
Bachelor in Computer Application

 BCA-1.2Vol-2/B.Sc.
(UGCS-04 /UGCS-103)

Block-1 Introduction of Data Structures, Basics of
Algorithms and Array 3

UNIT-1 Introduction to Data Structure 7

UNIT-2 Basics of Algorithm 17

UNIT-3 Array 31

Block-2 Stack, Queue and Recursion 49
UNIT-4 Stack 53

UNIT-5 Recursion 71

UNIT-6 Queue 81

Block-3 Linked List, Tree and Graph 95
UNIT-7 Linked List 99

UNIT-8 Tree 133

UNIT-9 Graph 181

Block-4 Searching and Sorting, Hashing and File
Organization 227

UNIT-10 Searching and Sorting 231

UNIT-11 Hashing 289

UNIT-12 File Organization 305

Uttar Pradesh Rajarshi Tandon
Open University

(''C'' Programming and Data Structure)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/2

BLOCK

1
Introduction of Data Structures, Basics of
Algorithms and Array
UNIT-1

Introduction to Data Structure

UNIT-2

Basics of Algorithm

UNIT-3

Array

Bachelor in Computer Application

 BCA-1.2Vol-2/B.Sc.
(UGCS-04 /UGCS-103)

Uttar Pradesh Rajarshi Tandon
Open University

(''C'' Programming and Data Structure)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/3

07-16

31-48

17-30

Curriculum Design Committee
Dr.P.P.Dubey Coordinator
Director, School of Agri. Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Mr. Prateek Kesrwani Member Secretary
Academic Consultant-Computer Science
School of Science, UPRTOU, Prayagraj

Course Design Committee
Member

Member

Member

Prof. U. N. Tiwari
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav,
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Faculty Members, School of Sciences
Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU,
Prayagraj
Ms. Marisha Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science,
UPRTOU, Prayagraj

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/4

Dr. Academic Consultant (Maths), School of Science, UPRTOU,
Prayagraj
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science,
UPRTOU, Prayagraj
Dr. Deepa pathak, Academic Consultant (Chemistry), School of Science,
UPRTOU, Prayagraj
Dr. A. K. Singh, Academic Consultant (Physics), School of Science,
UPRTOU, Prayagraj
Dr. S. S. Tripathi, Academic Consultant (Maths), School of Science,
UPRTOU, Prayagraj

Course Preparation Committee
Prof. Manu Pratap Singh, Author
Dept. of Computer Science
Dr. B. R. Ambedkar University, Agra-282002
Dr. Ashutosh Gupta Editor
Director, School of Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science
Baranas Hindu University, Varanasi
Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-15-4
All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2018.
Printed By: Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/5

COURSE INTRODUCTION
The objective of this course is to introduce the basic concepts of data
structures. The implementation details of various types of data structures
and their applications for the computations and in computer science for
solving the real world problems. Various types of data structures like
linear and non-linear are discussed in detail. After reading this course
material you are able to understand the meaning of data structure and also
learn about their implementation. You will also able to see how the data
structures useful for the computation. The aim is to provide an extensive
variety of topics on this subject with appropriate examples. The course is
organized into following blocks:

Block-1 Introduction of data structures, basics of algorithms and Array

Block-2 Data structures like Stack & Queue and recursion.

Block-3 Linked list, Tree and Graph.

Block-4 Searching & Sorting, Hashing and File organization

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/6

UNIT-1 INTRODUCTION TO DATA
STRUCTURE

Structure

1.0 Introduction

1.1 Objective

1.2 Algorithm Definition

1.3 Basic criteria of Algorithm

1.4 Data structure Definition

1.5 Data types

1.6 Types of data Structures

1.7 Representation of Data structure

1.8 Data Structure operations

1.9 Summary

1.0 INTRODUCTION

This unit is an introductory unit and gives you an understanding of
data structure, Algorithm, Data representation, various Data types and a
general overview about linear and non-linear data structures. It is about
structuring and organizing data as a fundamental aspect of
developing a computer application.

