2 and £ (£)?

SAQ7
Solve Eq. (4.22) for I (f) given' Ly = Lo = 2H , R, = 303, Ry = 8Qand E(f) =

- Assume the initial current in Lhe circuits to be zero. Determine [y (f) from-Eq. (4.21d).-
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4.5.3 Charged-Particle Motion in Electric and Magnetic Fields
You must have studied about the Lorentz force in your school physics courses. You know
- that a patticle of charge g movmg in an applied eleciric field E and a magnetic field B is
acted upon by the force
Feg(E+vxB) (4.23a)
From Newton's second law of motion, its equation of motion is
m‘;—"-q(E+va) (4.23b) °
H

We will consider only constant electric and maénelic fields, i.e., the fields which are
constant in time and vniform in space. Let us sclve this equation of motion (Eq. 4.23b) for a
few specific situations.

Uniform electrostatic field

Let us first consider the situation in which the applied magnetic field is zero. Then Eq {4.23b)
simplifies to

& gy (4.242)
m :
Since E is constent, we get upon direct successive integrations
v() = ﬂ L+ vy (4.24b)
m
and r(t) = %r% Vol +Tp (4-23¢)

Here vo and rp are constants of integration which can be deicrmined from the givefl initial
conditions,

Thus, the charged particle moves with & constant acceleration o n the direction of E
when g > 0 and in the opposite direction when g > 0.

Uniform magnetostatic field

When the applied electric field is zero, Eq. (4. 23b) becomes

mj—r—q(va) (.5)

Let us use the Cartesian coordinate system to solve this equation. Let the z-axis be along B,
ic,B = Bk Wecan simplify Eq. (4.25) as follows:

mE(v,i+_v_,,f+ v,fc) - q(v,f+v,.f+ v;f()xﬂfc

=- -qBv,f+qvai\

Taking each component separately, we have -

dv, ’ 4.26a
m ? = q.B Vy ( )
Cod 4.26b
m T;{ - - q_B Ve ( )

dv: ' {4.26c)
m @ 0.

Again Eqs. (4.26a) and (4.26b) are coupled together. We can solve them by uncoupling
them as follows. Differentiating Eq. (4.26a) and using Eq. (4.26b) we get

-‘&xu Erl-—qZBzv
dr? Ll m

m

or

Some Applications of ODEas in
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Spend
10 min

Fig. 4,16 : Motion of » charged
particle in & uniform magnetic
field B when the particle enters
in a plane normali to B. Here
mv
R-—=
o

90

.
dd;’+ w?v, = 0, where @, = 2B
2 m

You know the solution of this equation very well. It IS
v, = Cysinwg + Cycos 0, L

C) and C3 have the dimensions of speed. For the sake ofléionvcnience, We Can rewrite v as
vea vy sin(w.£+9¢),

where €, = v, cos¢, Cp = v, sin ¢. Now from Eq. (4.26a) we have for vy :

L dw
0 ml-mgvlcos(mcﬂq:) = v, cos(w.t+d)
C

'Iv'-_"

Y o dr

Note that 12 + vi = VA . v is found by simply integrating Eq. (4.26¢):
Vz - v"

where v, is an arbitrary constant having the dimension of speed You can see that it is the

component of v parallel to the z-axis. Thus, we have
v-vJ_[sm(m,Hq))|+cos.(w,r+¢)f]+v"ﬁ (4.27a)

. dr . .

Sincev = gy e can integrate v with respect to 1 to get

r-E)i[-ms(m,r+¢)f+sh(mg+¢)f]+v,,tft+R.D (4.270)

where Ry is a constant vector of integration. This is a general solution of Eq. (4.25). You
can quitkly work out a particular solutien urder given initjal conditions.

SAQS ,
Find the particular solutions for v and r given that B = 10 2 tesla, ¢ = 1.6 x 1077 C,
m= 1.6x10'24kgand : 0

() v©) = (2000ms )i, r(0) = 2mj
(i) v(0) = (2000ms')(l+k),r(@) = 2mj.

Now that you have worked out the particular solutions, you can interpret them. In case (i),
you see that v (0) is perpendicular to B, i.e., when the particle enters the magnetic field B, jt
is moving in a direction normal to B. Your solution for r {f) comes out to be the equation of
a parlicle moving in a circle in the xy plane. Thus, when & charged particle enters the
magnetic field in a plane normal to the field's direction, it moves in a circle in that plane

(Fig. 4.16).
In case (ii), v (0) is at an angie 10 B, i.c., when the particle enters the field it is moving at an

angle to the field. In the particular soluhon of v (t), the z component, i. e,, the component
parallel to B, is constant. The component normal to B [ie., v, = (v: P+ vyJ ) ] produces a

circular motion of radius R = Y.L = % The combined motion is, therefore, a helix
CD; q

around B. Having worked out SAQ 8 and studied the interpretation of its resulls, you can
readily appreciate the interpretation of Eqs. (4.27a) and (4.27b). We shall discuss this briefly for
enrichment purposes only. You wlll not be examined on the following material,

Let r-ru-x0f+yuj+zoﬁ at =0

Then you can verily that

v AoV LA
Ry = ro+ = cos i — = sin'g j
e We

or Ry = (.to+v—J' cos¢)i\+(yu—l’£ sin¢)j+zoﬁ
mc OJ;

T T T T

- -rpet = T mraaETO
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Thus, the Cartesian componénts of r (£) are given as

x() = —:J—l cos{aw.t +¢)+ Xy

c

y(t) = LA sin(o(+¢)+Y,
UJC

z(t) = vttty

where Xy = xp+ L P
W,

and Yy l==-J.J,:,--lu‘sin¢»
(O8]

The equations for x (r) and y () can be rewritten as follows:

Vi
(x-X3) = e cos (w.r+¢)

LA
(y-Yo) = = sin(w.7+9)
13
Adding and squaring these equations, we gel

(x-Xp)*+(y-Yo)" = flf - 12
L0

Thus, the projection of the charged particle trajectory in the plane normal to B is a circle (the
shaded circle in Fig. 4.17) with centre at ( Xy, Yg ) and radius equal to r. . The point ( Xo, Yo ),
i.e., point G at a distance r. from the particle is called the gulding centre (seeFig. 4.17). The
radius of the orbit (7. = v, /@, = mv /qB)is called the radius of gyration or the Larmor
radins. The angular frequency w, { = gB/m ) is termed the gyrofrequency or Larmor frequency.
Since the particle has a component of v along B, it moves in a helical path,

“"1

X,

k4

'Fig. 417t Helical path of a charged particl moving In a uniform magaelic field. The guiding cenlre moves
parallel to the s-axis along the dashed line,

Let us now summarise whar you have studied in this unit

4,6 SUMMARY

" & Mathematical modelling is a simplified mathematical representation of reality created to
solve a specific problem. The process can be broken down into seven steps, viz., specifying

Some Applications of ODEs in
Physics
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Fig. 4.181 A telephane wire
suspended from two poles.
What does the shape of the
wire look like to you ? It
would be revealing to
compare your first
lmpression with your
solution.

the real problem, setting up the model, formulating the mathematical prablem, solving it,
interpreting the solution, comparing it with reality and using the result.

® Many physical phenomena can be modelled using first order ODEs. Specific applications
of first order ODEs in (hermal physics, Newtonian mechanics ard electrical circuits have
been considered in the unit.

¢ Second order ODEs have been used to mathematically model physical phenomena in the -
area of Newtonian mechanics and electrical circuits.

o Coupled differential equations used for modelling physical systems like coupled
oscillators, coupled electric circuits, charged particles in electric and magnetic fields
have also been solved.

4,7 TERMINAL QUESTIONS

1} Alongsuspended telephone wire hangs under its own weight (Fig. 4.18). Determine
the differential equation governing the shape that the hanging wire assumes and obtain
its general solution. [Hint: Consider a portion of the wire between the lowest point P
of the wire and any arbitrary point Q. Write down the equations for forces for PQ in

equilibrium and use the fact that % is the slope of the wire at Q. You may also need to
refer to the mathematics course MTE-01 on calculus for solving this problem.]

2) Fig.4.19 shows a very long strip of thickness D and length L in a furnace attached to a
hot wall which is maintained at 4 temperature of 200°C. Heat is conducted steadily
along the sirip and is lost from the sides by convection to the surrounding air.

it 1 D

—1_

Fig.4.19

The strip temperature 8, assumed to depend only on the distance x along the strip, is
modelled by the differential equation -

d%e
EI_2= ZH(B_BW)

where C and H are constants, and 8,i- = 70"C. Assuming thal the strip is long
enough so that the end E is at the same temperature as the surrounding air, we have
- the boundery conditions 8 = 200°C whenx = 0,0 = 70°C when x — , Solve the

€quatjon for the given boundary conditions. (Beware of the boundary condition for
x>}

4.8 SOLUTIONS AND ANSWERS

SAQs {(Self-assessment questions) -~
1) This problem can be mathematically modelled using the law given in the hint. You
know from your school courses that the rate at which heat is absorbed by the object is

‘L—? = ms % » Where m is the object’s mass, and s, its specific heat. If T'is the

temperature of the object at any instant 1, then z—f is the time rate of change of

lcmperaiure. Since the rate at which heat is absorbed by an object is proportional to the

temperature difference of the object aid its surroundings we have

(= 1=
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L (-1
or’ mguc(T,-T)
ar ¢
or & E(T"_T) = K(T,-T),

where K has the dimensions of time.

Now the difference between the temperature of the oven and the casting is (200 - T) °C, So
the first order ODE describing the given system is

dT .
o - Kl2o0-T)C i

with the boundary conditions that
when (i) ¢ = Omin, T = 20 °C-and when (ii)£ = 1 min, T = 30°C.

The solution of this equation is obtained as follows:

o7 &f
.rzoo-r Kja+c
~In|200-T] = K1+C
or 200-T = C; exp[-Kt]
or T°C = 200°C-C, exp[-Kt}
Checking the solution: RH.S. = K{200-T) = KCy e ¥

LHS. = %:E = KC ™

So the solution is correct a5 L.H.S m RH.S.

Ci is a constant of integration having the dimensions of temperature. Using the boundary
conditions we get

() 20°C = 200°C—Cj, at { = Omin,

.'.C1-180'C

(i) 30'C = 200°C-(180°C) exp[-Kmin'x1min], at¢ ='1min
« 170 17 e 171 _

or e a oy =g - K= -In|1g| = 0057

Thus the particular solution is
T°C = 200°C - 180°C exp [ (-0.057 )¢]

To find the time ¢ at which T = 190°C we have to solve the following equation:
190°C = 200°C - 180°C exp|[ - 0.57r}

Loorem ln|1718] 5 min.

or exp[-.057] = 18 0,057
2) Using the method of separation of variables, we have that

f d‘; =fdr+C'
v

o

Letting w = g—r-i-v, dw = '~_£dv,weget

or ' J‘d_w - _i‘.fd;+c-'
w m

or w = G exp(_.;.,)

Some Appliations of ODEs in
Physics

Note that ie solving this ODE it
does not matter whetber we nse the
wnil (C) or (K) for 1he temperature,
since the variable T appears
throughout.
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~and

Thus

| ~-imgTo To To

Ci= (K- ) (impriog)  2(K-wl)  2(wd—a?)

. i wWoTH - Tp
(K-a?1)(-2iwp) 2 (8- w?)

C;

™ ; _ ¢ ToCOS !
B() me [ g |, 2 2
( zr(m%-m’)[ ] I{wf-0?)

T

.y 5. [0St~ Cosmp!
Hah-a) | ]

Thus, wp is the resonance frequency of the system given by

3)

and

wp = VKA ’ - .
This equation can be solved by simple jntegration
dy 2 L
Cax="|237 2z "

X L

Cy = “’[2.3.4 “223 [tC1x+C

Applying the boundary conditions we get that

Ca =0
A AR
and 2—4--EJ+C1L =0
1 wlL’ wl?
or Cr= -r(-a‘] 7y
oL 3
X oowl
Thus Cy=w[24—12 +24x.
6) Adding Eqgs. (4.20¢) and (4.20d) we get
(X+¥)+0d(x+y) =0
Since X=x+yX=X+yand ¥ = ¥+

Thus, the above differgnlial equation becomqs

X+0dX =0

which has the well known solution of the form -

X = Acoswpi+Bsinwgt, where of = g/L.

A and B can be determined from given initial conditions. Subtracting Eq. (4.20d) from
(4.20c) we have . ’

(¥-5) = - @B (x-y) -2 (x_y)

AgainsinceY = x-y, ¥ a x-jand ¥ = X -y, weget

ar

].’- - —mg}’--ﬁ
m

1:’-+(w¢2]+g)l’-= 0.
m .

The solution of this equation is

Y = Ccos ax +Dsinwr

- .
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7)  Let us first plug in the values of Ly, Lz efc. in Eq. (4.22). It then becomes

4d*n dh
72 +[6+6+16]-&F+24!2 = 18

A, 7dh o .2
or dt T ar 2% 2

Here we have not written the units explicitly in the ODE. We can remove the

nonhomogeneity of this ODE by substituting ' = f; — % in it. We thus hav;'e

dr 1dr
?-'-__dt +Gf ':0

The characteristic equation for this homogeneous second order ODE is
A4+ 7A46 = 0

whichhastheroots A = —§, Az = =1,

Hence, the solution is

' w ¢ e_m+C'2e_r

or L= ;::-+C1e"s'+C-z:¢."'r

We can get [ from Eq. (4.21d):
24 B
-3n+—m—2+ 1 =0
Substituting for I, we have

-3 +2(-6C, e - Cret Y411 (3—+Cle'6'+C2e") -0

or !1 '='-4—'-—-e +3CZE_'

" Let us quickly check the general solutions for f; and b
L.H.S. of Eq. (4.21¢) is

—2:%4-,3;1 =3k = 2[2C1e%-3C,67)

+%3-—Cle"6'+9Cze"-%—3C1 €S _3C6!

u 6+4C1|e'“'—6C2e"—4C1 e""+6Cge" = 6= RHS.

Similarly,
L.H.S. of Eq. (4.21d) is

—311+%2-+ 114 = :‘-‘?E+Cl €906 - 12C ¥ _ 20, 67"

+3743-+ 11C e ¥ 4 110y e
= O= RHS
Now it is given thatatr = 0, [, (1) = O L () = 0.
These initial conditions give us two equations for C; and C»:
Cl+C+2 a0
4 97
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- d .
or ‘;;E = sinh (Kx+C; )
Thus y-f_sinh(Kr+C1)d.:+Cg
or yw Kcosh{Kx+C; )+ G,

Did you find the problem interesting? In fact, we had valid reasons for posing it. For one, it
illustrates that, in mathematically modelling physical systems, you often need to collect and
relate different kinds of information from various fields. There is another interesting aspect
10 it. Did you try to guess the shape of the telephone wire before solving the problem? We
would not be surprised if you thoughi it was a parabola.

But from your solution, you know that a wire hanging between two poles under its own
weight takes the shape of a hyperbolic cosine. The graph of the hyperbolic cosine is called a
catenary alter the Latin word ‘catena’ mcaning ‘chain’. So what is the moral of the story? It
is: beware, appearances are deceptive!

2) This is a nonhomogeneous second order ODE. We can remove its nonhomogeneity.
By making the substitution ¢ = B — Oar, We get

il ) 2H
dxz-kzq;-o, K=

We can write down the solution of this equation as
b= Ce"tCe™™ '
or - 8= 00 +C15+Cre™ ' ()
Let us now apply the boundary condilions. Atx = 0, 8 = 200°C.
C1+C; = 200°C-70°C = 130°C
As x> w0 =70°C

Now ,asx — o, & — @, ie., the solwiion for 8 tends to infinity, as x — o. But the
temperature of the thin strip tends to a finite value (70°C) asx -+ o, Therefore, the term

containing ¢ in the general solution for 0 is physically unacceptable. Hence, we put
C1 = Oin (i). Thus, -

Cy =0, C=130°C
and the particular solution is

0= 70°C+130°Ce &
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BLOCK 2 PARTIAL DIFFERENTIAL
EQUATIONS '

~ Introduction |

In Block:1, you have used ordinary differential equations to model physical phenomena or
systems involving quantities which depend on one variable only. However, in physics, we
often heed to model the spatial and time variations of quantities which depend on more than
one variable, for example, the electrostatic, gravitational and magnetic fields. Such problems
can be formulated only in terms of partial differential equations (PDEs)i.c., differential
equations involving functions of more than one variable.

Partial differential equations arise in such diverse areas as wave motion, heat conduction,
electrostatics, magnetism, hydrodynamics, aerodynarics, nuclear physics, to mention a few,
The solution of partial differential equations with givén boundary conditions can be truly
described as one of the *gems’ of late eighteenth and early nineteenth century mathematics.
This subject arose when a number of great mathematicians—Eduler, Laplace, Lagrange,
Poisson, Cauchy, the Bernoullis, Fourier among others—turned their minds to search for
answers to a host of interesting questions pertaining to a variety of physical phenomena.

One of the first phenomenon to be modelled with a PDE was the wave motion—since it
occurs in a wide variety of natural phenomena. These include vibrating strings (sitar, guitar,
piano, etc.), vibrating membranes (drum heads), waves travelling through a solid media
(earth quakes), water waves, vibrating shafts (machines), electromagnetic waves (radio, TV,
radar) etc. Whatever the nature of wave phenomenon-—whether it is the displacement of a
tightly stretched string, deflection of a streiched membiane, propagation of electromagnetic
waves in free space or propagation of currents along-a telephone or power transmission
line—these entities are governed by a single PDE, the wave equation.

Another class of important physical phenomena is_ related to the process of diffusion which
may be likened to spreading, flow, or mixing. One of the most common diffusion processes

‘encountered is the transfer of energy in the form of heat. For example, heat flow in fuel rods
of a nuclear reactor. The study of diffusion of particles from a region of high.concentration

. to that of low concentration finds applications in industrial and chemical processes, viz.,

evaporation, distillation, acid and sugar concentration, industrial drying of products, etc. The
diffusion equation is used to model such phenomena.

Laplace’s equation is another interesting PDE in physics having wide applications. It can
be applied to obtain the gravitationat (electrostatic) potential in free space devoid of matter
{charge), to study the steady (time independent) flow of heal across various bodies, to model
surface waves on a fluid or to describe the irrotational motion of an incompressible fluid.
Indeed, these three PDESs (the wave equation, diffusion equation and Laplace’s equation) are
s0 widely applicable that they are often called ‘differential equations of physics’. True, there
are other important PDEs apart from these, such as the wave equation 1n quantum
mechanics, Dirac’s equation in relativistic quantum mechanics, the Klein-Gordon equation
in quantum field theory, etc. But, even for these more complex PDEs, the study of these
threz PDE:s is a necessary introduction.

It is; chiefly for these reasons thal, after a brief introduction to PDEs in Unit 5, we have
mainly concentrated on the method of solving physical problems modelled by these
equations in Unit 6. A major breakthrough in solving such problems came with Fourier’s
wiork on representing an ‘arbitrary’ function as the sum of a trignometric series. Therefore,
in Unit 7, we have introduced Fourier's method involving the use of Fourier series. In Unit
8, we have taken up its applications for solving PDEs of physical interest. Once again we -
will discuss only the relevant version of a very useful body of work in the area of PDEs. The

" PDEs considered in this block are applicable to a wide variery of physical phenomena and

should make an interesting study.

One last word before you start studying the block. You should go through the Study Guide
of Block 1 again to be able to get the best out of this block. The.time you would need to
spend on esch unit couid vary beétween 5 and 6 hours giving a total 'of a maximum of 24 h of

" study time for this block.

“We hope that you will enjoy studyi.ﬁg and working through the block. Wish you good luck! -
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UNIT S5 ANINTRODUCTION TO PARTIAL

DIFFERENTIAL EQUATIONS

Structure
5.1  Introduction
Objectives
5.2  Functions of More Than One Variable

Limiis and Continuity
Partia] Differentiation -

Differentiability
5.3  Partial Differential Equations
Classification of PDEs
What is a Solution of a PDE ?
54  Summary

5.5  Terminal Questions

5.6  Solutions and Answers

5.1 INTRODUCTION

In Block 1, you have studied ordinary differential equations (ODEs) and learnt various
methods of solving them. You have also obtained some understanding of the process of
mathematical modelling and used it to solve some simple real-life problems pertaining to
physics,

However, the real world around us thirows up an astounding variety of problems which
cannot be solved with the knowledge of ODEs alone. For example, suppose a sitar string is
plucked at some point. What is the ensuing sound ? Any sitarist will tell you that the sound
depends (among other things) upon where the string is plucked. Now if you want to model -
the motion of the sitar string, you cannot use the techniques you have studied in Block 1.
Similarly, if you heat a casting in a furnace and want to know its temperature distribution at
a given time, you need 10 lock for new methods: ‘

In order to solve such real-world problems, we need to study partial differential equations.

This unit being the first in our study of PDEs, we shall discuss some basic concepts related
10 them.

As you have studied in Unit 1 of Block 1, PDEs arise in connection with various physical
problems when the functions involved depend on two or more variables. Recall that, in the
study of ODEs, we had asked you 1o go through celculus. So while modetling physical
systems with ODEs, you were in a position to verify that the function of one variable
occring in any ODE was continuous and differentiable in the domain under consideration.

You ought to know similar concepts about functions of more than one variable before you

-0 on to study PDEs. Therefore, we begin this unit by defining a function of mbre than one
variable, and explaining the concepts of limits, continuity and differentiability for such
functions. You will also learn about partial differentiation in this connection. Then, if you
wish to go into greater details about these concepts, you may refer to Units 1 to 8 of Blocks
1 and 2 of MTE-07, the mathematics course entitled *Advanced Calculus®,

Once you have leamt these basic concepts, we will introduce you to PDEs. You will see
how PDE:s arise in physical problems, and leam to classify them in various ways as you did
for ODEs. You will also leam what is méant by the solution of a PDE.

Having become familiar with these concepts, you will be able to solve PDEs arising in
problems of physical interest. This forms the subject of Unit 6.
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Partial Differentlal Equations

Remember that the surface of the
earth is not planar, and so this -
example holds only for a small area
on the surface of the carth. We
cannol represent the temperatune
distribution over large areas (for
instance, over the area of China or
USA) by such a function T{x.y).

Flg. 5.1 hns been reproduced
from Agroclimatic Atlas of
India (1985), courtesy Tudla
Meteorological Department.

Objectives
After studying this unit, you should be abl;a to:

@ verify that a function of more than one variable is continuous and differentiable

¢ compute the first and higher order partial derivatives of a function of several vaﬁables '

@ classify partial differential equations by way of order and degree, linearity/nonlinearity,
homogeneity/nonhomogeneity

@ verify that a function is a solution of a given PDE.

5.2 FUNCTIONS OF MORE THAN ONE VARIABLE

So far in this course you have studied differential equations involving functions of one
variable. However, many physical quantities depend on several variables, For example,
Fig. 5.1 shows the temperature distribution over India on a particular day of summer. The
solid lines join up places where the surface lemperature was the same at that ime. These
lines are called isotherms. You must have seen such pictures shown sometimes in the
weather report televised every night in the national newscast. Now suppose we setup a
coordinate system with New Delhi as the origin and take the x, y-axes in the East and the
North directions, respectively. Then each place in India can be represented by its

.coordinates (x, y}. So the variable T representing the temperature at any place at a given

instant is a function of two variables x and y, i.e., T=T(x, y).
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Fig. 5.1 : Temperature distribution at the surface of India on a hot day al a given Ume

Now suppose we have a record of temperature distribution over India at different hours of a
day. On how many variables would 7 depend? In this case T will be a function of x, y and ¢,
i.e., T= T(x, y, f) where  represents the variable time. Once again you can represent

T (x, y, f) with the help of isotherms. But now the isotherms will keep changing wuh time;
in this case, the solid lines of Fig. 5.1 would keep wiggling.

. Can you now think of some more examples of functions of more than one variable?

Remember, you have read about such functions in Unit 2 (Sec. 2.3) of the course
Mathematical Methods in Physics-T (PHE-04) You may like to jot down in the margm,
some moreexamples of such functions before you study further.
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Our basic purpose in this block is to set up and solve differential equations involving one or
more derivatives of functions of several variables, which are continuous and differentiable
over a given domain. Therefore, before studying such DEs you should know certain
mathematical concepts, such as the limits and continuity, partial derivatives and
deferenuabmty of such functions.

5.2.1 Limits and Continuity

In the calculus course you have studied the concepts of limit am'i continuity of a real-valued
function of one variable. Let us now extend these concepts to functions of more than one
variable. We will first consider a function of two variables and understand what is meant by
its limit.

Suppose f (x, y} is a real single valued function of x and y\L is said to be the limit of f (x, ¥)
as the point (x, y) approaches (xor Yo)» if f(x, y) approaches the value L, as (.r ¥) approaches
{(xp, ¥p)- It is written as

lim fxny=L : - &R
(5)) =2 (x5 ¥y

Now (x, y) can approach (xy, y,) along any one of an infinite number of curves passing
through {xg, ¥o). The limit (L) of a function fx, y) is said to exist, only if the function
-always approaches the value L, irrespective of the curve along which (x, y) approaches

(xg, o) Thus intuitively, we can say that L is the limit of f{x, y} as (x, y) approaches (xg, ¥g),
if fix, y) is as close to L as we wish whenever (x, y) is close enough to (x4, yo). You may like
to study Fig. 5.2 which shows the geometric interpretation of this linit.

This concept carni be extended to functions of three or more variables, For instance,
intuitively L is the limit of f{x, y, z) as (x, , z) approaches (xg, ¥g, Zg) if x, ¥, z) is as close to
L as we wish whenever (x, ¥, z) is close enough to (xp, ¥g 2)- It is not possible to represent
this limit pictorially because that would require four dimensions.

A natural question follows: When can we say that the limit of a function f does not exist?
Let us find the answer. Let f be a function of two variables and letlim  f(x, )= L. Then

{r. ) = (x5 )
the concept of the limit as explained above implies that f{x, y) must approach L as (x, )
approaches (x;, yq) along each line (or curve) through (xq, ¥g). Thus, to show that
lim fix, y) =L does not exist, it is enough to show that f{x, y) approaches different
(5 3).— g ¥o) )
numbers as (x, y) approaches (xg, yg) elong different lines (curves) through (xg, yg). This idea
can be extended to functions of more than two variables.

A rigorous mathematical treatment of these concepts is given in an appendix to this unit.
You should go through ils contents 1o understand the mathematical basis of these ideas.
However, you will not be examined on the material presented in the appendix.

Let us now consider an example 1o illustrate the concepts you have studied so far.

1

f (x.J’)‘—

Example 1

i 3
a) Evaluate lim oty
m)-1,2) L+

Solution
* Using the results given in Eq. {A.1) of the appendix, we have

lim x=-1and lim y=2
xN-(-12) xN=(-1.2) -

Using the product formula [ (Eq. (A. 3} of the appendix)], we get

lim xr=-1and lim =8
(X.y) _,(_llz) (I. J’) - (_lr 2)

lim x*=land lim y*=4
) -1 x> -1.2)

An Introduction to Partlal
Differential Equations

Recall that a function of one variable
is defined as follows:

If A and B are two sets, a function f
fom A to 8 is a rule which connecis
every member of A toa unlque !
member of B, The set A is called the
domaln end B, the co-domain of f.
£ (x) denotes thal unigue element of -
B which is associaled with the ’
clement x to A.

If A and B are both subsets of the set
of real numbers R, then f(x) is called
a real-valued funciion.

z=f(x,y}

L+(~-

L—€7

' ? (55
> (%0.y0)
Fig. 5.2

Note that (he limits

lim [ lim !(x..v)]

I—srn ¥

and fim [ lim f(x.ly))

y—=y X =4 17

termed the repeated limlits arc not

the same as lim  f(x,y) which
£r. 31 = byl

is called the simultaneons limlt For

2 more detailed study in whis regard

you may like 1o go through Block 2

of MTE-07 (Advanced Calculus).
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Partial Differential Equations

Spend 5 minures

Combining the sum and quotient formulas [Bqs.(A. 2 and 4)] we get

lim S+ lim -y ‘

lim. .:34-)'3: (x. )= (1,2 x, )= (-1.2) =—l+8=1

mN- L2 L+ lim 2+ lim ¥ 144 5
EN -1 @) L)

b)  Evaluatelim 2y-x | e

D@11 Yxz

Solution
You can see that

im x=2, lm  y=1, lm  z=-1
(1»)'-!)—’(2- I--i) (-r-ybz)_’(2| lr_l) . (&y-’)_’(zuln_l)

Using the sum, product and quotient formulas we get

i Xy—xd_241-217 8-2
Gydo@1,-) Y -x 1+2.1 3

=2.

You can see that we can obtain the limits of these functions at a point (xy, ¥g) or (xg, j;o, z)

effectively by evaluating the value of the function at these points. The only exceptions to
this practice will be those functions whose limit does not exist at a point. Let us consider
one such function and leam how to find out whether the limit of a function at a point exisis
or not.

¢)  Show that lim f (x, y) does not exist forf (x, y) = y-x
- 0.0 P+

Solutlon
Let us set y = mx. Then

PP _m-2 -}
P+ mlsd mP+l

2 _
The value of mz : will be different for different values of m, This means that f(x, y)

approaches different values along the lines corresponding to different values of m as (x ¥)

ap.proaches (0, 0). Hence the lim  f (x, y) does not exist
(x. 5} — (0,0

Y ou should now work out an SAQ 1o concretise these ideas.

SAQ1

Il
=]

LA
a) Show that lim £+ +
@nocLy 1+

Show that Lm —I _ does not exist.
b -0 E+y)

Now that you have understood the concept. of limits of functions of several variables, we
will define the continuity of such functions.

T —— IR
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e A function fof two variables is continuous at (xgs yo) if

im £ y)=f (%Yo
(5 Y} (X ¥y

® A function f of three variables is continuous at e Ygr 200 I

. lim f(x.y..2)=f(xo.yo.zo)
(53, 2) = (. Yo 7)

® A function of several variables is continuous if it is continuous at each point in 1ls
domain.

¢ The sums, products, quotients of continuous functions are continuous:

@ The composite of continuous functions is continuous,

In addition to the definitions and rules you have atudjed so far, you should also know the
substitution rule for such functions. -

Substitution rule :
For the two variable case let us suppose thet

' fim f‘(x' y) =L
&,y

Let g be a function of a single variable f and let g be continuous at = L. Then

Bm g {f(xy))=5L)
= ¥) = (. 5)

Let us illustrate these concepts through an example,

Example 2
a) Show that the function In (x/y) is continuous at {e,’ .

Solution
In effect, here we have 1o show that

lim In(x/y)= ln(e/l)—l
.y l)

Let.f (xr,y)=x'y afld g()=Int
Using the quotient formula for limits

lim (x/y)=e.
7)1 1)

Since lim g(0) =In(e) = 1 = g(e), therefore g(?) is continuous at ¢ = ¢, Thus it follows from thc
i—=e

substitution rule that

lim In(x/y)=gle) =1
) > (e 1)

Hence the function In.(x/y) is continuous at (e, 1).

b) Let us consider an example from physics. The electric ficld at a point P due 10 a
point charge g is given by
A
E __1 g
4ne, 2

E for a point charge is shown in Fig. 5.3a. You can see that as r — 0, the magnitude of the
electric field tends to infinity. Thus E for a point charge is not continuous at the point r = 0,
_ Le., at thé location of the charge. This isthe reason why we do not talk about the electric
field at the point at which the charge is located.

An Introdaction to Partial

Cumderapmroffuncumsfandg
Lzt the co- domain of fbe the
domain of g, i.e.,

- fiX—Yad

Y2

The functionh: X > Z
defined by setting

- h(z) = 3(fx))

is called the composite of fand 2.
The funclion

g (x. 5}

is also & composite of the functions S
and g of two variables.

{n)

Py z
(b)

0

Fig. 5.3 : (8} E lor a polnt charge Is
nol continuous at the polnt where
the charge Is kocated; (b) Each
clement of the charge distribuilen
p{x% ", z') makes a contribution to
Lhre Fietd E at the pofnd (xcy:=).
The total fleld af this polnt 8 the

- sum of alt such contribuiions.
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Partial Differential Equations

Spend 5 minutes
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Flg.5.4 : The displacement u(x, 1)

of a vibrating guitar string at an

10

Instantf >0

"However, the electric field due to a finite continuous charge distribution is continuous. The

field at a point P(x, ¥, z) dué 10 a continuons charge distribution p(.r.’ Y.?) (Flg 5.3b)is

- givenas

) A
E(r,y,z)= J' Py, rdv
v r
Here 1 points from (, ¥', '} to {x, ¥, z}. Now yoﬁ know from Unit 3 of PHE-(4 that, in
spherical polar coordinates, dV is given as
dV = r2dr sin 8 d8 do

o E(r.0,¢)=[ p(, @, ¢) ¥dr sin® 40 do
v

This integral is finite at every point in space and in the limit as r tends to any point in space,

_ the integral tends to the value of E at that point. Therefore, so long as p remains finite , E is

continuous everywhere, even in the interior or on the boundary of a charge distribution.

_You may now try the following SAQ.

SAQ2

Show that f{x, y) = sin H—%y'i is a continuous funcﬁn:fn.

So far you have studied the basic concepts of limits and continuity of functions of several
variables. We are now ready to consider the following questions: How do we differentiate
such functions? As an example, consider a vibrating guitar string of fength L at time. ¢-

(Fig. 5.4). The string is fixed at points A and B, and vibrates in the xy plane in such a way
that each point on it moves in a direction perpendicular to the x-axis (transverse vibrations).
Suppose u(x, 1) is the vertical displacement of a point P on the string, measured from the

_ x-axis at time ¢ > 0. We may like to determine how fast the point P'is moving, i.e., the

velocity of the string along the vertical line with abscissa x. We may also want to find the
slope of the curve in Fig. 5.4 at P. In the former case, we keep x fixed and differenuiate &
with respect to 1. In the latter case, we differentiate u with respect to.x, keeping ¢ fixed. Thus,
a funclion of several variables can be differentiated with respect 10 one variable at a time
keeping other variables fixed.

This example gives us an intuitive idea (hat the rate of change of a function of several
variables is not just a single function. This is because the independent variables may vary in
different ways. All the rates of change for a function of r variables are described by n
functions, called its partial derivatives, Let us leam about partial derivatives in some detail.

5.2.2 Partial Differentiation ' ‘

In this section we will define partial derivatives and practice computing-them. Consider a
function of two variables £ (x, y) and let (xg, yo) be in the domain of f. The first order partial

derivatives of f with respect to x at (xg, yo) is defined by

%+ Ax, ) ~f (i
Fitrg yo)=tim LREEEN T Cote (5.20)
Ax—0 .

provided that this limit exists. Similarly, the first order partial derivative of f wilh respect to
y-&t (xg, ¥g) is defined by

( +A )_' (‘!' I
o yp=tim L2t EN T Ce 30 (5.20)
Ay—0 y

provided that this limit exisls.

So if these limits do not exist at any giver point for a function, its partial derivatives also do

not exist. The functions f; and f, that arisé through partial differentiation and are defined by

Trm=
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: FE+AxH—fxny)

Fep=lim = (5.32)
and
fy (I. y) =lim f(-tv y+ A )') _f(x' )') (53'3)

Ay—0 Ay

".are called partial derivatives of f with respect to.x and y, respectwely These are also denoted
by éﬁ and —‘E , Tespeclively. First order partial dcn\fatwes of functions of three or more

variables are deﬁncd in the same way.

We can think of f,(xg, ¥} as the rate of change of f (x, y) at (xp, yg) With respect tox, when y

is held constant. For example, let T(x, y) be the temperature at any point (x, ) on a flat metal
plate lying in the xy plane. Then T, {xq, yp) is the rate at which temperature changes at

(xp Yo) along the line y = y, (Fig. 5.5). Similarly, the partial derivative Ty(xf]' ¥g) isthe rate -

at which the temperature changes at (x;, y) along the line x =xg.

Thus, computing partiat derivatives is no more difficuit than finding derivatives of functions
of a single variable. The follgwing rule will help you compute partial derivatives:

To calculate the partial derivative of a function f of several variables with respect to
a certain variable ’

e treat the remaining variables as constants

e differentiate £ as usual by using the rules of one variable calculus.

The sum, product, and quotient rides for ordinary derivatives have counterparts for partial

derivatives. Thus, if f (x, ¥} and g (x,y) have partial derivatives then

_ﬁ 9 _of, 0 ' '
ax F8)= ax " o Uri“’)‘ay*ay (5-42)
S =LgrsE wma Lgp=Lorr (5.4b)
of  _r08 g,
af axtta o 8 5.40)
wgT g we g '

As an example, consider f (x, y) = x2y3 — x3y2. We hold y constant and dlfferennale fwith
respect to x to get

-9 2 52 |
= axxzyi’ axny = 2xy’ = 32y
Similerly, we hold x constant and differentiate with respect to y and get

F_ 223 33 2 320
T2y pdp=ap-2d

Let us consider an example from physics to illustrate these concepts.

Example 3
Consider the variation of-current i in a circuit as we change the resislance r for different
values of the applied voltage v (Fig. 5.6). The relation between these quantities is given by

the familiar Ohm’s law i =
Now suppose we are asked to find the slope at point P on the curve B (Fig. 5.6 b). Treating v
as constant we get

a__v

o~ 2

An Introductlon to Partial
Differential Equations

z

y=r -
Fig.5.5

N
A notation for partial derivatives
which is frequently used in
applications (panicularly in
thermodynamics) is (92/0.x)y. It
represents \he partial derivative of
2(x, ¥) w.r.t. rwhen y is held
constant. For example, in
thermadynamics we use the notalion

=) E

ele., where T, 7, V and U are the
thermodynamical variables,
temperature, pressure, volume and
intermal energy, respectively. You
can see that these two partial
derivatives are different,

(HY

15+
Zaof
= v=10V.
s -
p
o r
' 10 20
r{Qy)
15F )
g 10}
it v=135V¥
5F .
. P B
ol . -
10 20
r{)
ol (e
<io0f
v=20v
5 -
C
0 . .
10 204
r(f})

Fig. 5.6 : The verinstlon of current
In & resistive circuit element with

the reslsiance for different values
of applied voliage
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Partlal Differential Equatlons

®

Fig. 5.7 : (a) The maln ralnbow
you see In the sky Is created by
various monochromatic rays that
have been refracted, reflected and
finally refracted again by water
droplets (b) the angle 6 formed by
the path of 2 monochromatlc ray
before it enters the droplet and the
path after It keaves the droplet
depends on both poand f

Spend 15 minutes

12

" For the curve B, v = 15V and at point P, ¥ = 10£).

Thus oi 0

AQ"=-015AQ"
or p

100

We say that the current varies with resistance at a negauve rate of 0.15 ampere per ohm,
other things being equal.

You will find several other apphcauons of pamal derivatives in physics. For example in the
physics course PHE-06 entitled ‘Thermodynamics and Statistical Mechenics® you will study
about thermodynamic potentials (which involve an extensive use of partial derivatives).

However, you must keep in mind that it is not always possibleto compute partial derivatives
of functions in this manner. In some exceptional cases we have to use the limiting process.
We shall deal with such cases as and when we come across them. In the study of PDEs, you
will also come across higher order partial derivatives and you should know about them too.

Higher order partial derivatives '
Since the partizl derivatives are themselves funclions, we can take their pamal derivatives to

" obtain higher order parual derivatives. There are four ways to take a second derivative of Ax,

¥). We may compute
&

_9 () -
Gl "ax[ax] FxX Y.

_A¥_ 29
fn(x’y)'ayax_ayax' Ty )= 3 3y = axdy

fen=2d -9

(.5

fxy and j;,x are called mixed partial derivatives or mixed partials.

If fix, y) has continuous second partial derivatives then the mixed pamal derivatives are
equal, i.e.

oF _ ¥

Ay~ Iyax (5.6)

or fyx'=fxy

You should now compute some first and second pa.rtials\.

e

SAQ3
"a)  Find all the first-order partial derivatives of f (x, y, z) = x* — 2222 + 3yz* and
h(x, y, 1) = xé' = yPe?. What are the values ofsi (1,1, 1) and% @,1,0)?

1

b)  Show that the function z = In(x? + y°) satisfies the equauon

F2 P

a2 H?
¢)  Onarainyday, you may have observed a rainbow in the sky. A rainbow is formed
due to the refraction, reflection and another refraction of various monochromatic
rays in the sunlight by water droplets suspended in air (see Fig. 5.7a). The angle 8
shown in Fig. 5.7b for one monochromatic Tay is given as

oG, H=4sin”! [% ]— 2

where [L is the index of refraction of water for the ray and /, its angle of incidence.
For any given y1, find the angle i, for which

-
5 Wip=0




d)  ‘The entropy S of a gas is given by
§=C,InP+C,InV+A ' ~ @M
where C,, C, and A are constants. We can substitute for.V from the ideal gas law
. PV=RT 10 obtain
§=(C,-C)InP+C,InT+B , (i) .

where B is a constant. Compute ¢S/0P from (i) and (ii). Why do the two expressions
differ.?

Certain results follow logically from the discussion so far. We state them without proof The
mere existence of partial derivatives does not imply the continuity of a function of several -
variables. Also a function of several variables which is continuous at a point need not have
any of the partial derivajives at the point. You can read about these ideas in detail in Block
2 of the mathematics course MTE-07. With this background we would now like to consider
these questions : When can we say that a function of several variables is ‘differentiable’? Is
a continuous function f (x, y) differentiable at a point ? Or is f (x, y) differentiable at a
point provided its partial derivatives exist? Let us answer these questions very briefly.

5.2.3 Differentiability

Recall that a real-valued continuous function of one variable need not be differentiable.
The same applies to functions of several variables. Similarly, since the existence of partial
derivatives does not even guarantee continuity, it cannot guarantee differentiability. So we
need additibnal conditions. We will not go into a formal mathematical definitipn of a
differentiable function. Instead we state herethe sufficient conditions which, if satisfied,
ensure that a function of several variables is differentiable.

If f (x, y) has partial derivatives on a disc centréd at (xg, yg), and if f, and f, are
continuois at (x5, ¥g), then fis differentiable at (x> Yo)-

However, these conditions are not necessary. Thus, a function can be differentiable at a
point even when none of its partial derivatives is continuous at that point.

Having studied these concepts, you should know what the term-‘a real-valued, continuous
differentiable function of several variables’ means, whenever you come across it. With this
mathematical background, we are ready to discuss partial differential equations, i.e.,
equations involving the partial derivatives of functions of several variables.

5.3 PARTIAL DIFFERENTIAL EQUATIONS

Let us begin by considering examples of how some special partial differential equations
(PDEs) arise in physical situations. We will then classify PDEs and understand what is
meant b rhe:E solutions. Consider a steadily flowing siream of water with veloclty field
v=v 1+vyJ+vs k. Let the velocity field be incompressible and irrotational. Then you
know from Unit 2 (Sec. 2.4) of the course Mathematical Methods in Physics-I (PHE-04) that
for this velocity field V - v=0and V x v =0, i.e. v = V¢ where ¢ is a scalar field. Now you
can use the definitions of divergence and gradient to express these relations in a Cartesian
coordinate system in their differential form

LA =0 ' o - (5.73)

v=Vdie, v=..... n=..... y V3= A e )]

Then, substitute Eq. (5.7b) in Eq. (5.7a) and you will get S et

ax2+ay2+az2 0 _ (5.8)

Thus, you have set up a well known PDE in physics termed the Laplace equation. This
equation is satisfied by the velocity potential function of any incompressible and irrotational

-An Introduction to Partial
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Fig. 58 : Flow of heat ina
cylindrical metal rod |

flow. It also finds applications in such diverse fields as gravitation, electroslaucs. €elasticity
and steady state heat conduction. Let us take up another example,

Consider the flow of heat along a cylmdncal metal rod (Fig. 5.8a). We choose the x-axis to
be atong the axis of the cylinder. Let us assume that heat can flow only in a direction parallel
to the x-axis. This means that at any instant £, the temperature T is the'same at all points of a
cross-section x = constant (see Fig. 5.8a). Then T(x, 1) describes the temperature of any

point P(x) in the rod at time 1. We also assume that no heat is generated within the rod. We
can model heat flow in the rod according 1o two experimentally verified laws: Fourier's law
and the principle of conservation of heat. Fourier's law states that the rate of heat flow per
unit area, Q(x, ) perpendicular to the flow is proporl:lonal to the temperature gradient.

Would you like to express this law mathematically ? Give ita try.

Since the flow is one-dimensional; you should get a relation of the following kind.

Qx, 1) ——-AK (.r ), _ L (5.9)

. where Q(x, 1) is the rate of heat flow in the positive x direction across the section

x = constant at time ¢. Here X is the thermal conductivity of the metal and 4 is the rod’s
cross-sectional area. The minus sign appears because heat flows from hotter to colder
regions, so that Q is positive where the temperature gradient is negative, and vice versa.