1.1 OBJECTIVES

After the end of this unit, you should be able to:

1. Understand about algorithm.

2. Understand of the data organization and representation

3. Define the term data structure

4. Understand about various data types

5. Know the classification of data structure i.e. linear and non-linear

6. Introduce with data structure representation and operation on data
structures

1.2 ALGORITHM DEFINITION
An algorithm is a set of instructions to be done sequentially. Any

work to be done can be thought as series of steps. For example, to perform
an experiment, one must do some sequential tasks like:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/7

http://en.wikipedia.org/wiki/Algorithm

1. Set up the required apparatus

2. Do the process required

3. Note any observations

4. Summarize the results

These tasks accomplish an experiment. Let us see where such sequential
steps are employed.

A computer or other electronic device which accomplishes a logical task is
not actually logical but is simply following a series of programmed,
sequential instructions. A computer algorithm consists of a series of well-
defined steps given to the computer to follow. We can also define the
algorithm as:

1. “An algorithm is a well define procedure that takes some value as
input and produces some value as the output in finite number of
steps.”

2. “An algorithm is thus a sequence of computational steps that
transform the input into the output that must halt after a final
number of steps or time”

3. “An algorithm is a procedure for processing that is formulated so
precisely that it may be performed by a mechanical or electronic
devices must be formulated so exactly that the sequence of the
processing steps is completely clear and it has to terminate in
definite time.”

The typical examples for algorithms are computer programs written in a
formal programming language.

Example: Write an algorithm to exchange the value of two variables.

Algorithm:
1. Consider the two variables a, b with some values.

2. Consider a third variable t.

3. Do the following steps

(a) Assign the value of a to t

(b) Assign the value of b to a

(c) Assign the value of t to b

4. Print the exchange value of a and b

1.3 BASIC CRITERIA FOR ALGORITHMS:

There are following basic criteria for an algorithm:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/8

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Logic

1. The algorithm must be expressed in a fashion that is completely
free of ambiguity.

2. The algorithm must be efficient. It should not unnecessarily use
memory locations nor should it require an excessive number of
logical operations.

3. The algorithm should be concise and compact to facilitate
verification of their correctness.

4. The algorithm must be independent from any programming
language mostly its written in pseudo code, so it can convert to any
programming language with the proper use of programming
language syntax.

1.4 DATA STRUCTURE DEFINITION

First we define the meaning of simple data. Data are simply values
or set of values. A data item is either the value of a variable or a constant.
For example, the value of a variable x is 5 which is described by the data
type integer, a data item is a row in a database table, which is described by
a data type. A data item that does not have subordinate data items is called
an elementary item. A data item that is composed of one or more
subordinate data items is called a group item. A record can be either an
elementary item or a group item. For example, an employee’s name may
be divided into three sub items – first name, middle name and last name
but the social_security_number would normally be treated as a single
item. Data may be organized in many different ways:

• The logical or mathematical model of a particular organization of
data is called a data structure.

• A data structure is an arrangement of data in a computer’s memory
or even disk storage.

• Data structure is the method to store and organize data to facilitate
access and modifications

• A data structure, sometimes called data type, can be thought of as a
category of data. Like, Integer is a data category which can only
contain integers. String is data category holding only strings. A
data structure not only defines what elements it may contain, it also
supports a set of operations on these elements, such as addition or
multiplication.

• Data structures are ways to organize data (information) for
example:

o Simple variables are consider as the Primitive types

o Array, the collection of data items of the same type, stored in
memory at contiguously

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/9

o Linked list, the sequence of data items, each one points to the
next one, stored in memory at non-contiguously.

• Data structures are building blocks of a program. If program is
built using improper data structures, then the program may not
work as expected always.

• The possible ways in which the data items are logically related
define different data structures.

• A data structure is a collection of different data items that are
stored together in a clearly defined way.

The examples of several common data structures are string, arrays,
Stacks, Queues, Linked list, Binary Trees, Graph and Hash Tables.

In combination with Algorithm we may define the data structures as:

• Algorithms go with the data structures to manipulate the data i.e.
Algorithms are used to manipulate the data contained in these data
structures as in the form of sorting and searching.