The principle of conservation of heat slates that the rate at which heat accumulates in a
region containing no heat sources is equal to the net rate at which heat enters that region
through its boundaries. Let us apply this principle to a smatl portion of the rod between

x and x + Ax (See Fig. 5.8b). The rate at which heat accumulates in this portion at a time ¢ is

Q(x H=-Qx+Ax,1)

Now you can write the expression for the heat accumulated in this portion in the short time
interval between ¢ and ¢ + At in the space below :

........................................... (5.10a)

You know that the heat energy required to raise the average temperature of a body of

mass m and specific heat 5, from T to T, is ms (T, —T')). For the small portion of the rod,
we have m = pAAx, where p is the density of the metal. Let T(x, £) and T{(x, ¢ + Ar) be the
average temperatures of the portion at time ¢ and {¢ + Ar), respectively and let s be the
metal's specific heat. Then you can write down the heat energy added to the portion-between
these times:

(5.10b)

The principle of conservation of heat demands that the expressions contained in Egs. (5.10a})
and Eq. (5.10b) should be equal. Thus, we have

[G(x, ) — O(x + Ax, t)] Ar = (pAA.t)s [T(x, t + Ar)y—Tex, 0] (5.10c)

Now divide both sides by (Ax Ar) and teke the simultaneous limit as Ax and Ar tend to zero.
What do you get 7 Write down the result :

BRI LTI TP (5.10d)
Substituting Eq. (5.9} in Eq. (5.10d) you should get
0|, 00T —oas 9T ' :
3 [AKax {x, r)] = pAs P (x, 1} (5.10e)
On simplifying the equation further we get
or 9T _ ' :
ar—kazz ={, G.AD

where k= ﬁ is called the thermal diffosivity of the material of which the rod is made.

Remember that in writing Eq. (5.11) we have assumed X to be a constant, which need not be
truc always.




Eq. (5.11) is termed l.he one-dimensional diffusion equation. It is so called hecause it An Introduction ¢o Parﬂal
models the ‘diffusion’ or gradual change of various physical quantities that are continuous Differential Equations
functions of time and space coordinates in one dimension. This equation is also used to

describe the diffusion of liquid or gas concentrations. A slight variation of Eq, (5.11)

describes the diffusion of neutrons in a nuclear reactor. In the situations when Eq. (5.11) -

models heat flow in a one-dimensional object as in the example considered above it is also

termed (he one- dimensional heat flow equation.

" Egs. (5.8) and (5.11) are two PDEs which occur quite often in physics. You will come -

across other PDEs in Unit 6 of this course and other physics courses. Cur main aim, of .
course, is to leam the methods of solving the PDEs which occur in physics. However, before
you leam these methods you should know how to classify PDEs. You must also understand
what constitutes the soluticn of a PDE. These will be our concems in the next twa
sub-sections. '

5.3.1 Classification of PDEs

We classify PDEs in much the same way as ODEs, i.e., in terms of their order, degree and
linearity/nonlinearity. Linear PDEs are further classified as homogeneous/nonhomogeneous

and as elliptic, parabolic and hyperbolic PDEs. Let us see what these terms mean. I

Order and Degree
Just as in the case of ODEs, the order of a PDE is the order of the highest derivative

occurring in the equation.
For example, the equation

§£ +y é'f = (5.12)
is a first order PDE. A first order PDE for a function f (x, y) contains at least one of the
partial derivatives % s g'-; but no partial derivative of order higher than one. A second
order PDE for f (x, y) contains at least one of the partial derivativesf,,, fypr fyor fyxbut
no partial derivatives of order higher than two. Eqgs. (5.8) and (5.11) are second order PDEs.
Second order PDEs may also contain first order terms like -gf . —3'5, as in Eq. (5.11).
The degree of a PDE is the degree of the highest derivative in the equation.

-

For example, Egs. (5.8), (5.11) and (5.12) are PDEs of degree one. The PDE

Y 3
[_af]JJré{:O B (5.13)

is a first order PDE of degree 3. You may tum to SAQ 4 and write dowu the order of the
PDEs listed there right away if you so wish.

Linear and nonlinear PDEs

Just as in the case of ODEs, we say that a PDE is linear if (i) it is of the first degree in the
unknown function (the dependent variable) and its partial derivatives, (it) it does not contain
the products of the unknown functions and either of its partial derivalives and (iii) it doea '
not contain any transcendental functions. Otherwise it is nonlinear, For example, the PDEs
given by Eqgs. (5.8}, (5.11), (5.12) and the following PDEs are all linear :

Qz_g .2 o2
PY; » (5.14)
and
3 12 ay2 2 =fix.y) (5.15) .

The PDE given by Eq. (5.13) is nonlinear as it is of degree 3.

A linear PDE can further be classified as homogeneous, or nonhomogeneous.
: . 15
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Homogeneous and nonhomogenéous linear PDEs

If each term of a PDE contains either the unknown function or one of its pamal derivatives,
itis said to'be homogeneous: otherwise it is nonhomogeneous. Which of the Egs. (5.8),
(5.11), (5.12}, (5.14) and (5.15) are homogeneous and which ones nonhomogeneous? You
are right, All the equations except Eq. (5.15) are homogeneous.

You can practise classifying PDEs further by working out SAQ 4.

SAQ4

4

Write down the order and degree of each of the PDEs listed,‘below. Determine which of the
PDEs are linear, nonlinear. Classify the linear PDEs as homogeneous, nonhgmogeneous.

Y L
i) 1231_2+)'2. 5 =0
ii) :y—7z+x%§§ =2 £y

i) [92] +2-0

9x ot
. 3214 Pu ou  du
iv) a.:l a}'z] % oy =g
po Lu__ fou
v) =i ax % 6[ ] =0

In this course we shall restrict ourselves to linear second order partial differential

equations because these occur most frequently in physws The most general form of such an:

equation, for a function u(x, y) is

Pu,, Fu, Fu I
a§+bax_ay+ 4::!a +e-§)-;+_ﬁz =g(x,y) {5.16)

where a. b, ¢, 4, e and fare functions of (x, y). If the coefficients g, b, ¢, d, e, f are constants,
Eq. (5.16) is termed a linear, second order, constant coefficient PDE. Equations of the

~ form (5.16) with constant coefficients, are further classified as elliptic, hyperbolic and

parabglic, depending on the relationship between the second- order coefficients a, b, ¢1°
if ac - b% > 0, the equation is elliptic, '
. ifac — b* < 0, the equation is hyperbolic,
if ac - b2 = 0, the equation is parabolic.
You can verify that the Laplace equation Eq. (5.8) and Eq. (5.15) known as Poisson’s

equation are elliptic. The diffusion equation Eq. (5.11) is parabelic and Eq. (5.14), known

a5 the wave equation is hyperbalic. Check these results before studying further. We have
introduced ypu to the PDEs (Eqgs. 3,8, 5.11, 5.14, 5.15) that occur most frequently in
physics. You will leam the methads of solving these PDEs under specified boundary and
initial conditions in Unit 6. But before that you must know what is meant by the solution of
a PDE and some properties of the solutions. This is the subject of Sec. 5.3.2.

532 Whatis a Solution of a PDE ?
In part (b) of SAQ 3 you have verified that the function u = In(x? + y?) satisfies the PDE

Fu
a2 ay2

The function In {x* + y*) is a solution of this PDE. The process of solving a PDE involves

=0 : GBI

finding all the functioris which satisfy it. A more formal definition of a solution is as follows.
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- - An Introduction to Partlal
A solution of a PDE in some region R of the space of independent variables is a Differentlal Equations
function, all of whose partial derivatives appearing in the equation exist in some |
domain containing R and which satisfies the equation everywhere in R.

In general, there can be a large number of solutions of a PDE. For example, the functions
u=x2- y2and u = e*cos y are also solutioris of Eq. (5.17). A unique solution of a PDE
‘corresponding to a given physical problem is obtained by applying appropriate initial
conditions and boundary conditions.

Let us now ask: What is: mvolved in solving a PDE? Consider the following rather simple
PDE

dulx, i _ - ‘
__(__lax —1 (5.18a)

To find u(x, {) we may keep I constant and integrate with respect to x. We then obtain
u(x, D=x+C _ (5.18b).

However, C is'a constant only if ¢ is kept fixed. For different values of ¢, C will be different,
i.e., C is a function of t. Thus, the most general solution of Eq. (5:18a) is

ulx, )=x+£() . {5.18c)

where fis an arbitrary function of /. You can verify that u(x, £) of Eq. (5.18c) does satisfy
Eq. (5.13a).

So you see that while the solution of an ODE involves arbitrary conslan(ls the solution of a
PDE involves arbitrary functions. As we increase the order of the partial derivatives in a
PDE, we introduce more arbitrary functions. ~

Recall that a linear combination of the linearly independent solutions of an ODE is alsb its
solution. The same principle applies to the solutions of a linear homogeneous partial
differential equation. Thus, if u; and u; are any linearly independent solutions of 4 linear
homogeneous PDE in some region then-

) u=Cup+Couy

where C, and C; are arbitrary constants; is also a solution of Yhat equation in that region. '

This principle is called the prineiple of superposition and it can be &xtended to the case
where n solutions of a PDE exist. To sum up, in this section we have studied partial
differential equations, their classification and the meaning of their solutions. We would like
to end this section with an exercise for you.

SAQS i

. - . . Spend 10 minutes
a) Verify that #; = cos x cos cy and u, = sin x sin ¢y are both solutions of the PDE

Pu_,Pu_,

&  ar

Show that cos (x + cy) and cos (x — cy) are also solutions of this FPDE.

b) Show that for each integer a. the function

u,=¢ "l-wsm nr

isa sbluuon of the PDE
Ql_{ A azu =0 ) '
dy 92 =

Deduce that for any positive integer N and real numbers, a;, @, . . ., ay, the finction 7
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5oty
a 2% 1 sin nx

" M =
3

is also a solution of the PDE.

Let us now sum up what you have studied in this unit.

5.4 SUMMARY -

We summarise below the concepls for a function of two variables. These can be extended to
functions of more than two variables.

A function f (x, y) of two variables x and y is one whose value is determined by the
values of x and y. We call x and y the independent variables: a variable equal to f (x] y)
is called the dependeni variable.

The limit lim f(x, y) =L if for every € > Othere is a § > 0 such that
) 2 (g '

if0<V(x-x)2+(y—yp)* <Sthen | flx,y)—L | <&

A function f of two variables is cantinuous at (x,, yp) if

lllTl f(xv y) =f(x0| yo.)
(5 ) = (g yp)

The limits
O i LAY ~fCy) oy O [y TAN-fy)
ax - 0 Ax - Ay—0 Ay
if they exist, are called the first order partial derivatives of f with respect tox and v,
respectively..

The partial derivative of a function of several variables w.r.t. a variable is calculated
by differentiating the function w.r.t. that variable alone, treating other vaniables as
constant.

- A function f (x, ¥) is said to be diﬂ‘erentiablle at (x&, ¥o) if it has partial derivatives on a
~ disc centred at (x, ¥p) and if the partial derivatives are continuous at (xg, yp)-

Differential equations involving functions of more than one variable are termed partial
differential equations (PDEs).

PDEs occur quite often in physics. In this unit, we have dlscussed the scmng up of
Laplace's equnnon and one-dimensional diffusion equation.

Like ODEs, PDEs are also classified by way of order and degree. linearity and
‘nonlinearity. Linear PDEs are further classified as homogeneous and
nonhomogeneous.

A linear, second order, constant coefficient FDE can also be classified as elliptie,
hyperbolic and parabolic depeiiding on the relationship between the coefficients of
second order partial derivatives occurring in the PDE.

A solution of a PDE in some region R of the space of independent variables is a
function, which satisfies the PDE everywhere in R.

A linear combination of the linearly independent solutions of a PDE is also a
solution of the PDE.

~

5.5. TERMINAL QUESTIONS

1)

According to Newton's law of gravuatlon the magnitude of the force of attraction
"between two particles of mass r1is
Gri?

F——**r-z—
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where r = '\/(.1 .ro) +(y— )’0)2 +(z- z(,)2 is the dlstance between the two particles. -

Determine whether £ is continuous and differentiable at all points in space. The
potential of this gravitational force field is given as

2
f@y.9=- >0

Show. that f satisfies the equation . .~
312 Ty o
2) Given below are some PDEs that appear in physics. Classify them by way of order
and degree linearity (L)/nonlinearity(NL), homogeneity(H)/nonhomogeneity(NH).
azu cg azu ) ‘ .
iy + 2= + au=0 (the tele h equation)
Y 32T 52 13 graph eq
' azu 20U alu :
i -c the wave equation)
R AT ( “
N ol 2 s A B A
i) — + V(@) =1h -\Schridinger's time-dependent
[axz o a2) v e P
equation)
iv) %‘? +p [3.: + g; 5_3:} 0 (the continuiry equation)
- au Pu Pu ’ - L
v 0 : (the two- dimensional
. [axz aﬁ] - .
. diffusion equation)
Pu  Pu alu' 1 - - .
vil —+—=+—="p.y.2) (Poisson’s equation)
bty T T “
5.6 SOLUTIONS AND ANSWERS .
1 a 219
) ) i 2+2%4y
ML L+
Using Eq. (A.1) of the Appendix and the sum, product, quotient rules we get -
2,.4
lim "2"'2’-3'—2"')’
oLy 1ty
lim xX+2 lim x lim ¥+  lim
= (-T-)')—"(—l. l) .(:ly)_’(_lr I) (I-.V)—’("l- 1) (I,_V)—){“!.l) .
1+ lim -
m=-0cLD
JEP2 Pt 1-241
1+12 2
m.rz m
b) Lety=mux, thenf(x,y)=
) yem fon= 12 Y Peml | en
This will have different values for different values of m. This means that
J{x, y) approaches different values along the lines comresponding to different
values of m as (x, ¥) approaches (0, 0). Hence lim f(x, ¥} does not exist..
x,y) = 0.0)
Let g(x, y) = . 2 and z(f) =sin ¢
2 g(_ ) [1+12+sz -

Then f (x, ¥) = u(g), i.e., f (x, ) is a composite of g(x, y) and 4. We have shown in
Eq. (A.1) of the Appendix that lim x=xpand lim y=y,. Since xg and yg can be
N2y =) 2y
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i any points in the domain of x and y, p(x, y) =x and ¢(x, y) = =y, are continuous, The
“sums, products and quotierits of continuous functions are continuous. Hence g(x,y) .

is continuous. Sumla.rly. you can verify that u(f) is continuous. Therefore, theu'
composite f (x, y) is also continuous.

a) f(xl ) Z) =Ix4'_ 2\:2}'222"‘3}'24 .
of .
5;—41'-.’—4.1}322

¥_ N SN
a-y——4x2yzz-l.-32 Py (LLD=—443=-1

g{ = -ty + 12y
h(x, y, )= xe — y2e¥

ah

Friald -
%=—2ye2'

aaf = xe' — 2%

%:,!(4-1-0)=4-1 ~2.1%1=2

b) - z=In(?+)R)

dz_ 2x 9z 2y
A Eay Uy 2y

P2 4l
a2 2yt 2wyt
_ 2?22
TR
P__ 2 4y
¥ 2R @
L 22-2y°
24y
azz 322 2y2 202 + 22 — 2y2
a2t P (2 +y?

2
Thus, z= ln(.t:2 + yz} satisfies the equation B_ +— gz =0

ot 3y?

&) 8ai) =4sin"[%]—2f

—=—-_..EE’;—-2
snti M

_ 4p _cosi
‘Jp.z —-sin®i M
4cos i

= -2

E=0f0rf=fll

-2

mann T = s T T




4)

=)

., doosiy .
p?— sin’ iy B
_ 40032'fu=|.12.—5i112 i -
or 4cosz-iu+ | —cos? l'u =_].12

or 3cos? iu= |.l2 -1

- 2_
Orcos iy = pe-l

3
[

s i"=cos‘l[ 3 ]

d) .From ()

as _G

P~ P

and from (ii) | -

as_G6-G B

P P

In finding % from (i), we keep V constant, whereas in computing g—ﬁ from

(ii), we keep T constant. Therefore, these two partial derivatives are different,

Wehave used the notations L for linear, NL for nonlinear, H for homogeneous and
_ NH for nonhomogeneous PDESs in the answer, The first term gives the order and the
second, the degree of each PDE.

i 21,LH )
i) .2,1,L,NH

i) 1,3,NL

iv) 2,1,L,NH

v) 3,LNL

a)  The partial derivatives of u; = cos x cos cy and u, = sin x sin ¢y are

. oy - 9%,
¥_=—smxcoscy. —a*;=—cosxcoscy
du, %
-§y~=—-ccosxsmcy, '¥=—c2cosxcoscy

duy 32u2 o
andg:cosxsmcy, az-‘:—smxsmcy )
aﬂ 32u2 2 . A
Fyﬂ'—'csmxcoscy, F:—c sin x sin ¢y

Substituting the relevant partial derivatives of u ; and &, in the given PDE we
get two identities implying that both u, and u, are its solutions. Now from the

principle of superposition a linear combination of linearly independent
solutions of a PDE is also its solution. Since #, and 1, are linearly independent

we get that
€os (x+cy)=cosxcoscy—sinxsincy=u; —u,
and cos{x — cy) =cos xcos ¢y +sinxsin cy=u, +u,

.are also solutions of the PDE.

Differential Equations
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Partia) Differential Equations

i

b)  Let us first compute the partial derivatives of l.-t" :

2

-511_: -kn,ze'b' ¥ sin nx )
au" _*nz

L y

- ne cOs nx

o

3:; =—n? 'y sin ax

ou, %
. Substituting =— X and E‘f in the PDE gives us an identity, Therefore, Uy isa

solution of the PDE. Again, since u,, i, 43, . . . , .1, are linearly independent
functions, we get from the principle of superposition that their linear
combination, i.e. ¥ = a,u; +ayly +. ... + auu, is also a solution of the PDE.

¢

In concise form we may write.

N
u= Ea,,u,, Eae

J"smm

Terminal Questions-

1

2)

F is not continuous and therefore not differentiable at the point r =0 for rea'soﬁs
explained in part (b) of Example 2.

__9 r Gm? ]
ax |_‘\’(x - xo)2 +(y-— yo)2 +(z— zo)2

2(x— xp) Gn?® 3 x— xo)sz
(x— x>+ —yp + (z— zg,)z}m P

4(x ~ x)’Gm? , G 3(x - xp)’Gm? , Gr?

5

s il
FW)

Al

{(.r ~ x5+ (- y)P +(z - é0)2}5/2 P o r
¥ __ 30-y)’Gm’ Got . Fr 3-2'6m’ " G2
L " ™ B

3’)"32}'87)" _3Gm* 2 2, (g 3Gm?
'T'lmsar-2 ay2 az2 5 [(x— xo)+0' Yo +(z~zp)°1+ 3

3Gm? 5, 3Gm* _
5 P+ K] =0 o

Similarly —

Therefore, f=— G (r > 0) satisfies the given PDE.

i 2, LLH
i) 2,1,LH
i) 2,1,L,H
vy L 1L,LH
vy 2,I,L,LH
vi) 2,1,L,NH
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APPENDIX A LIMITS OF A FUNCTION OF MORE THAN ONE VARIABLE Differential Equations

We will give here the formal mathematical definitions of the limits of a function of two or-
.more variables and state the rules for evaluating limits of such functions.

Recall that the distance between two points (x, y) and (x;, yp) in r.he plane contammg these
points is less than 8 if .

Vi —x)2+ - yp) <8

Let f (x, y) be a real-valued function defined throughout a set containing a disc centred at
(xg» yo) except possibly at (xq, yp) itself (see Fig. 5.2). LetL be a real number Then L is the

" limitof f at (679 yo) if for every £ 0, there is a § >.0 such that

if 0 < V(x—xp?+ (7-yp? <& then | fix,y) - L1 <e
Then we write

lim flx,y)=L
(x.y) = (xp )

and say that lim f{x, y) exists.
(5 Y) = (15 39

Fig. 5.2 shows the-geometric interprétation of the limir.
We can extend the definition to a function of three variables.

Once again, recall that the distance between the points (x, , z) and (g, ¥g. Zp) is less than & if

Vix—xgP+ 1y -yl +{z - 7P <8
The formal definition of the limit of f(x, y, Z) is then given as follows:

Let f be defined ﬁroﬁghout a set containing a ball centred at (xg, Yg, Zg) except possibly at
(xg» ¥g» 7p) itself. Then L is the limit of f at (xg, Yo. 2o} if for every £ > 0, there is a 5> 0 such
that

0 < V(x=—x)2+ (~yg)2 + (z— 2% <5, then | fx,y,0)-L| <e
In this case we write

lim f(x,y.2)=L
(x, . 2) = (x5 ¥ 79

and say thatlim f(x, y, 2) exists.
(ny2)= (-tu- )'u-_zoJ

Let us consider a simple example to evaluate the limits using these basic definitions. Let us
show that -

lim x=1x, and lim y=y, (A1)
(53} = (xg: ) (. 3) = (x5 ¥g) '

Let £ > 0. Now (x — xp)2 S (x - xp)2 + (¥ — y)?

Therefore, if we let & =g, it follows that

if 0 < Vx— xR+ (y=yp)? <8 then | fx, ) =L | = | x—xg | =V(x - x0J2<6( =g

“This proves that lim x = x; You can prove the second limit in a similar way.
x.y}—> (‘tO' yo}

The result of Eq. (A.1) and the following limit formulas for the sum, products and quotients

of functions of several variables will enable yéu to determine the limits of a variety of

_ functions. We state the formulas for functions of two variables. Similar formulas would -

apply to functions of three and more variables. 23
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Partial Differential Equations

If lim f(xy) and Lim g(x,y) exist, then -
5. ¥) o (xp 3 (x,3) = (x5 59

) lm (af+bg)(ny)=a lim f(x,3)tblim glx,y) (A2)
. ¥) = (5 39 EN20G0 B0y
" where a and b are constants.
i) lim ()@= Im fx)) - lim geuy) (A:3)
€ 33 = (0 ) (x.3) 2 (5 yg) (x ¥} = (x5 )
i) Hm (/) ()= lim f(z,y) lim g(x, ) (A4)
.y > (5. vp (0, 3) = (x5 ¥ / (x, ¥) = (x5, ¥} N

In Example 1, we have determined the limits of some functions using these formulas.
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Parilal Differentio] Equations

UNIT 6 PARTIAL DIFFERENTIAL Pl
EQUATIONS IN PHYSICS

Structure
6.1  Introduction ' c o
Objectives ‘

6.2  The Method of Separation of Variables

6.3 ‘ Solving Initial and Boundary Value Problems in Physics

64  Summary - ~
6.5  Terminal Questions

6.6  Solutions And Answers

6.1 INTRODUCTION

' In Unit 5 you have learnt the basic concepts of order, degree, linearity, and type of partial
differential equations (PDESs). Such equations arise for systems whose behaviour Is
govemed by more than one independent variable. We come across PDEs in such diverse
fields as meteorology, structural engineering, fluid mechanics, elasticity, heat flow, pollutant
and neutron diffusion, wave propagation, aerodynamics, electromagnetics and niclear
physics. Most applied problems in physics are formulated in terms of second-order PDEs.
From PHE-02 course on Oscillations and waves, you are familiar with the wave equation
which governs wave propagation—a phenomenon responsible for hearing, seeing, music
dand our commaunication with the world at large. In your course on eleciric and magnetic
phenomena, you would have come across Laplace’s and Poisson’s equations. These
equations can also be used to determine gravitational potential, steady- state temperature etc.

A particularly useful method employed frequently to solve several second-order partial

differential equations is the method of separation of variables. Depending on the number

of independent variables, this method facilitates to reduce a linear PDE to two or more The lerm separation of variables was
ordinary differential equations, which you already know to solve. This method is illustrated used in Unit 1 of this course in a
-in Sec. 6.2. Boundary value problems in physics invariably exhibit rectangula.r sphenca.l or campletely differemt context.
¢ylindrical symmetry in one or more dimensions. In Sec. 6.3 we illustrate the above said

method 1o obtain a unique solution, subject to the given initial and boundary conditions.

Sirice the same PDE may apply 10 many probiems, the method discussed here can be used to

solve many more problems than are ilustrated here.

Objectives
After studying this unit you should be able to

@ solve a given PDE using the method of separation of variables

# obtain a unique solution to a given physical problem.

THE METHOD OF SEPARATION OF VARIABLES

Linear second order PDEs form the backbone of theoretical physics, Apart from Laplace’s Nonlinear PDEs are encountered in

equation and Poisson's equation, the most important of these are the Helmholtz equation, P“re;;“gz:::;ﬂo‘:;’:ﬁc ahysics

Telegraph equation, wave equation, Kleir-Gordon equation, Schridinger equation and and turbulence. Higher order PDEs

Dirac's equation. occur in the study of viscous Muids
- and elasticity.

The first question that should logically come to your mind is: How-to solve a PDE? As a

first strategy, we would like to reduce the given PDE to simpler differential equetions

containing fewer variables. (The process may be continued unti! a set of ordinary differential

equations is obtained). Next, we put the ODEs so obtained in easily solvable form using

methods discussed in Block 1 of this course. The simplest and most widely used method

for reducing common and physically important PDEs is the method of separation of

variables. Let us now learn how it works. o 25
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Fig. 6.1 : Vibratlonsof a stiring
fixed at both ends

You will leam other analytical
methods for solving PDEs, such as
Green's function wechnique or
numerical meihods in later courses.

26-

To illustrate the method of separation of variables, we consider a finite string ‘AB of lengt.h L
fixed at both ends, as shown in Fig. 6.1(a). Suppose that the sfring is plucked {initial
displacement A(x)) and then released from rest, as shown in Fig. 6.1(b). If we choose x-axis-
along the length of the string, you may recall from Unit 5 of PHE-02 course Oscillations and
Waves that the motion of the string is described by the 1- D wave equation.;

FH_
P Vza# ' : @b

You would note that l.here is no term containing mixed partials like % or -gl: % in

Eq./(6.1). This is because this equation is obtained under the assumption that the stnng is .
dlSplaced only slightly from its equilibrium position.

We now assume that the solution of Eq. (6.1) can be written in the form of a product as
Fx 0 =X () 6.2

Physically, it means that the dependence of the unknown function on one variable is in'no
way affected by its dependence on other variable. Does this imply that there is no
connection at all between X and T? No, it only means that the function X does not depend on
t and the function T does not dcpcnd upon k. For instance, the function

F{x, )=xsin or (6.3a)
is complelely separable i x and ¢. On the other hand, the function

fou.n=x+t _ _ - (6.3b)
is inseparable in that the function cannot be written as a product of two functions,

To illustrate the method, we differentiate Eq.'(6.2) twice with respect to x. This gives

of _
™ =XT .
. d ’ )
afid =X"T (6.4)
ax_ -

where prime(s) denote ordinary differentiation with respect to x. This emphasises the fact
that the deFivative is the total derivative and the function X has only ene independent
variablg. Similarly, if we differentiate Eq. (6. 2) with respect to ¢, we obiain

o _
BI_XT

ama  Hoxr . 69)
\ : a2
where doi(s) denote ordinary differentiation with respect 1o 7. We have used primes and dots

just to distinguish the independent variables with respect io whiclr differentiation has been
carried out.

By inserting results contained in Egs. {6.4) and (6.5) into Eq. (6.1), you would obtain-
X@) T () = v3X “(0)T()
Dividing throughont by y2X(x)T(), we get

i"'gr! =X”!x! )
VI X(x) 66

The left hand side of this equation involves functions which depend only on  whereas the
expression on right-hand side is a function of x only. This, if we vary s and keep x fixed, the
right-hand side cannot change. This means that T (£)/v2T{f) must remain constant for all 1.
Similarly, if we vary x holding r fixed, the left-hand side must not change. That is, the
quantity X" (x)/X(x) must be the same for all x. Mathematically, we expross this fact by
saying that both sides must be‘equal to a constant, k say. Is this argument sound? To
discover the answer to this question, let us write & to represent either side of B, (6.6), i..,
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This is really the key to the process of separation of variables. |
Then from the right-hand side, we have

”

] ( )= ot [ X(x)
and from the LHS, we have

.
3 0= ax[vzm] =0

Since the first order partial derivative of & with respect to ¢ or x is zero, k must be a constant.
It is called the separation constant. It means that if y = a4 sin v is a solution of the ODE

y+oy=0
we will get an identity, for all values of ¢, on substituting the assumed form of the solution in
the given equation.

Thus, you can now rewrite the given equation as two ordinary differential equations :
X0 - k X(x)=0 ' . ' (6.82)
and
T —kVT({)=0 ) (6.8b)

That is, by assuming a separable solution, e have reduced a partial dl.ﬂ'erenual equation in
two variables into two equivalent ordinary differential equations.

- SAQ1
Use the method of separation of variables to reduce the following PDEs to a set of ODEs : Spend 1S minues
) a’r /i &PT —0
a2 rart
. d{ 29Vr,8) 1 af. V)
ii) or [rZ or )+ sin B J0 [sm %J_ 0

L Oy dwin )

iii) 2z +o YR 0

The first of these equations describes the steady-state temperature distribution in a
cylindrical body, like control/fuel rods in the reactor core. The second PDE describes the
- potential in the region on either side of a spherical surface. The third PDE is the
one-dimensional Schrédinger wave equation.

You can now solve these equations without much difficulty using the metheds developed in
Unit 2, Block 1 of this course. For instance, for a nonzero value of £, the solutions of
Eqgs. (6.8a) and {6,8b) are of the form exp(ric)and exp(nr) respectively. The characteristic

equations are _
m—k=0 - (6.92)
and
n?—kv?=0 - ' (6.95)
which have roois .
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Partlal Differentlal Equations

exp({B)=cosO+isinB

o

Fig. 6.2 A rectangular
membraze fixed st edges

and
n=vVk,=vp, ny=—vik=—pv (6.10b)
The resulting sclutions, therefore, are -

X(x) = A exp(x) + B exp(—{Lx) ) (6.11a)

_-and

T(0).= Cexp(pvi) + D exp{—pvi) (6.11b)

which are sums of growing and decaying exponentials. If you calculate time derivative of
T(#), you will obtain velocity, which too will increase or decrease with respect to time, This
means that the kinetic energy of an element of the string will increase and decrease with
time simultaneously, which is physically unacceptable.

You can now write the general solution as

f(x, 1) =X(x) T() = [A exp{x) + B exp{~px)] [C exp(uvs) + D exp{—uvn)] (6.12)

However, in view of the argument given before Eq. (6.12), this solution does not give the
desired wave motion. So k cannot have positive values. Similarly the value k=0 leads toa
trivial solution and is not acceptable. However, for k <0, Yk w1ll bc imaginary. Therefore,
we can write

=ip
where P is a real number and ; = V=1 Then, Eq. (6.11e) becomes’
X(x) = A exp(ipx) + B exp (—ifx) - (6.13a)
and Eq (6.11b) takes the form _ -
T()=Cexp GBv) + D exp (-Bw) ' (6.13b)
Using the Euler’s relation, you can rewrite Eqs. (6.13a) and (6.13b) as
X(x)=A, sinBr+AzcosBx - (6.149)

and
T{t) = G, sin fvt + G, cosPve (6.14b)

where A}, A,, G| and G, are new constants. You can easily verify that 4| = i(A - B),

Ay=A+B,G =i(C—-D)and G,=C+D. The solutions given by Eqs. (6.14a, b) are periodic

in space and time. You can now write the general solution of 1 — D wave equation as
fix, £} =X(x) T(t) = (A, sin Bx+ A, cos Px) (G, sin Bvr + Gy cos Bvr)  (6.15)

In the above example we have illusirated the method of separation of variables by
considering PDEs in two variables (x, £}. Can you think of a physical situation where the
PDE of interest involves more thantwo variables? The music produced by a drum used in
folk dances involves the vibrations of a circular membrane, The wave motion is two
dimensional and the PDE involves three variables (r, 8, £). Similarly, in the heat flow in a
rectangular plate, the number of independent variables is three : (x, y, 1). This is of particular
interest to a reactor physicist since plate type fuel elements may be used in the reactor core.
_Itis, therefore, important for us to extend the method of separation of variables to three

" (or more) variabies. For simplicity, let us first consider a rectangular membrane whose edges
are fixed at x =0, x =a, y=0and y = b, as shown in Fig. 6.2.

Recu;ngular Membrane
The function f {x, y, f) satisfies the wave equation
Pf(x,y. ¢ a°
ol s Vs 6.16
ar [312 a2 e (©19)

While sblvi.ng this equation by the method of separation of variables, we expect to reduce it
to three second order ODEs, which possess periodic solutions in space and time. You can
dosoin two ways :

A EE o
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) By partial separation of Eq. (6.16) in space variables (x, y) taken togethér and the .
time variable by writing ’

Fx 30 =Fx3 T) ' 6.17a)

* where F (x, y) is a function of space and T depends only on time.

This will result in an ODE in time and a PDE in space variables, which may then be
further split to amrive at ODEs in x and y. This two-stage process is worthwhile to
attempt as it invariably facilitates mathematical steps, . o

i) Separate aH the three variables by writing
Fix, y,.0 =X(x) Y(») Hr) (6'. 17h)

How do we know that this is valid? The answer is simple. We do not say that it is
_ valid; We only wish to discover if it works. But we expect that both substitutions H
should lead us to the same result. Why? Because a tool (mathematical lechniq'ue)\f-"
cannot influence physics. We now illpstrate this by solving Eq. (6.16) using both
substitutions. ’

As before, let us assume a separable solution
Sy, )=F(x, ) T()

where F(x, y} is a function of space only and T(#) is a function of time only. Subsﬁruting itin
Eq. (6.16) we find that . :

FT = v"r{g-;— + %JF(I. ) |

Dividiﬁg throughout by v2FT, we get

T _1{& 2),; | 18-
va_F[axz-'-a ]F & N

By comparing it with Eq. (6.6) you'can say that the expression on the left-hand side depends

" only on f; whereas the expression on the right-hand side depends only on'space variables.
Following the arguments used for wavé equation in two variables, we can say that both sides
must be equal to a constant. We now know that only negative values of this constant will
lead to a nontrivial solution. If we denote this constant by —p2, we have

P (@ R Ca

W'F[axf’ay?]“" y=-p {6.19)
This-yields two differential equations :°.

Tepvir=0 e (6:20)
and - S Y
v BF F ' -"
Tl o+ o +piF=0 . 6.21) -

A% ax? ay?. ’ :

You will note that whereas Eq. (6.20) is an ordinary differential equition, Eq. (6.21) still
contains partial derivatives in x and y. That is, although we have sepamted the space and
time variables, we have to separate space dependences. To do 50, we assume that

F(x, ) =X(x) Y(») A ' (6.22)
Substituting it in Eq. (6.21), we obtain
2 2
—‘;:2‘ Y=—X[ﬁ+p21’] '
On dividing both sides by XY, we find that

-2 2 o . :
S84
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Partial Differenttal Equations

Note that !he expression on LHS depends only on x, whereas the expression on RHS
depends only on y. Therefore, both sides must be equal to a constant, which we take —g2 :

1d%x 1{d% . '
?E—f=—?[?+pzl’]=qu | (6.24)

This immediately leads to two ordinary equau'ohs :

PRALLED (6.25)
and

4% 2y (6.26)

dy? T

where a2 = p2 — g2.

We thus find that Eq. (6.16) which contained derivatives with respect to three independent
variables has been reduced to three separate second-order ODEs (Eqgs. (6.20), (6.25) and -
(6.26). Thus in the two-stage process of separation of variables, we separated the time

dependence from the space dependence by clubbing them in one function, F(x, y), which is

subsequently separated.

Let us now split Eq. (6.16) by taking f (x, y, £) as a product of three functions as in
Eqg. (6.17b). Then we can write

Pr_ ..
Y =X YT W

% =X "(x) Y() T())

and
Eii p
=X(0) Y () T(®)
y?

On substituting these in Eq. (6.16) you will obtain
X(0) YO) T () = V2 Y) T@.X ' + X(0) ¥ "(3) T()]
On dividing throughow by 7(f) X(x) Y(y), this equation simpliﬁt_:s to
T _X'@ Yo 627

"R X@x) O YO)

The left hand side of this identity is a function only of time and the right hand is a function
only of the space variables. Therefore, we can wrile

17

X
or
T +k22T=0 (6.28a)
and | ‘
o
) _

1d% __ .2 1d%

B R o (6.28b)
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Here we have a function of x equated to a function of y. As before, we equate each side to Partlal Differential Equations

another constant, -m2. So we can split Eq. (6.28b) into two ODEs: in Physlcs
14%_ 5 )
F X | (6.298) .
_and
1 o o (6.29%)
Y gy? )
where we have introduced a new constant by ¥2 = m? + 12 to produce a symmetnc set of
equations. Thus we find that Eq. (6. 16) has been replaced by three ODEs (Eqs. (6.28a), N
(6.29a) and (6.29b)).

If you identify p with &, m with ¢ and n with ct, Eqs. (6.28a), (6.29a) and (6.29b) will
become identical to Egs. (6.20) (6.25) and (6.26), respectively. We hope that now you have
understood both the processes. To get a better grasp of thése concepts you may like 10 work

- out an SAQ.

SAQ2
The Helmholiz equation in Cartesian coordinates can be written as

* P
[axz ayz azz]f(I-J’-Z)+k2f(xy,z) il

Reduce it 1o three ODEs using one step process.

So far we have considered a rectangular membrane fixed at its edges. The space variables in r
the PDE describing its vibrations were taken to be Cartesian. But you will readily recognise

that for musical instruments like beating-drum and cymbal, use of spherical polar

coordinates is desirable. You can mathematically.model wave propagation in these ->\
instruments by considering the vibrations of a circular membrane. Let us now learn to T

separate wave equarion i spherical coordinates. \ /j

Circular Membrane
For a circular membrane held fixed at the perimeter, as shown in Fig, 6.3, the wave equation
takes the form Flg. 6.3 : A clrcelar membrane
fixed at the perimeter
P o 19 1 P
arz_vz[ Yratayg e (6.30)

By assuming a solution in the separable form as

f(r,0,0=F(r,0) T(1) 6.31)
you can reac_lily show that Eq. (6.30) reduces to

T +A2T=0 (6.32a)
and ‘

FF 1 aF L &*F '
2ty It BFr.0)=0 (6.32b) You would recalt from PHE-02
al‘z l‘2 8‘32 course that the three dimensionat
wave equalion is

where A = vk, k being the separation constant. You will note that Eq, (6.32b) still contains ,
two variables. We separate these as well and write vip- 1 9f

V¥ 2

F(r.8)=R(1) O () (6.33) where V2 is the Leplacian. You have

studied its form in different

Substituting in Eq. (6.32b), we obtain coardinate systems in Unit 3 of the
: PHE-(4 course.
1{ ,d?R 4R 1 420 '

-E{rz L +rdr+r2k2R]—---e D _ 2 5

Spend 15 minutes -
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so that Eq. (6.32b) reduces to two ODESs; one involving R and the other one for ©

2
PSR R=0 (634a)
and
‘fﬁ? + p2 e=0 _ : (6.34b)
SAQEa
By subsﬁmﬁng

f(0,0)=R()OO) T(H _

in Eq. (6.30), show that it can be split into three ODEs.

To put Eq..(6.34a) in a more familiar form, let us introduce a change of variable by defining

S=kr
Then
dR _dRds ,dR
dar ds dr ds
and
d?R kzdzR
dr? = ds

Slibslituting these in Eq. (6.34a) yon -will get

2
:2%+s%+(:2—p2)}2=0 (6.35)

which is Bessel’s equation of order p.

So far we have familiarised you with the basic technique of separating variables for reducing
a PDE to a set of ODEs. You can solve these using the methods described in Block 1.
However, in physical problems, we have to usually obtain unique solutions of PDESs, which
correspond to certain'initial and boundary conditions.

Before proceeding further to solve initial and boundary value problems in PDEs, let us stop
fora while and summarise what we know about the method of separation of variables.

1) First of all, the unknown function of two (or more) variables is expressed as a
preduct of two (or more) functions so that the dependence of one on an independent
variable is in no way affected by the dependence of the other variable(s).

2) The assumed form of solution is inserted in the given differential equation. A
second-order PDE in two variables splits into two ODEs. When the number of
independent variables is more than two, we get ODEs equal in number to the
independent variables.

3 You can solve the ODEs so obtained using metheds known from Block-1. The
solutions’ may be exponential functions, trigonometric functions, or power series.

4) The general solution of the given PDE is obtained by taking the product of the
solutions of ODEs. .

‘We hope that you can now use Lthe method of separation of variables to reduce a PDE 10 a
set of ODEs. (The number of ODEs equals the number of independent variables in the given
PDE.) For the remainder of this unit, we shall confine ourselves to finding product solutions
of wave equation, heat equation and Laplace’s equation for different physical situations,
under specific initial and boundary conditions.
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6.3 SOLVING INITIALAND BOUNDARY VALUE

PROBLEMS IN PHYSICS

When we solve a PDE, the number of solutions is, in general, very large. For example, if
you consider Laplace™s equation :

. & + ﬁ =0 -
o @
you can readily verify that each of the functions

F=R =y f= e cos yand f=In( + )

satisfies the given equation. However, all thése are completely different from each other.
There are many other functions which would satisfy the above-said equation. Does this
mean that we cannot obtain a general solution of a PDE? In physical problems, a general
solution is seldom sought. Even if we can obtain a general solution, it involves too much
arbitrariness. That is, it is not unique. You may ask: Why is it S07 This is because 2 PDE
with independent variables in space (x) and time (r), which is of second order in each of
these variables, requires two conditions at some .x and two conditions at some /. (If the
condition on x is specified at a boundary, we say that we are specifying boundary
conditions. Usually the conditions on time are given at the instant we start making
observations. These are referred to as initial conditions). So you may conclude that

To obtain a unique solution to a given PDE, we have to specify initial conditions
(ICs) and boundary conditions (BCs) which correspond to the particular physical
problem. -

Let us consider certain IVPs and BVPs in PDEs that arise in physics.

One-dimensional wave equation

Let us consider a wave propagating on a string, We put equidistant marks to identfy
particles of the string. We wish to determine instantaneous displacement of a particle at any
of these marked positions. Mathematically speaking, we wish to determine a function flx 0,
which depends on two independent variables. We have to supplement the PDE describing
this phenomenon by BCs. The boundary conditions will involve £, or some of its derivatives,
or both, on the curve (boundary) enclosing the region (of independent variables) over which
a solution is being sought. -

Proceeding further, we note that we have 10 solve a one- diménsional equation for a string of
length L such as a guitar, an Ektara or a violin string illustrated in Fig. 6.1 :

5‘_2f=v237f(x-f) .
ar ax?

where v is wave speed,

Since the string is fixed at x = 0 and x = L for all times, the boundary conditions may be
written as .

f0.9=0
and '
FU,D=0forallr>0 (6.36)

Since the solution of the wave equation depends on ¢ as well, we must also know as to what
happens at ¢=0. That is, we have 1o specify initial conditions on displacement and velocity.
Since the string is reléased from rest, the initial velocity is zero. In methematical terms, we

seek a function f (x, 1) which satisfies the initial conditions )

- f0)=h(x) 0<x<L

and -

Partlal Differential Equations
in Phyzics

Refer to [VP and BVP defined in
Block 1.
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Flg. 6.4 : A plot of Eq. (6.38) for
the first few modes

Fxd| - (6.37)

ot £=0

Separating variables in wave equation, you will obtain
X7 +u2X(x)=0
and
T () +p22 T =0.
whose salutions are given by Eq. (6.11):
X(x)=Acos |[lx+ B sin px
and
T(#) = C cos pvt + D sin pvr

Now since (0, ) =X(0) T(1) =0and FL,=X({L) T() =0, we m_usf have X(0) =0and
X(L)=0. Using the first of these conditions, we find-that A=0. Therefore

X(x)=Bsinpx
The second condition now implies that
X{Ly=BsintL=0

This equality will be satisfied if B =0 or sin p L = 0. If B=0, then X = 0 so that =0, which
is a trivial solution. Hence, we must have B # 0 and the only option is sin i L = 0. This
implies that g L =nroru=nn/Lforn=0,1,2,3,.... The solution for n = 0 is a trivial
solution. For any arbitrary value of B, we obtain infinite solutions of the form

X(x) = X,(x) =B, sin [%]x n=1,23... (6.38)

The values of u=nn/Lforn=1,2,3, .. .. are called eigenvalues of Eq. (6.1). WithB=1,
Eq. (6.38) is depicted in Fig. 6.4 for n = 1, 2, 3 and 4. Hence, the solution of Eq. (6.2) which
satisfies the given boundary conditions can'now be written as

fix 0= [C cos["—rzﬁ)+ D sin [RTI:TW]}En sin (ELE)
= [a,, co{"“T"’]+ b, sin [%’J] sin [ﬂf—] (6.39)

where we have put CB = a, and DB = b,, since each value of n may require different
constants. You would note that the subscript # has been added 10 f (x, £). Do you know why?
This is just to allow for a different function for each value of n. In the present case, each
value of n defines harmonic motion of the string with frequency (n v/2L) Hz, Whereas n =1
defines the fundamental mode, n > 1 characteriseés overtones.