• More generally we can say: Algorithms + Data Structures =
Programs.

1.5 DATA TYPE

A data type is a classification of data, which can store a specific
type of information. Data types are primarily used in computer
programming, in which variables are created to store data. Each variable is
assigned a data type that determines what type of data the variable may
contain. Thus a data type is a method of interpreting a pattern of bits.
There are numerous different data types. They are used to make the
storage and processing of data easier and more efficient.

A data type is a term which refers to the kinds of data that variables may
hold. With every programming language there is a set of built-in data
types. This means that the language allows variables to name data of that
type and provides a set of operations which meaningfully manipulates
these variables. Some data types are easy to provide because they are
built-in into the computer’s machine language instruction set, such as
integer, character etc. Other data types require considerably more efficient
ways to implement. In some languages, these are features which allow one
to construct combinations of the built-in types (like structures in ‘C’).
However, it is necessary to have such mechanism to create the new
complex data types which are not provided by the programming language.
The new type also must be meaningful for manipulations. Such
meaningful data types are referred as abstract data type.

Different programming languages have their own set of basic data types.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/10

http://pc.net/glossary/definition/datatype

Basic data types or primitive data types
The most common basic or intrinsic data types or primitive data types are
as follows:

• Integer : It is a positive or negative number that does not contain
any fractional part.

• Real : A number that contains the decimal part

• Boolean : It is a data type that can store one of only two values,
usually these values are TRUE or FALSE

• Character : It is any letter, number, punctuation mark or space,
which takes up a single unit of storage, usually a byte

• String : It is sometimes just referred to as ‘text’. Any type of
alphabetic or numeric data can be stored as a string: “Delhi City”,
“30/05/2013” and “459.78” are all examples of the strings. Each
character within a string will be stored in one byte using its ASCII
code. The maximum length of a string is limited only by the
available memory.

Structure data types or Non Primitive data types
There is another class of data types which is considered as structure data
types or non primitive data types. These data types are user defined data
types. Structured data types hold a collection of data values. This
collection will generally consist of the primitive data types. Examples of
this would include arrays, records, list, tree and files. These data types,
which are created by programmers, are extremely important and are the
building block of data structures. These are more complex data structures.
They stress on formation of sets of homogeneous and heterogeneous data
elements.

Abstract data types or Non-primitive data types
It is another form of the non-primitive data types. An abstract data type
can be assumed as a mathematical model with a collection of operations
defined on that model i.e. an Abstract data type (ADT) is a new data type
derived or created from basic or built in data type based on a particular
logical or mathematical model. For example Set of integers consisting of
different numbers may be an ADT. A set is a combination of more than
one integer, but the operations on set is a generalized operation of
different integers such as union, intersection, product, and difference.

Note: If the data contains a single value this can be organized using
primitive data type. If the data contains set of values they can be
represented using non-primitive data types.

Now on the basis of above mentioned data types the data structure can be
defined as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/11

“An implementation of abstract data type is data structure i.e. a
mathematical or logical model of a particular organization of data is
called data structure.”

1.6 TYPE OF DATA STRUCTURES

A data structure is the portion of memory allotted for a model, in
which the required data can be arranged in a proper fashion. Normally The
data structures are of two types or it can be broadly classified into two
types of data structures:

(i) Primitive data structure

(ii) Non-primitive data structure

1. Primitive data structure : The data structures that typically are
directly operated upon by machine level instruction. Examples:
Integers, Real numbers, Characters and pointers, and their
corresponding storage representation. Programmers can use these
data types when creating variables in their programs. For example,
a programmer may create a variable say “z” and define it as a real
data type. The variable will then store data as a real number.

2. Non primitive data structure : Non – primitive data structures are
not defined by the programming language, but are instead created
by the programmer. They are also called as the reference variables,
since they reference a memory location, which stores the data.
These data structures are derived from the primitive data
structures. Examples: Array, Stack, Queues, Linked list, Tree,
Graphs and hash table.