You would agree that f,(x, £} is not a solution of the given problem since initial conditions

have not yet been imposed. Moreover, since the wave equation is linear and homogeneous,
we expect that the most general solution, which satisfies the given boundary conditions, is
given by the superposition principle:

[

foe=Y fxn=3 [a,, co{""T"']+ b, sin [”T’“"}] sin [—"’f‘—] (6.40)

=1 =1l

To match the initial conditions, we set =0 in the above equation. This gives

f0)=Y, a, sin[-";j"!]= h(x) | (641)

n=1

Now the question arises: How to evaluate a,? To determine the constants.a,,, we must know

e
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the form of the function A(x). Let us take h(x) = & sin % Then by comparison, we have h! 'm'nm Equation
a;=8 )
and
ay=ay=....=0 - (6.42)

For any general form of A(x) you would require Fourier series, which you will leamn in the
next fwo units, )

To determine b, we first differentiate Eq. (6.40) with respect to ? and then set ¢ = 0. The

result is ‘ | ' |
£ STl

50 that |
£ o

-

You will readily conclude by looking at this expression that
b,=0; n=12,.... {6.43)

Hence the unique solution of the one-dimensional wave equation on a string tied at both
.ends corresponding to the given initial and boundary conditions is given by

frn=¥ cos X sin (—’E] _ T (649

where @ = % is angular frequency and £ is amplitude.

‘Spend 2 minures

Determine the constants a,,’s occurring in Eq. (6.40) when
. (mxY, . [2mx
h(x)—éo[sm[l’ J+ sm( T }]

The boundary value problems considered in SAQ 4 refer to Cartesian geometry. You know
of many physical problems which involve spherical and cylindrical coordinates. You have
studied these in Unit 3 of Block 1, PHE-04 course entitled Mathematicat Methods in
Physics-1. In particular, we may mention wave propagation on the membrane of a fablaora -
beating drum, electric field around a long current carry wire, energy produced in & nuclear
reactor, etc. In the following examples, we havé considered physical problems involving
spherical polar and cylinderical coordinates.

Example 1 : Circular Membrane

The radial part of wave equation for a circular membrane of radius ry fixed atits
- circumference is

P _ 2%, 1

ar? a? ror

Specify the boundary conditions and obtain a unique _soiut.iop._
. 35
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Partlal Differential Equations

vk

Jp(20) =0 : (iv)

This equation will hold for A, = al/i. A=0y/2,... A, =a,/2where ), 0, ... .0, are
zeros of the Bessel function. Lastly Z(0) = 0 implies ¢ =0. Hence we have R = ¢, Jy(A,p),

Z=cysinh A, z, and

u, = A, sinh A,z Jo(A,p)

. The general solution is thetefore of the form

ulr, )= 2 A, sinh Az Jo(A p)

A=1

Example 3

. Find the steady-state terﬂperarure T(r, 9) in the semi-circular plate shown in Fig; 6.7.

T=7,Sin@ : Solution
' We must solve
> Fr 19T 197 _
T=0a * a.r2+"_ Br+r2392-0 0<B<m; O0<r<aq
=0 and B=T )
Fig. 6.7 : A sem! cicolar plate subject to the boundary conc}:hons
T(ag. 8) =Ty sin O 0<8<m
TrO=0.T{Fr m=0 O<r<a,

38

If we define T = R(r) © (8), then separation of variables gives

M == g =32
R- e
so that oriéina.l PDE reduces to
PR +rR -32R=0" @)
and & +320=0 : (i)

Applying the boundary conditions © (0) =0 and © (s) = 0 to the solution

©=c, cos L 8+c, sin A O of (ii) yields ¢, =0and A=n; n=1,2,3, ... Hence

© = ¢, sin n 9. For A = n, (i) is Cauchy-Euler equation. You can solve it using methods.
discussed in Unit 3. It has the solution

R=cyr+eyg™
In order that the sclution T(r, 8) is finite as r — O we must demand that c4=0. Therefore

T,=A, " sinn@

and . T(r,8)= . A,r?"sinn@.

The bolindary condition at r = gg gives

Tosin®= Y, A,agsinn

n=1

T, _
sothat Ay =—"and Ay =A3=0=.....=4,
0 B




Hence : : : Partlal Differentla) Equations
. . in Physlcs

T, ..
T(r.8)=—rsin8
a3y

Let us now surn up the unit.

6.4 SUMMARY

o Alinear parual differential equation in two variables can be solved by assuming a
solution in the form of a product f = XY where X is a function of x only,and ¥is a
function of y only This method of separation of variables leads to two ordma:y
differenitial equations.

@ A boundaryvalue problem consists of finding a function that satisfies a partial
differential equation as well as conditions consisting of boundary conditions and initial
conditions. .

&
e The method of solving a boundary value problem using sepa.rauon of variables consists
of the following basic steps.
iy  Write the function f as a product of two (or more) functions involving

y == 1 122w s o

independent variables, i.e. f{x, ¥) = X(x) ¥(y) and insert it in the given PDE.
You will obtain a set of ODEs. A PDE in two variables splits into two ODEs.
If the number of independent variables is more, we get ODEs whose number is
equal to the number of variables.

ii)  Solvethe separated ordinary differential equations. The soluﬁons may be

exponential functions, trignometric functions or a power series.
iii) Substitute the solutions so obtained in the above product.

iv)  Use boundary and/or the initia! condition(s), and solve for the coefficients in

the series.
6.5 TERMINAL QUESTIONS
1. i)  The electrostatic potential in the exterior and interior of a sphericat shell is
calculated by using Laplace’s equation : V %=0. Use the method of
separation of variables to splil it into three ODEs.
(Hint : Express V 2in spherical polar coordinates.)
ii)  The wave propagation in space is described by 3-D equation
L 9%
v ?ﬂrv Il)_ V2 3;2 (l‘, Q
Working in Cartesian coordinates show that it can be reduced to four ODEs:
T +@?T=0
X"+17X =0
Y +m¥=0 . -
and
Z"+n?Z=0
where o = vk and /, m, n are separation constants.
2. The one dimensional wave equation for em wave propagation in free space is given

by (forE | | y)

75 _1 95,
ax c? n?

' Solve, this equation and obtain the eigen frequencies of the cavity if E, =0 at

x=0andx=L.

39

TONA O

SRR IR AR T T

R T Ty e |4

s

A e — i

e s e gy




Partial Differentlal Equatlons 3. Consider a rod whose ends are kept at a constant temperature and the lateral surface
is insulated. The heat flow is described by one-dimensional heat equation subject to
the conditions

JO.0=0,F(L, H=0 for +>0
and
Fo 0 =fx) for D<x<L

Obtain a unique solution.

6.6 SOLUTIONS AND ANSWERS

SAQs
1. i) Let us take
T(r, z9=R(r) Z(z} @
Then, -
oT _dR
or dr z
Pr_dx,
o - d
and
2 2z .
gL _péc
oz2 dz? w

Substituting these in the given PDE, we obtain

2 2
74R IR pdZ_,
dr F dr dz 2

On dividing throughout by ZR, we get

1{d2R  1dR 1d2%z
D R e (i)
RY 42 rdr Z 4z2

The LHS of this equality involves functions which depend only on r, whereas
the expression on RHS is a function of z only. So both sides must be equal to a
constant, k. Hence the given equation splits into the following two ODEs:

d’R 1dR .

d;-2+r dr_kR_O _ (v)
and

2

‘;f+kz=o )

Z

ii}  The given PDE can be rewritien as

r2%+2r%g+ cme%+§2§=o (i)
Let us now write
V(r, 6)=R(r) © (6) (i)
40 _ Then, differentiation with respect to r gives L o

THUE T




iii)

oV 4R Partla) Differentla) Equations
'é}' = in Physlas

and
a*V _d3R : '
5=, 9 (iii
ar? dr? . )

Similarly, differentiation with respect to 0 gives

. . ‘ . .

W _,d0 |
a8 " de . '

and : - ’
v . de )
2T pt ~ : {iv)
96 46’ :

Substituting these results in the given equation, we obtain

d%r 40 _d’e
6 +2r9—+ BR——+ R——O
ar P T I FP

r

As before, on dividing throughout by R ©, we get

%[j—“z;ﬁ]é[ SPEL i »

The LHS is a function of r only whereas RHS is a function of @ only. Hence,
purting them equal to a constant, k, we get

2
2d°R_, dR_ ., _
r dr2+2rdr KR=0 '
or %(rz%f-]—kﬁ'=0 (vi)
and
d0 420
cmﬁﬁ+—e+k9=0
or
$die[smﬁ—?]+k6 0 (vii)
The given equation is
Py 3 _
T

Express y(x, 1) as a product of two separable functions:
Wix, ) =X(x) (N

Substituting it in the given PDE._you will obtain
X "(x) Ty + @ X(x) T(1) =0 '

Dividing throughout by X(x) 7(r), we find that
X'@W__ T __p

XG) T

50 that the Schridinger equauon splits into followmg equations: , 41
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Partlal Differential Equations

Terminal Questions

L i) Inspherical polar coordinates, the Laplace’s equation ¢an be written as

Psin@

o) Bfor )2

a0 08 | sin 6 g¢?
- In the method of separation of variables, we write
f(r.8,9) =R(r) ©(8) ©(¢)

By substituting back into the given equation and dividing by R © ®, we have

A dfdR), 1 d sine@ N 1_d2¢
Rridr| dr &2 5in2 0 di?

On multiplying throughout by 72 sin? 8, we can isolate § dependent term:

b .20 .d [ 2dR sig d 40\ 1de
RN Bﬁ(ﬁ]_ede[ edﬂ] D gp?

As before, you will note that this equation relates a function of ¢ alone to a
function of r and 0. Since r, 8, $ are independent variables, we can equate each
side to a constant. Let us choose it 10 be —m?. Then

1d®__ , :
q)d¢2 —m (l)
and
L 2gd( 2dR), sin0 d(  d©)_ ,
g S0 edr[ dr]+ o 460 ¢ ="
or

1 d ( 2dR _m.? L1 1 df. dO
Rdr[ dr] sinZ @ smeede( ede]

Again equating eachside to a constant, we get the required resulr:

d{ 2dR .
pre [,2_5]_ nR=0 (it}
and
1 df.,dO} m? _
mde[sme dBJ_sinzﬁe-'-ne_o (iii)
where r is separation constant.
“ii)  The 3-D wave equation is
2 1 3(r, 0 .
v f(l'.!)—‘;i 32 1
In Cartesian coordinates, the Laplacian can be written as
P F P .
Via T
a2 a2 ' a2 _ ®
so that
2 2
[;2+3°:—2+:—22]f(x y.z, r)—é—g (i)

ol L T




The function f depends on four variables. Let us write it as
flx, y, 2,0 =X() Y(y) Z(z) T()
On substituting back in the given equation and dividing by XYZT, we find that
1d% "1d% 1d%Z_ 1 14T .
= +—= M T e {iv)
Xad Ya? Zu? 2T a2

The LHS is a function of space variables whereas RHS is a function of time
alone. Let us therefore choose

1181
veT af
s0 that
' dir
2
—+w5T=0 \
a ®
where @y, = &v.
Then, (iv) reduces to N

1d%X. - 1d% 1d%2 .
v 5K - 5= —> {vi)
X d? Ydy?2 Zgp2

Again LHS is a function of x oniy, whereas the RHS depends only on y and 2.

We, therefore, choose

ldz}f:_ﬂ

X 4c2
so that

d—z‘szx:o ' ) (vii)
and

Proceeding along the same lines you can show that

2
L .
dy?
and - »
2
d’Z +ntZ=0
dz?
where 2= 2 - 12 — 2.
2. The given equation describes e.m, wave propagation in free space:
2 2 ’
o E!. 1 d°E, _

ar? cTy?

Let us make the substitution
Ey =X({x) T(5)

50 that

1

X T =0

X"T)—

Partlal Differential Equations
in Physics
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Partial Dll'l'erenlln.! Equations

UNIT7 FOURIER SERIES

Structure
7.1 Introduction
Objectives

7.2  The Need for Fourier Series
7.3 Fourier Series

Finding the Coefficients
The Use of Fourier Series as an Approximation

7.4  Fourier Series for Even and Odd Functions

Even and Odd Functions
Fourier Sine and Cosine Series

7.5  Extending the Scope of Fourier Series
' Half-range Expansidns -
7.6  The Convergence of Fourier Series -
7.7  Summary
7.8  Temminal Questions
7.9  Solutions and Answers

71 INTRODUCTION

In Unit 6 you have learnt to solve second order PDEs which arise.in the study of physical
phenomena, While solving a BVP in Sec. 6.4 you ¢ame to know that you would need to
learn a new method to be able to completely solve many BVPs in physics. In this unit you
will learn this method based on Fourier Series. To begin with, in Sec. 7.2 we will again
examine why such a method is needed to solve BVPs. In this context, let us briefly recount
the historical development of this method.

Following the invention of calculus hytNemon and Leibnitz, a great bursi of activity was
seen in mathematicat physics. Problems thar particularly atracted the arention of scientists
of that period pertained 1o vibrations in instruments. These were modelled by boundary
value problems related to vibrations of strings, elastic bars and columns of air. By the 17505,
d’ Alembert, Bemnoulli and Euler had established the PDE for a vibriting string, found its
general solution (as in Eq. 6.15 of Unit 6) and determined the solution for a given BVP for
strings. You can see that the solution given by Eq, (6.40) of Unit 6 is the sum of a-series of
trigonometric functions. This further led these mathematicians to the problem of
representing arbitrary functions by trigonometric series. Later on, Euler found expressions,
for the coefficients in those series. However, the question of the validity of representing
arbitrary functions by such series was not settled at that time,

Later, in his work on BVPs in heat conduction, the French scientist Jean Baptiste Fourier
(1768-1830) presentéd many examples of representing arbitrary functions by the sum of

infinite series containing sine and cosine terms. Since it was Fourier’s work that aroused
major interesr in representing any function by such a series, this particular series has been
named sfter him, as Fourier Series. In Sec. 7:3 1o 7.5 of this unit you will learn the
technique of represenling a function by the Foutier series and apply it to a wide varicty of
functions. A relevant question in this context is : How accurately does the Fourier series of a
function represent it? In Se¢. 7.6 you will leam the conditions under which the Foirier series
of a function gives the same value at a point as does the function itself. . .

In Unit 8 you will study the applications of Fourier series in solving certain important BVPs
in physics. -
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Objectives ) . Fourler Serles
After studying this unit you should be able to:

_ @ compute the coefficients of Fourier series for a function defined on an interval (-L,L)

e obiain the half-range expansions of functions defined on (0, L) ,

4 . P . . . . .
@ ascertain whether or not the Fourier series representation of a function is valid on the
given interval.

7.2 'THE NEED FOR FOURIER SERIES

) ; ]
Let us consider a typical physics problem from Unit 6 involving a PDE. Consider the flow
of heat in a uniform rod, which_is insulated along its length (Fig. 7.1). Both ends of the rod x
are immersed in ice. We would like to determine the temperature distribution along the rod - —
at time ¢. You know that heat flow along the rod can be modelled by the heat flow equation L

2 e . Fig. 7.1 : An insulated rod (shown

a : ) - (7.1a) shaded) of length L with bolh ends
a: a P ) Immersed In Ice (). The x-axis ks
: chasen along the length of the rod

where T(x, 1)is the temperature of the rod (measured in K) at a distance x from the leftend at P the origin at the left end
time . Here 'k = %, where p is the density of the material of the rod, s its specific heat and S

K, its thermal conductivity. For this specific problem we have 0 <x < L, for ¢ > 0. Since both
ends of the rod are maintained at 0°C (i.e. 273K), we get the following boundary conditions

T(0,0) = T, § = 273K, for £ 2.0 (7.1b)
Let the initial temperature of the rod be given by
T(x, 0) = (60K) [sm 2T +sin 3:’] (.1c)

Whatis the solution of Eq. (7.1a) given the boundary and initial conditions specified by -
Egs. (7.1b) and (7.1c) ?

Recali that you have solved a similar problem in Unit 6. You can verify that the function

Tx, ) = E b t:xp[ ?1‘2"'} sin =X (7.1d)

n=1 L

satisfies the heat flow equation as well as these boundary conditions. Here the coefficients
b, have the dimensions of temperature. Applying the initial condition to Eq. (7.1d) we get

Tn 0= Y, bysin T

n=1

Subs}ituting for T(x, 0) from Eq. (7.1c) wé have

blsm +bzsm +b3sm3 +b4sm4—m+ —GdK(sinzix-+sin3—m] (7.1e)

L L L L
This equation is satisfied only if b) =0, by = 60K, by = 60K, by =bs=bg=....=0. Thus, You may recall that in Unit 3 you
L. have used the power series in x 1o
the solution is represent a cenlinuous function.
Baoth power serics method ond
7,_-2]“ 2x Fourjer's method arise from the iden
T(x, 1) =(60K) exp |- sin =~ that a conlinuous funetion can be
L ] . represented by an infinite series of
functions. The edded advantage of -
. ok ) . Iy Fouricr series is that it can be vsed 1o
+ (60K} exp | — 2 [sin A (7.1f) validly represent even those
. L - . functions which have serveral points

: . of discontinuity. You will read more
This was a fairly straight-forward problem, wasn’t it? Now suppose T(x, 0) were an arbitrary about this in Sec. 7.6.

functionof x, say, T(x, 0) = % x. How would we determine the coefficients _b,,'? In other 49
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Partlal Differential Egiations

You can glance ot Scc. 7.6 to know
what a piecewise conlinuous
function means.

A function that is not periodic is

termed as non-periodic or aperiodic.

Here we have used the result
cos nm = (-1)"

52

-Let us put all these results for a, and b, together. These are termed Euler formulas.

L
D gy= ﬁ | £ ax (7.5a)
=L
L
D a=1frm cos ™ dx,  n=1,2,3,.. ' (7.5b) .
=L

L
W b=t [ f@sin ™, ae12,3,.. (7.5¢)

L
-L

The numbers ay, a, and b, (for n 2 1) given by Egs. (7.5a, b, ¢) are called the Fourier
coefficients of f (x). The series '

ag + Z (a,, cos % + 'b,, sin %J

r=1

with coefficients given by Eqgs. (7.5 a, b, c) is called the Fourier series of f(x) on the
interval -L < x < L. Note that in order to obtain g 4, by, etc. the integrals of Eqgs. (7.5a,

b, ¢) must exist. From the definition of a definite integral, you know that if f(x)is
continuous or merely piecewise continuoys on this interval, the integrals in (7.5a, b, ¢) exist.
So if f(x) is a continuous pr piecewise continuons function on a given interval, we can
compute its Fourier coefficients using these equations.

Recall from Sec. 7.2 that the idea of representing a function by a trigonometric series arose
in connection with BVPs relating to vibrating systems, which mostly have periodic
solutions. Therefore, in many a text-book you will come across discussions that begin with
representing arbitrary periodic functions by Fourier series. However, Fourier series can be
used to represent a much larger class of functions that arise in physics problems. Of course,
it is valid only under certain conditions. We shall discuss these conditions for the validity of
Fourier series for a given function later in the unit (in Sec.7.6) , only after you have
computed the coefficients and found Fourier series for a variety of functions.

Let us now consider an example o illustrate these ideas by determining the Fourier series
for both non-periodic and periodic functions.

Example 1 : Fourier series for exponential funciiop and the square wave

a) Determine the Fourier series for the funclion ¢® on the interval -1 <x< 1.
Solt‘lion
In this case L = 1. Using Eq. (7.5a) we get

1
1 1
ao=5J- emd¥=‘£(£g‘-—e_u)

1
a, =J-e°" COS AMx dx
-1

Integrating by parts you can verify that

R G T b
" O'.2+n21|:2 ’

You can evaluate b, in the same way.

n=1,23,...

1 ;
i - o_ o _l)ﬂ
b, =| e™sin nmrdx = e —e )
g _‘[ : o? + nn?

We have deliberately chosen a rather involved example (in terms of integration) here in
order to bring out the fact that the computation of Fourier coefficients is Jjust an exercise in
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integration. So if you can evaluate the integrals you should be able to determine the Fourier
" series for any function on the interval -L <x < L. Thas, the Fourier series for the function
#™ on the interval -1 < x < 1 is

L o o, o 0e®— e (-] - ( l n
— (e -+ cOos n’x — nm —~1)" sin rx
2(!( ) n§| a? + n’n? Z:‘, (
T
=(e%—e™) 2 J—l—)— (cu:os AfLX — KT sin i)

b) Find the Fourier series for the funct:on J{x) representing a penod:c square wave
(Fig. 7.2) of period 27, defined as

0 if-ncx <-n/2
E=sE if-n/2<x<n/2 (i)
0 ifn2<x<n

Functions of this type represent voltages impressed upon electrical circuits.

- JLE(;)
E
—_— p —
d |
l .
-2 - 0 L 2w ¢

Fig. 7.2 : Perlodic square wave of period 2x

Solution
Here L = &t Therefore, from Eq. (7.5a) we have
1
_ZnIE(.-)dr
_ﬂ
-n/2
1 E E
=2—I(0)d;+— IEd:+—_[(0)d: n=x
R
From Eg. (7.5b)
w2
a,= =1 IE(r)cosnrd:—— Jcosnfdt
T T
-n -2
E—[ in 1/] w2 ——z—gsmE
0 M2 = e S
Thus a, = 0if n is even
a, === ifn=1,5.9,....
am
and an=—-§ n=3,711,.... .
nn

Similarly, from Eq. (7.5¢) we get

b, ——IE(r)smmdt—— Ismm‘dt
T e

Fourler Serles
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Partial Differential Equations

You will be doing

the exercise of
numerical computation
of Fourier Series  ~

in Tablg-Top
Experimeni-1 of the
pltysics laboratory

C ourse PHE-I2(L). .

Il
=

CO\SM'C nm
,=— cos-—-cos— ,
E/Z - 2]

Thusb =dforaﬂn

Hence, the Fourier series for the periodic square wave of period 21, representad by E(r) of
(i)is

E(r) =§+%[cosx—%cos Irag cosSx+ .. ]

Let us now summarise the technique used to determine the Fourier series for any function
S (x) defined on an interval £ <x <L.

Finding Fourier Series 3
1) Write down the Fourier series for a function f (x) defined on the interval -L. < x < [ as
f(x)=a0+2 [a‘rl oos%+bl,1 sin %J
a=1%"
2) Evaluate
L
=57 } f(x)dx
2L £
3 Evaluate .
1 -
a, Ejf(;)ms—dr A=1,23,....
A
and
1 .
Ljf(.r)sm ™ ar, n=1,23,....

As you have seen, a Fourier series has an infinile number of lerms. Nowadﬂys. IVPs and
BVPs in PDEs are solved numerically through computers. Clearly, then, in the numerical
calculauons we can cope up with only a finite number of terms. The question therefore
-arises: How many terms do we need o get a reasonably’ good approximation 1o the original
function? Let us briefly consider this question here to sensitise you about this topic. We will
not go into too many details here.

7.3.2 The Use of Fourier Series as an Approximation

Let us get a 'feel’ for this question by looking at the Fouriér series of the function e (which
can be obtained by putting & = | in Example la). Let us compare the graph of e with the
graphs of functions obtained by adding an increasing number of terms in the Fourier series.
From Example 1(a), the Fourier series for ef on the given interval is

(e—e™) _+2 —(—annz(cosmu T sin nx)

Let us consider thasum of the ﬁrst N terms of this series, whlch is called the Nth partial
sum Sy, :

Sy=(e— el) —+ l]—(:—ln);—tz(msm—nﬂsinm)

. - ———————————
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In Fig. 7.3, we compare the graph of * with the graphs of the partial sums $,, S5and 8,
i.e., the sum of the first two, the first five and the first ten terms, respectively.

Foutrier Serjes

¥ ¥ 4
3 31
=5 2 ‘N=10 2
;; —0.5- | 0.5 ? _6_5 0.5 ;;
0) ®) S ©
Ii'i.g. 73:A mmparisnn of & writh the finlte partial sums of Its Fourier serles for {(a) N=2 (b) N=5, (c) N=10.
Do you notice that with & = 10, we obtain better approximations to ¢* at all points, than for
N=2orN=>570f course, the end points x =+ | are an excéption. We are not worried You can sce that the partial sums for
about this at the moment because these points are not included in the mlerval -l<x<]for N2 2inFig. 7.3 have pronounced
which we have computed the Fourier series representing e*. :Ii’;:ﬁ :}:ﬂl_':?ﬂi:ﬁf of e N
NULLY. EVen il we £ 1Y [0
. . . . . . . be large. these spikes near a point of
We say that as N increases, the Fourier series approximation of !Ite original function discontinuity remain: they do not
converges to e at all values of x such that —1 < x < 1. We shall discuss the convergence of smooth out, This behaviour of a
Fourier series in more detail in Sec. 7.6. Then you will alse know precisely which functions Fourier series near a point at which
may be approximated by Fourier series. Evidently the number of terms upto which we need a function is discontinuous is knawn
) as the Gibbs phenomenon afierits
to sum the Fourier series, would depend on how good an approximation we want 6 our discoverer, the American physicist
original function. And that would depend on what we want to use the series for. LW, Gibbs (1839-1903),
You should now practise finding Fourier series by solving the following SAQ.
SAQ3
a) Obtain the Fourier series expansion of the function Spend IS minutes
100
T(x, 0)— x, on the interval L < x < L. See Fig, 7.4a.
b) Find the Fourier series of the periodic funchion
if —T/2<(<0 2= T(x.0)
Ewn= {Esmm: f 0<r<T/2 7%
which represents the output of a half-wave rectifier (Fig. 7.4b). T T
S - X
In part (b) of*Example 1, you have seen that all the sine coefficients (bg. by, by. .. ) of the /’
Fourier series for a square wave are zero, Similarly, in part (a) to SAQ 3 you would have (w)
found that ay and all cosine coefficients (a), a,, . . . .. } are zero. A natural question is :
Could we have avoided the calculation of these coefficients, which turned out to be zera? A £
- . i T
If we could find some conditions undér which such a thing happeis, we could save a great
deal of work and also avoid errors ! This is what we are going to do in the next section.
PN N
—mw [0 7 t
74 FOURIER SERIES FOR EVEN AND ODD i e ‘
FUNCTIONS ;
)
Study.Figs. 7.2 and 7.4a representing the periodic square wave and the function T(x, 0), .
respectively. Do you observe any symmetry in the graphs of these functions about the Fig 74
origin? Notice that the graph of the square wave is symmetric with respect to vertical axis, 55
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Fig. 7.5:(n) An even and (b) an
odd funcilon
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Similarly, the graph of T(x. 0)is symmemc with respect to the origin. Recall that the Fourier
series of the square wave contained no sine terms, and that of T(x, 0) no cosine terms. ‘So, is
there some link between the symmetry of these functions and the form of their Fourier
series? Further, can we generalise this notion to any function f (x) possessing some kind of
symmetry about the origin?

Indeed, there is a connection between the symmetry of those functions which can be

. categorised as ‘even’ or ‘odd’ functions, and the form of their Fourier series. In fact, when

we began the study of Fourier series, we chose the interval -L <.x < L which is symmetric
about the origin. There is an advantage in choosing such an interval : Such a choice enables
us to make use of the fact that some functions are odd and some are even about the origin.
So let us first understand whal is meant by even and odd funcuons

7.4.1 Even and Odd Functions

A function f {x) defined on an interval ~ L <x <L is said to be even if

fER) =)
and odd if

fl=xy==Ff(x)

You can see that the square wave of Fig. 7.2 is an even function, whereas T(x, 0} of Fig. 7.4a
is an odd function. You can also verify that the functions x2, cos nx are even, while the
functions x and sin nx, are odd. You will notice that the graph of an even function can be
obtained from its graph to the right of the vertical axis by reflection in that axis.
Similarly, the graph of an odd function is oblained by first reflecting its right half in the
vertical axis, and then reflecting it in the horizontal axis. You should verify these ideas
using Figs. 7.2, 7.4a and 7.5 before studying further.

forallxe [-L,L)]

forallxe [-L4,1]

Any function can be written as the sum of an even function and an odd function, as follpws :

F®) =3 W+ 0]+ () -F (0]

The first part on the RHS is even and the second part is odd. For example
=1 SO
e’-—-z[e‘+e‘]+2[e‘ ™)

= cosh x + sinh x
where cosh x is even and sinh x is odd.

Whether a function is odd or even, or neither odd nor &ven may depend merely on the choice
of the onigin and the coordinate axes. For example, the square wave shown in Fig. 7.6a is
neither odd nor an even function of 1. However, if we shift the -axis upwards by half the
wave's amplitude, we get an odd function as in Fig. 7.6b.

TE(:)

I f ! | |
[
I L | L I I [
| f
" @
b @)
1 1 1 1
———-J. ) I— i————-ﬂl ] i .-I'_ f
(b)

.Fig. 7.6: (a) This periodlc square wave ls nelther odd nor even; {(b) It bmmes &n odd function by a
shift of the ;-axis

——




Having defined even anid odd functions, we would like to find the Fourier seties of such
functions. Now, there are certain properties of even and odd functions that would be useful
when you evaluate the Fourier coefficients of such functions. We state these propérties here
without proof. The proofs are fairly straight-forward and you can do them yourself.

Properties of Even and Odd Functions
i) If f (x) and g(x),. are e\re;n {odd) functions Iher;
8)  f(x)+ g(x) is an even (odd) function
- b)) f(x)- g(x)is an even (odd) function.,

5) If £ (x) and g(x) ere both even functions or both odd functions, then f (x) g(x) is an
even function. ' '

3) If f (x).is an even function and 8(x) is an odd function, then f (x) g(x) is an odd
EP function.

1 4) If £ (x) is an even function then

L L _
Jroa=2 [roa - (7.68)
=L 0

5) If £ {x) is an odd function then
L
f fx)de=0 (7.6b)
=L

Fig. 7.7 illustrates the properties (4) and (3) for a given function J{x). You may now like to
try an exercise quickly, to get familiar with the concept of even and odd functions.

¥
¥

4
L I

Flg. 7.7 : You can see Lhaf the area under the curve In {b) Is zero whereas In (a) It Is twice that of the area
under the curve from O to L. -

SAQ4

a) An ac signal in the shape of a triangular waveform (Fig. 7.8) is applied to an
electrical circuit. Is it an odd or even function?

b)_  Isthe waveform in Fig. 7.8 odd or even, when it is moved
i) one unit vertically downwards, and
ii)  one unit vertically downwards and one unit to the left?
€) . Are the following functions even, odd or neither odd nor even?
@1 x 1, (i) xsin x, (iii) &, (iv) x> 1, (v) sin nx + cos ax, (vi) (cos 0)/x

d) Express each of the foliowing functions as the sum of an even and an odd function
(i) x €%, (i) (1 + x) (sin x + cos X

Using these ideas about even and odd functions, we can generalisg Lthe results we obtained
for the square wave and the function T(x, 0). In this way, we get Fourier cosine series
representations for even functions, and Fourier sine series representations for odd functions.

7.4.1 Fourier Sine and Cosine Series

Suppose f (x) is an even function. Then the pmduct f(x) cos % is an even function, and

Fourler Seiles

-

e

-2 o] 2 6 1

Fig. 7.8 { Triangular wave form
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the product £ (x} sin % is an odd function. Using property 4 (Eq. 7.6a) of the even

functions we get

L L
a=o [f@ar=1 [f0 & _
0

-L .
i 1 2 £
nex
and- a=7 JLf(x) oosde 7 E!‘-_{"(.!.']It.‘,(:iS'Tdr

What would the value of b, be? Use property 5 (Eq. 7.6b) and determine b, in the
following step:

L .
I (x)sm—dx— .....................................

Thus, the Fourier series for an even function contains only the constant term and the
cosine terms. It is called the Fourier cosine series. What result do you expect if f{x) is an
odd function? Use properties 4 and 5 (Egs. 7.6a and b) once again and solve the following

integrals: -

So, you have found that the Fourier series far an odd function contains only sine terms.
It is called the Fourier sine series. Let us sum up these results.

Fourier sine and cosine series
The Fourier series for an even function f (x) on the interval -L < x < L is a Fourier cosine

series:

f@=ag+ 2, a,cos % ‘U'even) ) (172)
n=1
with coefficients .
| L , & -
X
ap=7 [ f0dx, ay=7 | Fegcos"Fax (7.7b)
0 0

The Fourier series for an odd function on the interval — L < x < L is a Fourier sine series:

F@=3 b, sin% (fodd) o D

n=1

with coefficients

Flxysin—— T iy {7.7d}

a.
E"IM
D S, [

Henceforth, whenever you have lo determine the Fourier series for a function, the first thing
you should do is 1o find out if the function is even or odd. If it is either of these then you can
accordingly determine either Fourier cosine series or Fourier sine series. In this manner you

A E T

a2




can reduce your work considerably. Let us consider an example to illustrate thesc ideas and - Fourier Series
then you can work out a problem.

Example 2 : Fourier Series for a Saw-Tooth Wave

Find the Fourier series for the saw-tooth wave shown in Fig. 7.9. .
4 f{n)

h."

Fig. 7.9 Cerialn signals in ac clroutis are of the form of a saw-tooth function. Note that this function bs not

definedatf=....— T, &, 3., .. Among many applications, such signals are used n an oscilloscope .\
lnsynchmn_lmslgnals.
Solution

The function is algebraically expressed as :

{
- —RA<I<
T

Fn=

and
fG+2m)=F ) \
Thus, this saw-tooth function is odd and periodic with period 2. It can be represented by a

Fourier sine series. N
f=Y b sinZ= = Tb, sinnt
-
n=1 n
2 7 2%t
where bﬂ=E If(f) sin m‘a'!=; _[ p sin nt di
¢ 0
Integrating by parts you can verify that
- __i - _.i i+l
_z - £_11n+ 1
Thus f w—ﬂ ZF:I . sin At ,
] (RS DS U o
—n[sm! 2sm2r+3$|n3r 4sm4r+...]
SAQS - Spend [0 minires

You know that when a sound wave passes through the air and you hear it, the air pressure
around you varies with time. Suppose the excess pressure above (and below) the
atmospheric pressure in a sound wave is given by the graph in Fig, 7.10. Represent this
function in the form of a Fourier series and thus deterntine the frequencies you hear when
. youlisten to this sound?

39
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y wx? ’ ¥
y y=¢
. X

(a) i )
Fig.7.12

Let us now work out an example to illustrate the ideas of this section.

Example 3 -
I O(x-f.l
2
Represent f (x) =
0 2<x<l

shown in Fig. 7.13a in (a) Fourier sine series and (b) Fourier cosine series.

Solution
a) In the first case we need an odd extension g(x) of f (x) over the interval -1 <x < 1.
Thus, we can define
( 1
0 —lexe~ 2
-1 -% <x<0
gy=410 x=0
. 1
¥ 0<x<2
0 %<x<l

The function g(x) is shown in Fig. 7.13(b). Since it is odd, only the coeflicients b,
will survive. Using Eq. (7.8b) we get

I 172
: 172

bﬁg Jf(x)sinnnxdx=2 J sinnmdx=l[005m1

s o nt 0

-2 cos ZE— 1
- m 2

4 2
orb1=E-. b2=§E. b3=ﬁ. b§=0.---

The Fourier sine series for f (x) is

af . 2sin2mx  sin3mc  sinSmc  2sin 6mx
f(x)—n[smrr.x+ 2 + 3 + 5 + 3 +]

b) The even extension A(x) of f (x) over the interval =1 < x <1 as shown in
‘Fig. 7.13(c) is '

[ 1

0 --le<—2
h(x)=4<1 —%st-;-

0 %stl

1T - g T




“f(lr)‘ Fourler Series

i-‘—1 H
e
L _
0 12 - @
Fix).
| 1 ll ] i
L 1 L1 | 'L | . ] L L g (b)
-3 g -t | To 1w 1 | ! 3y
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jRo). ' [ -
1 ll I 1
] ] 1 !_ I { 1 | t l — (C}
-3 -2 -l -2 0 w2 | 2 3 x

Fig. 7.13 : Paris (b) and (¢} show the odd and even extenslons, respectively, of fix) In (a)

In this case, using Eqgs. (7.8d) and (7.8e) we get the Fourier cosine series with
coefficients ;

1 1/2
=2 [fdx=2 f dax=1
0

0
0 R 2 2 2
a,=2 _Iﬂx)cosmdx=2£cosmdx=;[sinm]o =Esin%

Thus f(x)=%+r—zt[cosm—%c053m+%cosSn.r—...]

Note :' We could also extend the given function in such a way as tg get the Fourier series
containing both sine and cosine terms. It may seem strange to you that a function can
be represented by several different trigonometric series. What you should understand
is that even though all these series represent the given function in the given interval,
they represent different functions on the extended interval.

LR LR LR

Let us now sum up the procedure for finding the Fourier series for a function defined on a
finite interval: . ) ' i

We can’represent a function f (x) defined over a ﬁnife interval (sayO<x<L)bya

Fourier series, if we derive the Fourier series of another function g(x) defined over

-L < x < Lwhich is either an odd or an even extension of J(x). Finally, in writing the
Fourier series for £ (x), we restrict the values of the independent variable to the original
interval. | :

You should now work out an exercise to- find out whether you have grasped the ideas of this .
section. ’

SAQ7
. " Spend 10 minurtes

Determine the Fourier sine series for e° on the interval 0 < x < 1. How does the value of the "

series at x = 0 compare with the value of e¥at x =0 7

In SAQ 7, you have discovered an anomaly in the evaluation of the Fourier sine series for e

atx = 0. You have found that the series does not converge to the value of the function it is

intended to represent, at the point x = 0. However, remember that it converges to the value .
" of the extended function at that point. Recall from Sec. 7.3.2 that the Fourier series of * on 63

s




Partial Differential Equations

Thel:rmtllm fix)= I|m j'(a+h)

=t
where & is a positive number. is
termed the right-hand timit of
S{x)m x=a. ltis the limit of f(x) as
you approach the point x = g from

its right. Similarly .
lim f{x)}= Iu‘n b-m
1=h

where 4 is a positive number i is
termed the teft hand limit of
Sf(Dax=»51is the limit ol f{x) as
you approach the point x = & from
its left.

VO

Fig. 7.14 : This functien s called
the step function, It may represent
the output slgnal of an electronic
switch

For a point xp in the interval and
h>0.U8)= lim fixo+h)
=0 :

fxa)= lim flxo—k)

k=D

-

the interval —L < x < L does not converge to ¢ at the end points x =+ L. This leads us to
the question: How valid-is our representation of agiven function by FOuncr series? If the
Fourier series of a function f (x) converges at all points on that interval to its value of those
poinis, can we say that it is a valid representation of f (x)? This Ieads us to the question of
the convergence of Fourier series.

7.6 THE CONVERGENCE OF FOURIER SERIES

Before we can study the convergence of Fourier series, we must define continuous and
piece-wise continuous functions. You already know that a function f (x) is continuous on
the interval a < x < b, if, for each point x; in the interval (a, ), f (x) tends to a finite limit

S (xp), as x tends (o xp, i.c.,
lim f(x)=f(xp

X,

(If this équality holds for a point x4, we say that f(x) is continuous at the point x). The
graph of £ (x) is, obviously, an unbroken curve. Moreover, if the function is defined on the
interval g < x < b, we say that it is continuous on the interval @ £ x < bif it is continuous on
the interval g < x < b, and if f (x) tends to finite limits f (@) and f (b) as x tends to the end"
points a and b, respectively, from within the interval. We express this as

lim f()=f(a) and lim f(x)=f(b)

xoa x5

For example, the function f (x) =x or any polynomial function is continuous on any interval.
But, the function f (x) = 1/x and f (x) = In| x { are not continuous on the interval 0 < x < 1,

because neither function is defined at x = 0. Further: neither lim 1 nor lim In x exists_The
T oz X o0

function (shown in Fig. 7.14) represented algebraically as
[

1 —g<x<0
flxy=40 x=0 (719)
4
1 0<x<2

is not continuous at x = 0 even though it is defined at x = 0, because the limits lim f(x)=1
=0
and lim f(x) =—I are not the same. Obviously, the lim { (x} does not exist. This example
= x—=0
brings us to the concept of piecewise contimious functions.

Piecewise continuous functions -

It does seem obvious from the term that a function can be called piecewise-continuous if its
graph consists of a finite number of continuous pieces (see Figs. 7.14 and 7.15). We say that
a funchion is piecewise continivous on the interval 2 £x < b, if there are z finite number of
points

x,=b

A=Xg<X <Xy...<
such that : _
I Jis conlinuous on each subinterval

x0<x<x|, X (I‘:Iz, ...,xj_l XXX puua .,xﬂ_|<x<..rn
i) S has finite limits as x approaches the end-points of each subinterval from within the

subinterval.

Fig. 7.15 shows the graph of a t);-pical piecewise continuous function, f. The dots on the
graph represent the value of the function at each of the breakpoints.
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-L-xn x. .r, Iy L=x, x

Fig. 7.15 : The graph of a typical plecewlise continuous function f on'the Interval {-L, L)

Note that at each of the break-points, the value of the function f may or may not equal its left
or right-hand limit. For example, in Fig. 7.15 you can see that

FOG) £f (1)) £ (x]), whereas f (x3) = f (xp) #  (x5)
We can now discuss the convergence of Fourier series. Let us consider the sum of the first N
terms of the series for a function f (x) on the interval —-L < x < L given by
. :

S~=a°+ Z [a" cds%+bn 5in %J (7.10)
n=] '

What happens when N tends to infinity? By definition, the Fourier series converges to f at
apoint x = x, if the partial sum given in Eq. (7:10), with x=x,, tends to a finite linit
£ (xp), in the limit as N — <o, i.e.
lim Sy (xg) =f (xp)
Now=

Having defined the convergence of Fourier series we must know the conditions under which

a Fourier series converges to its function. We state below (without proof), a theorem | gwmg '

these conditions, These conditions are known as Dirichlet conditions.

Let the function £ and its derivative f” be piecewise continuous on the interval —L < x < L.
Then the Fourier series for f converges to fat all points in (L, L) where fis continuous, and
to the mean value

FU)+f ()
2

at all points x; in (—L, L) where f is not continuous. At the end points —L and L, the Fourier
series converges to

FELY +F

2

This theorem tells us that the Fourier series for a function f converges to f at all poinls where

fis continuous. The series converges to the average value of the left- and right-hand limits at
[ =LY+ (L)

each break-point. At the end- points, the Fourier series convcrgcs to T

which is the average of the two cnd-point limits.

The behaviour of the series at the end points as defined by this theorem may seem to be
puzzling (recall Fig. 7.3). To understand why this should happen, consider what the Fourier
series represents outside the interval —L < x < L. Remember that the Fourier series is the sum
of periodic functions &in %a.nd €05 E (n=1,23.. ) which have a penod T=12L.
Therefore, the Fourier series itself must have period 2L.

65
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100V

0 1/120 1/60
Fig.7.18
“ﬁ:x)

T

- 0 R *

Fig. 7.19

Since the remaining terms, for

, which m=m. in the first seres of
RHS are zero by vinue of Eq. (7.3¢)
and all the terms in the second series
on RHS are zero in view of Eq.
(7.3a).
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{

2)

3

=~ [R

I when0<r<%

f@=

g v

(L—:) whcn-;'—<r<z, .

Obtain the Fourier senes expansion of the output of the full-wave rectifier shown in

F'g 7.18. The shape of the curve is the absolute value of a sine function. The
maximum voltage is 100V,

Expand

. . 0 —-n<x<(
f(x)y =

t-x. O<x<nm
in.a Fourier series (see Fig. 7.19). '

Verify whether the Fourier series representation of this function is valid.

7.9

SOLUTIONS AND ANSWERS

SAQs (Self-assessment questions)

1)

2)

3)

Using Eq. (7.3d) we find that all the terms in l.he second and third serfes in the RHS
of Eq. (7.4) are zero, since

L L

. X i
J sin "7 ax=[ cos ™ e, A=L23,....
L =< -

Thus, we get

Jaodr aofdr %ao—ff(-ﬂdr
-L -+ '

L
1
or Q=5 _[ Fix)dx
I
Multiplying Eq. (7.2) by cos 7 and integrating from — L to L, we get

If(x)cos dx=ay, I cosde+ Z IcosTcos%dx
L a={ -L .

o L
. AR ¢ X
+ §, J L co L dx
Using Eqs. (7.3d), (7.3b), (7.3¢) and (7.3¢) we get

L .
ff(x)cos%d::ﬁmm | cos? T dx +0,
~L -L

=amL
L

|

or dm =1 _[f(x)'cosde

The Fourier series representation of T(x, 0) = % is given by

T(x.O) =ag+ z a, cos—+ z b, sm%

=1 n=
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=— 100 A [2L cos rR] + 0

L2 o . [Using Eq. 7.3d]

__200
_-ﬂﬂ(l)'

_@_n+l
_m(l) .

-

Thus, the Fourier series for T(x, 0) is

( 1)"+lsmﬂ

T(x, 0) = Z T

LES

J20[ g ome 1oogwe 1o dme dme
“x L TS tysmTm-sinp

Notice that the higher the frequency of a term, the lower is its amplitude.
b) The Fourier series for E(¢) is

E(n= a0+2¢z coszmr Zb m—( L= T/2)

n_

=ag+ 2 a, cos nux + Z b, sin nor [ m=2?“]

n=1 n=1

-T72 T o 2

LE[ _eoser® Ef T
T o TTo| T 2

_E . _E
_21t(2)__1t

Here g, = T J E(f)dr—— I sm(ordr [ E(r)l=0for_—T<r<0]

2T/2
dp=2 [ B cos nanat
—T/2

F‘lrSi

Do not confuse between the methods

of evaluation of ay here and b, in

SAQ 2 where we have used Eq. 7.3a
. pmx ey

Io put JJ:Lsm L L dre=10.