There are two type of-primitive data structures.

a) Linear Data Structures:-

In linear data structure the elements are stored in sequential
order. Hence they are in the form of a list, which shows the
relationship of adjacency between elements and is said to be
linear data structure. The most, simplest linear data structure
is a 1-D array, but because of its deficiency, list is frequently
used for different kinds of data. The linear data structures are:

(i) Array : The Array is a collection of data of same data
type stored in consecutive memory location and is
referred by common name.

(ii) Stack : A stack is a Last-In-First-Out or First-In-Last-
Out linear data structure in which insertion and deletion
takes place at only from one end called the top of the
stack.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/12

(iii) Queue : A Queue is a First-In-First-Out or Last-In-
Last-Out data structure in which insertion takes place
from one end called the rear and the deletions takes
place at one end called the Front.

(iv) Linked List : Linked list is a collection of data of same
type but the data items need not be stored in
consecutive memory locations. It is linear but non-
contiguous type data structure. A linked list may be a
single list or double list.

• Single Linked list: - A single list is used to
traverse among the nodes in one direction.

• Double linked list: - A double linked list is used
to traverse among the nodes in both the directions.

b) Non-linear data structure:-

In non linear data structure the elements are stored based on
the hierarchical relationship among the data. A list, which
doesn’t show the relationship of adjacency between elements,
is said to be non-linear data structure. The non-linear data
structures are:

(i) Tree: This data structure is used to represent data that
has some hierarchical relationship among the data
elements. Thus, it maintains hierarchical relationship
between various elements.

(ii) Graph: This data structure is used to represent data
that has relationship between pair of elements not
necessarily hierarchical in nature. It maintains random
relationship or point-to-point relationship between
various elements. For example electrical and
communication networks, airline routes, flow chart
and graphs for planning projects.

1.7 REPRESENATION OF DATA
STRUCTURES
There are generally two common methods for the data structure

representation. These methods can be specified as:

(i) Sequential representation

(ii) Linked representation

(i) Sequential representation
A sequential representation maintains the data in continuous
memory locations which takes less time to retrieve the data but
leads to more time during insertion and deletion operations due to
its sequential nature.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/13

(ii) Linked Representation
 Linked representation maintains the list by means of a link
between the adjacent elements which need not be stored in
continuous memory locations. During insertion and deletion
operations, links will be created or removed between which it takes
less time when compared to the corresponding operations of
sequential representation. Generally, linked representation is
preferred for any data structure.

1.8 DATA STRUCTURE OPERATIONS

The data elements appearing in the data structure is processed by
means of certain operations. In fact the particular data structure that one
chooses for a given situation depends largely on the frequency with which
specific operations are performed. The following major operations
performed on data structures are:

Insertion
It provides the means for adding new details or new node into the

existing data structure.

Deletion
It provides the means for removing a node from the data structure.

Traversing
It provides the means for accessing each node exactly once so that

the nodes of a data structure can be processed. It is also called the visiting
to data structure.

Searching
It provides the means for finding the location of node for a given

key value or finding the locations of all records, which satisfy one or more
conditions.

Sorting
It provides the means for arranging the data in a particular order in

given data structure.

Merging
It provides the means for joining the two data structures.

Note : Sometimes two or more data structure of operations may be used in
a given situations; e.g. we may want to delete the records with a given
key, which may means we first need to search for the location of the
record.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/14

1.9 SUMMARY
• Data structure is the particular organization of data either in a

logical or mathematical manner

• Data type is a concept that defines internal representation of data.

• Data structures are building blocks of a program. If program is
built using improper data structures, then the program may not
work as expected always

• An algorithm is a set of instructions to be done sequentially. Any
work to be done can be thought as series of steps.

• An abstract data type is the specification of logical and
mathematical properties of data types or structure. It acts as a
guideline to implement a data structure.

• A data structure is the portion of memory allotted for a model, in
which the required data can be arranged in a proper fashion

• Primitive and non-primitive are the two basic data types of data
structure.

• The relationship between abstract data type and data structure is
well defined. An abstract data type is the specification of a data
type whereas data type is the implementation of abstract data type
and data structure comprises computer variable of same or
different data types.

• There are generally two common methods for the data structure
representation i.e. Sequential and linked representation.