Notice thal the intervals of

integration in both the cases are

different. Thcr:l'oru we gei different
results
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772

=% jsinorcosnwdr
0

=§—? J tsin (1 + nyox +sin (1 - myoor) dt

[‘.'. S X cos ¥ =—; [sin{x + ¥) + sin(x —y)]J l

We evaluate a,, separately. For n = 1, the integral is zero.

woap=0. Forn=2,3,....

a =£ _cos(l+nj cos(l—n)exr 72
" T (1+nmw (1 -n)w

=£[_cbs(1+n)n_cos(1—n):r 11 ]

(1+n) (-n T1+n 1-n
_E[-Ct el D T
T 2n n+1 1-n
a,=0, forn=3,5,7,9,.....
E{ 2 2 2E
anda, 2n[n+1 l—n]_(u+1)(l—n)1t' n=2,46.....
Similarly,
m
b, n =T _[ E(H smnm.rd::? I sin ¢ sin no dr
172 ~T72

From Egs. (7.3b) and (7.3c) only &, is non-zero. Thus, we get
by =E/2, b,=0 forn=2,3,4, ...

Therefore, the Fourier series representation of E(¢) is

E(l’)=§+g sinmr—g[l—gcos 201r+3—[5cos dot + . ]

a) Itiseven,since f{f)=5F(—1)

b) (i) SeeFig.7.20 a. This is an even function. (ii) See Fig. 7.20 b. This is an
odd function.

c) (i) even(it) even (iii} neither odd nor even (iv) odd (v) neilher odd nor even
(vi)odd ]

1 X '
) +2[xe‘+xe Jt]—2[_smh.vr+c|::ushx]

(i) -%[(1 # ) (sin x + 08 x) + (1 - x) (—sin x + cos x)]

+% [{1+x) (sinx+cosx)—(1 .-x) (—sin x+ cos x)}

The function shown in Fig. 7.10 is an odd function, with L. =
Fourier sine series with coefficients

17300. So we getonly 2

1/300 .
b,=2(300) | pis) sin 300 rmu dt

- —— -

T RTE R




1/600 ' s 1/300
=600 | sin300 amsdr-2 (600) | sin 300 mr d
0 1/600
1 0<r4-—1-
’ 600
pl)=
. : 5 .1 1
6' 600 <’ <300
cos——1 COS HIL— COS —
_ 2" ' s 2|, 2(0 m, .5
=601 - 350 *6 300mm _mr.[ 6 %, “6‘”3’"‘]
2(. ') 11 2 1 '
'I‘hlsgwesbl—‘;[l-g)=g-§, b5=§-3
_2(u . 51 2 1 22
b2"21r.'\6 11—6}_21:'\3’ bs=%r 3
2(,_5)_1.1 _11
b3‘3n\1_6 Tan 3 . =73
s
b= [ -G +142 0, by=0,....etc

‘Thus, we have

_ 1 (sin300m  22sin600ns  sin900m . sin 1500 mt
p(')':m[ 1 7 2 T 3 Yt s

. +2zsm18wm+sm2100m+,___]

6 7

You can see that the second harmonic at a frequency of 300 ¢ps has the largest
amplitede, Since the intensity is proportional to the square of the amplitude of a
wave we would principally hear the second harmonic.,

6) See Figs. 7.21 aand 7.21 b.

Y
e!
y=ut ;
(a)
Flg. 7.21
N Since we have to determine the Fourier sine series of ¢* on the interval 0 < x < 1, we

need an odd extension of £ (see Fig. 7.21b). Note that g(0) = 0 by definition. Then
the coefficients b, are given by

1
=2 I €" sin amx dx
0

1 |
=2[M]0 Ie’cosnrr.xdx
0

_Z2ecosim+2 2 [ sinnme
- nu HT nE

1
_[ €' sin amnr dx
S

Fourier Serles
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Partlal Differential Equatlons el +2 bi'l

= + —_—
- nn 2

orb,,[l+ 1 J=2_28(_1)P|I

n’n? A

2 (1 —e(=1)")
b == 77
o n 1+ n’n?

A

Hence, the Fourier series for ¢* on the interval 0 < x < 11is

= nll—(=1)"e]
E, 1+ n’72

sin Btx

At x=0, the value of Fourier sine series is zero. But &® = 1. Thus, the Fourier sine
series for ' does not give the value of the function %, at x = 0. However, it does
give the value of the odd extension of & atx=0

. 8 a) InSAQ?7, the Fourier sine series for ¢* on the interval 0 <x < 1 converged to
zero at x = 0. This is consistgnt with the convergence theorem since the sine

series is the Fourier series of the odd extension g(x) of ¢* and
80 =+1, g(0) =-1,
i.e., at the discontinuity x =0, the series converges to the value 0,

b)  According to the convergence theorem, the Fourier series for ¢° on the interval
~1 < x < 1 converges to

1, -l
e te
at the poinis x =% 1. As you can see this value does not agree with the actual
values of & at x =+ 1 (see Fig. 7.3).
Terminal Questions
1) The even extension of the triangular pulse is shown in Fig. 7.22

f@

el §

-L Fig. 722 L.
From Egs. (7.8b) and (7.8¢), the coefficients of the Fourier cosine series
representation of the given function are

L/2 L >
1|2k 2% r 2
00=E r £ fd.l‘+'z‘L:|;2(L—l)df I %%’Ef +[LI—E‘L-

72| 8 2 278
a,=2 Z—W:eos”‘“du—_[(l,—r)cos—-dr
LiL L L.,
L 2
_2 2k Lt . _L 12,7}
X _LL[nﬂsmL] m{sder+
A .
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2)

3

L2 HT 12 . mm L? nr
= o L — =1 —_ — =
[2 sin + nz 2 |:COS :l 2 sin 2 "?_"'2 [cos NIt — COS 2 :D

16k
a =0, ay=——m—, a8;=0, a,=0, a;=0,
1 dy 22 3= 4 5= .
16k 16k
=—— =, a;=0, dp =0, =0, apn=———
ag &2 2 7= 8= a9 10 1022

Thus a; =0, when n#2, 6, 10, 14, .... The desired half-range expansion of the .
triangular pulse is ’

E_I6k(1, 2w L 6w .
fo=% nZ[zz +62cosL+...J |

The output of a full-wave rectifier (Fig. 7.18) can be expressed as

100sinex O<f<m
v(e)
—100sinex -mw<t<0

Since v {1} is even, we can represent it by a Fourier cosine. series. Here L = /a0,
Therefore, from Eqg. (7. 7b)

o
a, =l—jsmwdt=—}*@-cosw =—
7 n P
0 0

an=% I sin @t cos no df
' 0

You have solved a similar integral in SAQ 3(b). We can use those results and write

400

an=—m. n=2,4.6,....

W) = —M - 400 2 £08 2mmi" where we have put n=2m.

4m2—

You can see that the ongmal frequency © has been eliminated. The lowest surviving
harmohic has frequency 2e and amplitude 400/3n. The amplitudes of higher

harmonics {of frequencies 40, 6@, . .- . 2R, .. .. ) fall off as 1/m?. Thus the
full-wave rectifier does a fairly good job of approximating direct current.

Here L = 1 and thie coefficients of Fourier series are

%= | ff()dx——j(n x)dx——[ _§[=%-

n
H=i I {x) cos nxdx= {n—x)cos nxdx
n

A=
O ey A

Fourler Serjes
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" 'Partlal Differential Equations . .4

L O e o 0
nzu(cosm )= R

n
b, =i J £00 sinnxdx.
-1

% (7 — x) sin nx dx

=l[(1t—x) cmm1:+l[§m nx:[
- E n | 2

S ey A

o -

Thereforef(x):%+z {l——r(rzn_—lzcoérix+;l;sinnx} . -

n=1

This series converges lo the periodic exlension of f (x) ontd the entire x-axis (Fig. 7.23). At
the points of discontinuity (x =0, £2n, +4n...) the series converges to the value

(@) +f@) _=
2 2
¥
N Ay N hY
o\ - \\ . .\\
A - Y ——— Nemn L N
—4n =3w ~im —-= T 2w 3nm 4w x
Fig. 7.23

These are shown by the solid dots in the figure, Atn=1m, +3m, £5m,.... theseries will

converge to the value
f(r)+f(=n")
- 2 - 0

which is the value of the function at these poinls.
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UNITS APPLICATIONS OF FOURIER
SERIES TO PDEs

Structure
8.1 Introduction
. Objectives
" 82  Diffusion Equation
Heat Conduction
Diffusion of Particles

8.3  The Wave Equation

Vibrating Strings

Torsionat Vibratiqn;.
84  Laplace’s Equation

Sieady-state Heat Flow

The Potential at a Poini due 10 a Circular Disc
8.5  Summary

8.6  Terminal Questions
8.7 Solutions and Answers

8.1 'INTRODUCTION

In Unit 7 you have studied the technique of expanding an arbitrary function in terms of
" Fourier series. In this unit we will use this technique to solve some important BVPs in
- physics. Specifically, we will illustrate the application of Fourier series to solve BVPs
involving the diffusion equation, wave equation and Laplace equation. For example, we will
study heat conduction along a cylindrical rod as well as diffusion of particles using Lhe
diffusion equation. Such BVPs arise in engineering and industrial applications, viz.
modelling heat flow in the fuel rods in a nuclear reactor, evaporation of water, drying of

~ granular products, etc.

Using the wave equanon we shall solve the ‘plucked string’ problem which models the
motion of a string in a varety of musical instruments like the sitar, guitar, violin etc. We
shall also study torsional vibrations which arise in several mechanical systems having a
rotiting shaft such as the axle in a car, propeller in a ship, drill pipe in an oil well, etc.

We will solve Laplace’s equation for steedy state heat flow in a rectangular plate (which can
be used to model heat flow across refrigerator doors). Finally we will solve Laplace’s
equarion for determining the potential at a point due to a-circular disc. This problem will
demonstrate the fact that Fourier series can be used to solve problems involving
non-Cartesian geometry. We hope that after studying this unit you will be able to appreciate
the fact that Fourier series can be used for solving a wide variety of real-world problems.

Objectives .
After studying this unit you should be able to apply the Fourier séries to

¢ solve the diffusion equation, wave equation and Eaplace’s equation fora gwen BVP

~

‘@ solve similar BVPs involving oulcr PDEs

8.2 DIFFUSION EQUATION

You have studied the one-dimensional diffusion equation (for heat flow) in. Unit 5. You
have solved it under specific initial and boundary conditions for a given physical problem
in Unit 6. You have also solved the two-dimensional heat flow equation in Unit6.

In its most general form, the diffusion equation is expressed as

Applicatjons of Fourier Serfes

to PDEs
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 Partlal Differentlal Equations

For the two-dimensional diffusion
¢quition, we have to represent the
arbilrary function ifx, ¥) by Fourier
series in 1wo varables, It is of the
form :

nfy. v 0)=fle )

=X I A,,,,,sinm—uxsinn—qy
mal nai c

[

This is beyond 1he scope of this
course.

®)

L ATE0)

m L x
Fig. 8.1: (a} An Insulated bar with
Its left end immersed in loe (b) the
Initial femperature disiriboilon of
the bar
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L

léu

' - p . - 2 G c
Veu+Gxy, 2, r)'-k Ey : . - «(8.1a)
where V2=— +—a +— Calf is the Laplacian and G is an arbi function of x and ¢
a2 3P Az P aad - eamct

Asyou know the function u(x, y, z, f) could represent temperature in a body so that
Eq. (8.1a) models heat flow in that body. For example, the temperature T of a current-
carrying metallic wire can be modelled, by adding another term in Eq. (5. 10c) which
accounts for the heat generated due to current conduction. If 1 is the current in the wire and
R its resistance, an additional amount of heat (= 7 2RAx) will be accumulated in the portion
of the wire between x and x + Ax, Thus.'you can add the term /2RAx in Eq, (5.10c) and
repeat the remaining steps to obtain the following heat flow_equation for a current-carrying
wire:

Fr-19r_ PR

32 "X o KA (8.1b)

where k is the thermal diffusivity and X, the thermal conductivity of the wire. When
Eq. (8.1a) is used to model the diffusion of dissolved substances in a solution, u(r, %z, f
represents the concentration of the hqmd For example, the PDE

"=}E§+"2 _ | (8.1¢)

can be used to model the loss (diffusion) of moisture from a porous object through its
surface. Here ¥ is constant and « represents the moisture concentration. You can see that
Eq. (8:1) is a nonhomogeneous PDE. Now, in Unit 6, you have learnt to solve only
homogeneous PDEs, Fusther in Unit 7, you have learnt to use the Fourier series of a single
variable only (read the margin remark). Therefore, in this section we shall restrict the
application of Fourier series to one-dimensional homogeneous diffusion equation. Let us
consider two specific applications of this equation: in heat conduction and in diffusion of
particles.

8.2.1 Heat Conduction

In Unit 7, we introduced the idea of using Fourier series in the solution of a one-dimensional
diffusion equation. Youwhad also completed the solution for a specified boundary-value
problem. Let us consider another example of heat flow, where the Fourier series can be
applied. This is a slightly different application.

Example 1
Consider the flow of heat in a uniform bar of length L, insulated along its I.ﬂglh As you
know the temperature of the bar is modelled by the diffusion equation

Mx. 0 _ 327'- (x,
ot ox?

One end of the block is immersed in a block of ice, maintained at 0°C, while the other end is
insulated (Fig. 8.1a). This gives rise to the boundary conditions

D ©<x<L, t>0) _ (8.2a)

T,/ =0 and E%Lf'lw, 120 (8.2b)
If the initial lemperature distribution is given by
T(x, 0) =§ @L-x) (O<x<i) (8.2¢)

(see Fig. 8.1h), then solve the heat equation (8.2a). (Note that the initinl condition is
physically consistent with the boundary conditions at x=0 and x = L).

Solution
Using the method of separstion of variables we write T(x, f) as a produot of two terms :
T(x, £) = X(x). Y(£). Taking ~A? as the separation constant, we get

T oL

J——




=-A2 )

. r

X &
or )

X”+2% =0 ' _ (ii)
and Y’ + =0 | ' (iif)

The solutions of (ii) and (iif) for X(x) and ¥(s) are well known

X(x)=C) cosAx+C,sinhx ' (iv)
and | Y()=CjeB : o)
From the boundary conditions for T(x, r} we have

T, ) =X(0) Y(1) = 0

and . g—f (L::)-T-[%Q ]m):u

Since Y(1)#0, X must satisfy the conditions

X0 =X"(L)=0
Application of the first of these condition gives us C 1 = 0. Thus

X(x)=C,sinAx

The second boundary condition gives us
X'A)=Cycos A L=0 y

For a non-trivial solution, for which -Cz #0, we have

cos AL =0

or M.=(n+%]ﬂ:, . n=012,....

We call these values of A as A, The solutions can thus be written as

Xn(x)=C2nsin[@%lEx:|, n=0,1,2,3,....

From (v} we have

Yi0=Cy,exp [—( 2"211 J k r]
| Thus N

2

2L

T, (0 N =X,() ¥,(t) = b, exp [— [MJ k ;] sin [ﬁ%ﬂ] n=0,1,2,3, ....

- where we have put b, = Cy, Cy,. From the pnnmple of superposition, the most genéral
‘solution is

T(,0=3 b _exp ( L—ﬂET m] L—ZT‘E] 8.3)

n=0

Applymg the |rut|a] condition (8.2¢) we have

'T(.é;ii)!'z'b,,sin[@"—;}ﬂ] =f(), O<x<L (843
n=0 .

Applications of Fourier Serfes
to PDEs

1

Notice that f{x) in Eq. (8.4a) cannot
be expandcd in the Fourier series we
bave inroduced in Unit 7 because
the argument of (he sine function is
different, However, we can use rhe
samc technique to cxpand a given
function in terms of any sinusoidal
serics provided its terms satisly the
orthogonality conditio.
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Partla) Differentlat Equations

Spend § minures

Note that in this case the initia]
condition does not match the
boundery conditions atx =0 and

x=L.In reality, when the cods-of

the bar are put into the ice, it would
melt 1o match the temperature of the
ends of the bar, which cool rapigly.

Only later would we have T(D, ¢)*= 0.

78

_where  f(x) ='§(2L —x).

We can deu:n'mne b, in Eq. (8.4a) using the half-range expansion of f (x). Since f(x) i is

defined on 0 <x < L, and T(x, 0} is the sum of a sine series, we can take g(x) to be l.he odd
extension of f (x). Multiplying the LHS of Eq. (8.4a) by sin [52”'—;;1’51 and integrating
from —L to £, we have

o L . ) : L
Z b, jsin[@;lm]sin[(zngm]dx= I 2(x) sinl:-(—)——?””-l m]dx
=f . t L

2L

n=0

Applying the technique of Sec. 7.2 we get

' L
by=2 [ f(x)sin [1—2%93] ds
-0

L .
_2 (X, o[ (204 D ¥
—L£2(2L x)sm[ 27 ]dr

You can integrate by parts twice and show that

b < 1612
" @+ 1P

Hence the solution is given by

, =
T =L ¢ 1 o0 [_[LZH_;:IE]Z&,]@ [M] (8.4b)

w T+l 2L

You may now like to work out an SAQ yourself by applying Fourier seies to the
homogeneous heat equation.

SAQ1

In Example 1, let the initial temperature of the bar be a constant T, *C. Then solve the
diffusion equation (8.2a),

with T(O.r)=?—a1;_-(L. =0, (=20}

and Hx,0)=T, - {O<x<L)

Determine the expression for T(x, 1) and discuss its behaviour at large values of times.

Let us consider another application of Fourier Series for solving the diffusion equation,

8.2.2 Diffusion of Particles

Many of our day-to-day experiences involve diffusion of particles. For example, when sugar
is added to a cup of tea, it dissolves and then diffuses throughout the tea. Water evaporates

from ponds and increases the humidity of the passing air stream. Diffusion of particles plays

an important role in many industrial applications. Some examples are: the removaf of
~ poliutants from plant discharge sireams, the stripping of gases from waste water, acid

concentration, salt-production and sugar solution concentration through continuous .
“evaporation, afymg of industrial products, such as concrete slabs, wood, etc. Here we will

apply the diffusion equation; to a typicgl example. of drying of a porous material.
A porous rod contairling moisture with one of its ends (for which x = 0) sealed islefttobe -
dried. The other end of the rod is in contact with a dry medium, and it loses moisture

T R e




through its surface to d.ry air. The concentration of moishire, , u(x, 1), satisfies the following
boundary value problem:

? ig‘:ﬂzu, O<x<L, >0 (8.52)
?—ax“(o. 0=0, ul.f)=0,  1>0 (8.5b)
ux,0)=u, . O<x<L (8.5¢0)

Let us find x(x, r) and determine the concentration at x =0, i.e., u(0, 1) explicitly.

Using the method of separation of variables, we seek a solution of 1he form
u(x, ) =X(x) (). The PDE becomes

X () T() = ; J_;(x) T+ 7 X(x) T()
Dividing by X(x)T(r) we get

X" _T (:)+ky2T(:) _32
X(x) kT

Thus, we get two ODEs

X"+ X(x)=0, OD<x<L 0]
T/(0) + k(Y +‘x2) T=0, (>0 ] (ii)
The soluﬁon of (i) is
X(x)=C, coslt+ézsm7‘x
Applying the boundary conditions, we have
X'M=0, XL=0
X'0)=ACy =0, ie., Cy=0
and X(L)=C, cos AL =0
Since ) =0, this gives
cosAL=0 -
or- .
M= g,
or ).,,=$—2+L‘E; - n=0,1,2,..

Thus X,() =}, cos A, x, where &, = S—HE  n=0,1.2,..
The solution of (ii) is
T0) = Cy, exp [~ by + D] = Cy, £ N

Therefore, the general solution of Eq. (8.5a) is

ulx, 0= ¢ Th > a,cos, e K
n=0 ’

~where we have putd. =C, C3p- To determine these unknown constants, we note from the

initial condition that

Applications of Fourler Seriea

to PDEs’
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Partl.ni Piferential Equations .

Spend 10 minures

2 a, cosh, x=u, O<x<L o

Ajgain we can use the even extension of itg (Sec. 7.5.1) to obiain its Founer series expa.nsmn.

i.e., the coefficients 2,

xdx

2
"L

g €08 A,
" 2ug(sind,L) dugsind L
SL| A, | @

. O ey I

n=0,12...."°

Thus,:

u(x,r)——e"fz’" Z

2L

(2n+ m sin [(2n+ 1) ] [M] e—(2n+1)71c?i_u/41.1 -

We can find the value of u(0, 1} by putting x=0 in this solution

. sin[(2n+l)%]
(0, :)_—e‘f"' Z

- s 1’ atkerat?
(2n+1) .

4 -9t 251
- ——uoe"f‘" - —
R 3 5 -

where 1= 1:2!:1/41.2

You sheuld now work out an SAQ to know wheéther you have grasped the application of
Fourier series to the one-d.tmensmna.l diffusion equation.

SAQ2
Solve the heat/diffusion problem stated below in terms of dimensionless variables

Pu_ ou ;

3:7'_ x D<x<l, >0
o o W

ax(o,:)_o, Bx(l")_o' >0
u(x, 0)=1 +2x Dxx<1

- Let us now consider some applications of Fourier series to the wave equation.

8.3 THE WAVE EQUATION

For simplicity we shall restrict our discussion to the solution of the one-dimensional wave
equation

azu 1 2u
AR

with given initial and boundary conditions. Let us solve this equhlion by applying Fourier
series to two specific categories of physical pmblcms related to (i) vibrating strings, and
(n) lorsmnnl v'branons

O<x<L, >0 (8:6)

T YT I
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8.3.1 Vibrating Strings

When a sitarist plucks the sitar string, several other fones called overtones or harmonics, are
generated along with the fundamental frequency (Recall Eq. (6.39) of Unit 6). The richness
of musical sound is related to the number of harmonics that can be detected by the human
ear. The larger the amplitude of each harmonic, the more likely it is to be detected- The
amplitde of each harmonic depends, in tumn, on where exactly the string is plucked. So if
we know the point at which a sitar string is plucked, we can get a fair idea of the richness of

; the sound produced. To mathematicatly model this physical situation, we have to determine
a unigue solution of Eq. (8.6) for the "plucked string" problem which we consider in the
following example. .

Example 2 : The ‘plucked string’ problem

A string is plucked at its mid-point and then released from rest from this position (Fig. 8.2).
The resulting vibrations are modelled by Eq. (8.6) along with the following boundary and
initia! conditions. ' .

w0, D= 0, u(l,t)=0

2hx L
L p<x<2
u(x,0)=
X L
?:‘{I—L} 25:<L
P

"where hisa positive constant which is small compared to L.
These conditions correspond to an initial triangular deflection and zero initial velocity.

In Unit 6 you have already obtained the genei‘al solution of the wave equation for given-
boundary conditions. The general solution given by Eq. (6.40) is

ulx, 1} = E [an ms%‘#b" sin mTw]sin% ) . (i)

Lel us now abply the initial conditions to (i) :

2hx : L
. L. 0<x<3 |
u(x, 0) = 2 a, sin%= : ) (ii)
n=
x} L
. %[I_L]. 25x<L
ou _ - Amy . nmvt ay  nRvt)| . mnx
5 '=0— ;( Gy SN +h, 7 oS, )sm T
n=1 =0
= z _bn%sin%=0 ' (iii)
n=1

Eq. (iii) will be satisfied only if b, = O for all n, as you have obtained in Eq. (6.43). Sonow
you hgve to determine @, i.e., you have to'expand u(x, 0) in a Fourier sine series. In effect,
you have to obtain the odd periodic extension of u(x,0) and hence its half-range expansion in
a Fourier sine series. Recall that you have worked out a problem for an even periodic
extension of the same function in the terminal question 1 of Unit 7.

So you may like to solve this part of the problem yourself. .

Applicatlons of Fourier Serles

ta PDEs
'\ u (x,0) -
1
1
h
i
1 -
0 L L I
Flg. 8.2
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Partial Differential Equatlons

SpcndTO piintites
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(2)
A
| ] 1
e
(b}
I: .
j] |
»
. {c)
Fig. 8.3: A torslonally vibrating
shaft with (a) both ends Mxed (b)
both ends free {(c) one end fixed
and one end free

¢

SAQ3
Show that the solution of the "plucked string” problem specified by Eq. (8.6) is
Bh| 1l . mx ot 1 . 3nx It
N =—7|—=sin——cos=—-—<sin=——cos ——+...
u(x, 1) Trz[lzsm‘(‘m T 323m 3 cos = + ]

il

Another way to start any 'su'ing vibrating is 10 strike it (a ﬁiéﬁo string, for example). In this -
case, the initial conditions would be u(x, f) =0at =0 and the velocity ?I: will be given as a

function of x (i.e., the velocity of each point of the string is given at 7 = 0). Now that you
have practised determining Fourier series you should feel confident enough to be able to
solve any such BVP related to vibrating strings.

Ariother interesting application of the wave eguation is in torsional. vibrations. Such
vibrations can result from-unbalanced torques on shafis in a wide variety of machinery in
cars, aircraft, turbines, railway engines, etc. You may know that a shaft is a bar that is
usually cylindrical and solid. It is used to support rotating pieces in mechines or to transmit
power or motion by rotation. Some common examples of shafts are axles connecting the
wheels of a car, spindles on a spinning wheel, propeller shafis used for ship propulsion and
shafts in belt ang pulley arrangements. So let us now consider a typical problem involving
torsional vibrations of a shaft.

8.3.2 Torsional Vibrations

Consider a uniform, undamped torsionally vibrating shaft of finite length, subject to given
initial conditions of angular displacement and angular velocity (Fig. 8.3). This means that
we have 1o find solutions of the equation

%0 _13% ‘

— = 8.7

22V 0P ®n
where 8 is the angle of twist of the shaft and v2 = E_/p: Here E is the modulus of elasticity

ini shear, and p, the mass per unit volume of the shaft: Once again we use the method of
separation of variables to express 6(x, {) as

O(x, 1) = X(x) T(r)_

Just as in the case of a vibrating string (Eq. 6.15 of Unit 6) we reduce Eq. (8.7) to a set of
rwo ODEs: ’

T.H=?'-_2T xn=._12.x
? L]

where (— A?) is the separation constant. The solutions of these ODEs are
T =A cos Avi+ B sin dvt

and X=Ccos Ai+DsinAx

Thus the solulion is

A(x, 1) = X(x) T(r) = (C cos Ax+ D sin Ax)(A cos Ave + B sin Aw) [0
You can see that the solution is periodic; repeating itself for every increase in time ¢, by i—f
In other words, 8(x, £) represents a togsional motion of period % or frequenrfy Av/2rm,

1t remains now to find the values of A, 4, B, C and D. The values of A are determined by the
given boundary conditions which define how the shaft is constrained at its ends. There are
three cases which occur most often in physical systems:

Y] Both ends of the shaft are fixed so that no twisting can take place (Fig. 8.3a)
2) Both ends of the shaft are free to twist (Fig. 8.3b)
3)  Oneend of the shaft is fixed, while the other is free to twist (Fig. 8.3c).
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Casel - ) * - Applications of Fourler Series
The boundary condluons in this case are - ) to PDEs

8(0, 1) =8(L, 1} =0, >0 ~

Applying these conditions you get the genera! solution which is the familiar result obtained
for the vibrating string (Eq. 6.40 of Unit 6): -

-] - - - "
nmx ' ;

O(x, 1) = 2 {anmsm+b sin-m—w]sm-_L,

L n L
a=1]

This solution has to satisfy the given initial condmons on angular displacement a.nd angular
velocity. If we set 1 = 0 in the equation for B(x, 1) and its derivative we get

L

0, 0)=f ()= Y, a,sin =
. n=1 .

=g(x)= Y, [% b,,)sin =

'=? n=1

98|
and %

where f (x) and g(x) are some functions of x, representing the initial angular displacement-
and angular velocity of the shaft. We can then use the half-range sine expansions of £ (x) and
8(x). This gives

f(x)sm'—dr

::
["‘|N'

and

=

L .
L2 Amx L2 nmx
b"_m'l:vL g(x) sin dx—m g g(x) sin TX

=]

Thus, a uniform shaft with both ends restrained against tu.min'g vibrates torsionally at any
one of the infin‘te number of natural frequencies

f,,="—2:cyclesperunittime, n=1,23,....

Case 2
S Th itted th
When both ends of the shaft are free. no torque acts through the end section (i.c., atx= 0 mi;?::‘::?o:a:; T;tist:dr:huﬁ?;"y
and at x = L) since there is no shaft material beyond these points. Thus, the torque proportional to the twist per unit -
transmitted through these ends is zero, i.e., : length, i.e., the slope of the (@, )
. curve, at that cross-section.
T=E,l % =0 ‘ Thus toc 2
) end points ax

. . - . \ . For solid shafis the proportionalil
where ] is the moment of inertia of the rod, and £, is the shear modulus of elasticity. Both £, conant is equal ,03._-, f:,hm E":s

and / are non-zero. Thus for a free-end, the boundary conditions are the shear modulus of elasticity and f
. - : the moment of inertia of the shaft.
cf

e atx=0andatx=1L

The subsequent solution proceeds on familiar lines. In fact, you may like to complete the
_solution for a specific problem. Try the following SAQ.

—--_________‘-

SAQ4 . S - Spend 10 miinittes

A uniform shaft free at each end is twisted so that it rotates through an angle proportional to
(2x — L)/2. If the shaft is released from rest in this position, what * “ill its subesquent angular
displacement as a function of x and ¢ be?
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Fig. B4

Recall that in Example 1, we have
wﬁnenJL..L=(2n+l)’—2' but 4 takes
the valuesof 0. 1, 2. ... Tn this case
hel = (21 = l)g.whcmq=1.2;..
So the expression for A, is the same
in both ihe cases.

Have you ficted that the natural frequencies of the vibrating shafts in Cases (1) and (2) are
the same? However, the amplitudes of vibration are not the same. For the shaft fixed at both

énds. the amplitudes a.long the shaft are proporﬁt:;nal to sin %. whereas for the shaft free at

the ends, the amplitudes are proportional to cos %

Case3 ’ -

A typical example of a shaft fixed at one end and free at the other is the drill pipe used in oil
wells. A drill cellar (C) containing the cutting bit (B) is attached to the lower end of the pipe
(Fig. 8.4). Thc boundary conditions for such a shaft are

—6and®] - :
(0, ) =0 and = L;!_o, 1>0

" When we impose these conditions on Eq. (i) we get

C =0, cos A L =0, which gives
- .
AL=@n-1)2, a=1,2...

7Ln=(2J' - -I) Tr'
i 2L

and =12...

The general solution is, therefore,

O, N = Z {sin A.x) (A cos lnvr + B, sin A, vf)
=1

Now suppose we have the initial conditions that
a8

8(x,0)=f(x) and T | =30
x0
These initial conditions yield
1= g A, sin [gz::_;;m]
and

g0=Y [L—L?"; 7 ""Bn] sin [L—Lz"z_ n ’“]

n=1

. Recall that we have obtained the coefficients A, and B, in the heat conduction problem.

You can easily verify that the half-range sine expansions of f (x) and g(x) yield

L
2 . ((2n—Dmx
A,,—Lgf(x}sm[ 2L ]dx

r

and

L
_ 4 . [@n- mx
5= n-tmv Ig(x)sm[ 2L ]d‘

These coefficients can be obtained for any function £ (x) and g(x) integrable on the intervat

_0<x<L,

Finally, we will take up the application of Fourier series to Laplace’s equation.
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8.4 LAPLACE’S EQUATION to PDEs

You know the three dimensional Laplace’s equation : V2u = 0. The function z may
repsresent many physical qualities: it may be the gravitational potential in a region
containing no matter or the electrostatic potential in a charge- free region. The steady-state
temperature {i.c., temperature not changing with time) in a region containing no source of
heat also satisfies Laplace’s equation. In Unit 5, we have derived this equation for the
velocity potential for an incompressible and irrotational fluid. Of all these diverse areas
where Laplace’s equation applies, we have selected two 1o illustrate the applications of
Fourier series. These are the steady-state heat flow and the potential problem. You can
extend the procedure explained here to other specific problems.

8.4.1 Steady-state Heat Flow

In Unit 6 you have solved Laplace’s equation for determining the steady-state temperature
of a ¢ircular cylinder (Example 2) and a semi-circular plate (Example 3). However, in both -
these examples we need nat use Fourier series to determine the particular solution. So let us
. considera spemﬁc BVP for Laplace’s equation which involves the use of Fourier series. A

modified version of this problem can be used to model the flow of heat across a refngernlor
door.

_Exnmple 3 : Steady-state temperature of a rectangular metal plate

A thin rectangular metal plate is sandwiched between sheets of insulation (Fig. 8.5a). Since
the plate is very thin and insulated at two of its surfaces, one may assume that the emperature

doesnot vary in the z-direction. In the steady state, the temperature of the plate obeys the
two-dimensional Leplace equation:

P1ixy) PTG,
Py P

where L is the length and B the width of the plate.

D _0, 0<x<L O<y<B (8.8)

70 BT/ax =0

.)n/ T= T|

()

[
L3 §

(b}
Fig. 8.5: () A thin plate between sheets of insulation (b) the boundary conditbons for T(x, y)

Suppose that the temperature of the plate is held at T, at its top edge, 7, at its bottom edge
and 0°C on the left edge. The plate is insulated on the right edge, so that no heat flows in
that direction, and the partial derivative of T in the x— direction is zero (See Fig. 8.5b). Can
you write down these boundary conditions mathematically? Thesc are

iy TO.y=0, a—T%ﬁ= 0<y<B
it) Tx,0)=T, T(x,B)=Ty -~ O<x<i

We wish to determine T'(x, y) by solving Laplace’s equation subject to these boundary
conditions. 85
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Solution
For a non-trivial solution we write

T(x, y) =X{x) Y(»)

and use the method 6f separation of variables to get

X!x!+Y =0

X(xy ~ YO). !
Since X(x) vanishes at the boundaries the ratio X0 cannot be pesitive. Hehce, we get the
two ODEs : a '

X" +2\%X=0 O<x<lL
and Y”-22¥=0 ~ 0<y<B

The solutions are .
X(x)=AcosAx+Bsindx

and Y@)=Coc;shxy+o sinh & y

Applying the boundary conditions (i) and (i} we get
A=0, cosAL=0 | ‘

or ln=£2—"i—lm. n=1,2...

which gives X, (x) =B, sin A, x
and Y00 =C"cosh A y+D sinh Ay

The general solution for T(x, y) is

L

T(x,y)= 2, (C,cosh A, y+D,sinh A, y) sin A, x

n=1

with lﬂégh—zllm, n=1,2,...

and C,=C,B, D,=D,B,
The coefficients C, and D, are determined by applying the boundary condition (ii). At y = 0
T(t, 0)=C, sindyx=T),  O<x<L

from which you can determine C,, to be

. 2? - 4T,
C"_L ! T s "xdx__(Zn-l)ﬂ:
Aty=18,
T(x,B)= 3, (C,coshA, B +D,sinh A, B) sinh, x=T, OD<x<L
n=1

Now we have to choose D, so that the quantity within brackets is the Fourier sine coefficient
of the function representing the given boundary value (7 in this case). Let us put

C,coshA,B+D,sinh), B=G,

Then, the coefficients G,; are given by the relation

»
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4T,

Gr= G- i

2 J Tysinh, xax=

O Sy [

This gives the coefficients D,, in terms of the known coefficients C, and G, :

b G,—C,cosh), B 4 Ty—Tycoshd, B
L © sinhA, B T (2n-Dr sinh A, B

Thus, the unique solution of this problem is

TycoshA,y Ty—T coshA B

4 % _ _
T(.t.y)—“nz::l[ T +(2n_1)smlnBsmhl,,y]sml,,x

The solution for the case B=2L, T) = 10°C,T = 20°C is shown in Fig. 8.6. The curves
shown are the isotherms T(x, y) = T, for various values of 7.

You could have solved this problem even if the boundary conditions for T(x, y) on the top
and bottom edge had been any piecewise continuous functions, instead of constants, or if the
boundary conditicns on the left and right edges had been different. Why don’t you work out
such a preblem?

l SAQS

Obtain the steady-state temperature for the rectangular plate of Fig. 8.5a given the following
boundary conditions :

. |
.= 2, %@y=-s;  0<y<B

u(x.0)=0. u(qu)=0' . O<cx<L

* In a certain class of problems involving conductors, all the charge is found on their surfaces.
The potential at all points outside the conductor satisfies Laplace’s equation. Let us now
solve Laplace’s equation for the electrostatic potential of a conductor.

-So far we have considered problems which require Cartesian coordinate system. In the final
section of this unit we are considering an application of Fourier series 10 a potential problem
in 8 non-Cartesian geometry.

8.42 . The Potential at a Point due to a Circular Disc

Let us solve Laplace’s equation for the potential on a circular metallic disc. For a circular
disc it is natural to use plane-polar coordinates ( r, 8). The problem is as follows :

19 o . . '
rar[ ar] rz[aez]—o. 0<rel, —:I'I:.<951t {8.9a)
u(L, 0)=£(0), n<B8<n : (8.9b)
There are two special features of this problem:
) The points € = -  and 8 = &t coincide. Therefore the value of and its angular

denvanve should match there:

u(r,-my=u(r,m), i(r.—n)=%(r,n), 0gr<lL -

1] ‘The point » =0 is singular: the coefficient of % in Eq. (8.9a) is 1_, while the

coefficients of other terms are 1/r and 1//* We must, therefore, enforce a condition
of boundedness

u(r,0) tendsto a ﬁ.mte value, ie.itis bounded, asr— 0

Applications of Fourier Serdes

to PDEs
y

20

‘18
10
7

5

7
10 A

Fig. 8.6: The Isotherms

Tix.y) = T, for various values of 7
when B = 22, Ti=10°C,To=20°C

Spend 15 nifnni ;s
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1]

- which gives © = A cos AB + B sin A9

Keeping these special feafures in mind, we can solve the poteritial problem using the method
of separation of variables.

Let u(r, 0) = R(r)E{6)

Substituting «(r, 8) in Eq. (8.9a) and taking into account the special continuity conditions, -

we get -
%[rR’(r)]'B{B)+%R(r)9”(9)=0, 0sr<L, —n <BST @
and R 6(-R)=R(NS(N), R é’(—ﬂ):R(r) o'm 0<r<lL | (i)

Multiplying Eq. () by r2, dividing it by R(r) © (6), and eliminating R(r)in (i) we get

AR __°®)
R) €0

- O(-m) = 6(n) and '(-) = (), (ii)

=22 0<r<L, -m<Bstn

9" +228=0

The continuity' conditions (ii) for € give us
A cos At — B sin A=A cos Ax + B sinAx
Alsin?dt+Blcoskt=—A7LsinM+Blcosln/
or 2B sinin=0
and  2AAsinAn=0
which givesA,=n, n=0,1,2,3,....

Thus, we have

©,0)=A,cosn0+8,sinnd, 1n=0,1,2,3,...
The ODE forR(r} is

Ry -
=

A2 or PR, +rR,-AR, =0

This is an Euler-LCauchy equation with linearlif independent solutions (see Example 3 of
Unit6) : -
R(D=r" and R (N=r"

The second of these is physically unacceptable as it tends to co in the limitas r — 0. Thus,
we have the general solution for u(r, 6) :

u(r,8)=Ag+ 3. (A, cos n+ B, sin nb)

n=1

The boundary conditiononr =L yields

Ag+ Y, L' (A cos 8+ B, sinnBy=f(8) -n<O<=

n='1

This is a Fourier series problem and the coefficients in the series are

to=o [ 1@ ®

TrON

T e ey r— e iy ———




L7 A,=1 | £® cosnb a0

X .
£"B,== | 7®sinn0 a0
-

‘You can solve these three integrals for any given form of f (8) provided they exist,

In this unit, we have considered certain specific applications of Fourier series to some PDEs
of special interest in physical problems, viz. the diffusion equation, the wave equation and
Laplace’s equation. The applications discussed here are, by no means, exhaustive, but only
iltustrative of this powerful method based on the Fourier series. This method applies toa
much wider variety of problems which, of course, cannot all be discussed here for want of
time, However, we are sure that you have been able to develop an eppreciation of the
usefulness of the Fourier method based on Fourier series, from what you have studied in
Units 7 and 8.

But we would certainly not like tb end this unit on the note that the Fourier method is the
uldmate method of solving linear BVPs in PDEs, There are other important methods of
solving these problems, such as methods based on Laplace transforms, Fourier transforms
and other integral transforms, methods that use the Green’s functions and numerical
-methods. In fact, the development of new methods for solving BVPs is an active area of
present-day mathematical research. Most of these methods are usually discussed in
advanced level courses on Mathematical Methods in Physics or Differential Equations, at
the undergraduate as well as postgraduate level.

We will now summarise what you have studied in this Unit.

8.5 SUMMARY

In this unit you have leamt to apply the Fourier series to solve various boundary-value
problems related to: :

e thediffusion equation, e.g., the problems of heat conduction and diffusion of liquids in
porous solids ’

the wave equation, e.g., the problems of vibrating strings and torsional vibrations
e Laplace’s equation, e.g., the steady-state heat flow and the potential problem.

8.6 TERMINAL QUESTIONS

1. A cylindrical elastic bar (e.g., steel bar) of natural length L is initially stretched by an
amount ¢ and is at rest. The initial longitudinial displacement of any section of the
bar is proportional to the distance from the fixed end x = 0. At the instant ¢ = 0, both
ends are released and left free. The longitudinal displacement y(x, £) of the bar
satisfies the following BVP

N Pylr ) _ 1 Px, 1)
Fr Y

where v = E/p, E is the modulus of elasticity and p is the density of the material of
the bar. Since the ends are free, the force per unit area on the ends of the bar is zero
and we get

D 0 ne Dy oaa
ar(oi r)_0| aI(L' l)—0

Further y(x, 0) = cx, % {(x,0)=0

Solve the BVP and obtain y(x, f).

2. The flow of electric current in a pair of telephone wires or power transmission lines

Applications of Fourier Series

to PDEs
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The boundary conditions for a shaft with both ends free,

%E . atx=0andatx=L
imply that for all f > 0

gf—'o stx=0andatx=L
‘Thisgives

D=0 and CsinAL=0

whence

A =

g
(4 L'

n=12,....

Thus, the general solution for 0(x, ) is

B(x, = E (a,cos A, vt+b, sind, vi)cos A, x
n=1

wherea,=A,C, and 5,=8,C,.
At =0, 8(x, Q) is proportional to (2x — L)/2.
~ B(x,0)=Za"cothx=k£¥l. O<x<L
n=1

Using the helf-range expansion technique we get

T e e

L L L
o
=E — X 51N —/— +L_2 COSE —'E 5N ——
L L i L | "L
2
=%#(cosnu—l)
=——(cosnn-1)

Since the shaft starts vibrating from rest, its initial velocity is zero giving the
condition

2 0=
o & 0)=0

or’ Z bpA,veosA x=0
n=1l
This will be satisfied only if &, = 0 for all n. Thus, the solution for the given BVP is

HIY

O(x, f)-—z;:'*_-z'k— 2 Lz(cos HE — l)cosnTmcns

1

" We seek non-trivial solutions in the product form u(x, y) = X(x} ¥ (). Applying the
method of separation of variables we get

kY

A &P




X—"@ 1,—”(!l=0 O<x<i, 0Q<y<B8
X(x) + Y0) . ’ s ¥

with the boundary cenditions
X ym=o, X)) ¥(B)=0, O<x<lL
or Y(0)=0, ¥{(B)=0 .

Since Y has to vanish at the boundaries y =0 and y = B, the ratio YT cannot be

positive, Thus, we get the QDEs:
X"-2X=0, Y”+AlY=0
whence X(x) = A cosh Ax+ 8 sinh Ax
_ Y(y)f—-Ccos Ay+ D sin Ay
The boundary conditions on ¥ yield the following values of Cand A :

C=0, x,,=%. n=1,2,3,.... :

musY,,(y)=D,,sin£.-;2, n=1,23,....

Thus, the general selution is

u(x, y)= Z (a, cosh A, x + b, sinh A, x) sin Ay

n=1 .
wherea,=A,D,.b, =B D,. .

Applying the remaining boundary conditions we get

U,
Atx=0, 2 a,sini y=——

o
B O<y<B

=1

Using the half-range expansion technique, we get

|20 2
=—g[—£-cosrm+0J
n

2Uqgcos nn
N nn

du

At x=L, ax(L'y)__S' O<y<B8 |
Differentiating the series for u(x,y) term by t¢rm and applying the given boundary
conditions we get

Wy y=S inh &, L+ b, cosh A, L) si

5 &M= 2, Ay (a,sinh &, L+b, cosh nL)sind,y=-S, 0<y<B

n=1
So we must choose b,, such that the coefficient of sin A,y will be

€=y (a, sinh A, L4 b, cosh L)
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