Bibliography
Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Ulrich Klehmet: “Introduction to Data Structures and Algorithms”, URL:
http://www7 . Informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

R. B. Patel “Fundamental of Data Structures in C”, PHI Publication

V. Abo. Hopcropft, Ullaman, “data Structure and Algorithms”, I.P.E.

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/15

http://en.wikipedia.org/wiki/Algorithm
http://www7/

SELF EVALUATION
1. Define the data structure and Algorithm.

2. What are different data types? Give the example of each data type.

3. Specify the types of data structure with the example of each type.

4. What are the various operations on data structures?

5. While Considering the data structure implementations, the factor
under consideration is/are:

a. Time

b. Space and Time

c. Time, Space and Processor

d. None of the above

6. A data type is the collection of values and the set of operations on
values (True/False)

7. ………………..refers to the collection of computer variables that
are connected in some specific manner.

8. One of the example of a structured data type can
be…………………..

9. Explain abstract data type with an example.

10. What is a data structure and what are the difference between data
types, abstract data type and data structure?

11. An -------------data type is a keyword of a programming language
that specifies the amount of memory needed to store data and the
kind of data that will be stored in that memory location.

a. Abstract b. int

c. vector d. None of these

12. Graphs are classified into …………….. category of data structure.

13. What do you mean by LIFO and FIFO?

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/16

UNIT-2 BASICS OF ALGORITHM

Structure

2.0 Introduction

2.1 Objectives

2.2 Algorithm

2.3 Format Convention of algorithm

2.4 Complexity of Algorithm

2.5 Time Complexity

2.6 Common Computing Times of Algorithm

2.7 Example and analysis

2.8 Summary

2.0 INTRODUCTION

This unit is an introductory unit about the algorithm basics and
complexity of the algorithm. It gives you an understanding about
Algorithm structure, the format for writing the algorithm and the time of
execution and space in memory during the course of execution for the
algorithm which considers as the time and space complexity of the
algorithm.

2.1 OBJECTIVES

Algorithm designing is an important process of solving the
problem. The designing of an algorithm considers various aspects like
space and time requirement for the execution of algorithm. At the end of
this unit, you will be able to:

1. Understand about basic of algorithm.

2. Understand of Computation time for execution of algorithm

3. Understand about requirement of the space during the course of
execution for algorithm.

4. Notation for determining the time complexity of the algorithm
(Asymptotic notations)

5. Understand the analysis of algorithm with asymptotic notations

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/17

2.2 ALGORITHM

The algorithm provides the way for solving the given problem in a
systematic way. The term algorithm refers to the sequence of instructions
that must be followed to solve a problem. Alternatively, an algorithm is a
logical representation of the instructions which should be executed to
perform a meaningful task. There are following characteristics of the
algorithm:

• Each instruction should be unique and concise

• Each instruction should be relative in nature and should not repeat
infinitely

• Result should be available to the user after the algorithm
terminates.

Therefore, an algorithm is any defined computational procedure, along
with a specified set of allowable inputs that produce some value or set
values as output. There are two basic approaches for designing the
algorithm.

• Top-Down approach: In this approach we start from the main
component of the program and decomposing it into sub problem or
components. This process continues until all the sub modules do
not solve. Top-down design method takes the form of stepwise
refinement. In this, we start with the topmost module and
incrementally add modules that it calls.

• Bottom – Up approach: In this approach of designing we start with
the most basic or primitive components and proceeds to higher-
level components. Bottom-up method works with layer of
abstraction.

Here a simple example of the algorithm is presented to demonstrate the
various algorithmic notations and a way to express the algorithm for
solving the problem.

Example :

Algorithm Greatest:

This algorithm finds the largest algebraic element of vector A which
contains N elements and places the result in MAX. I is used to subscript
A.

1. [Is the vector empty?]

If N < 1

Then print(‘Empty Vector’)

Exit

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/18

2. [Initialize]

MAX=A[1] [We assume initially that A[1] is the greatest
element]

I=2

3. [Examine all elements of vector]

Do while I<=N

3.1 [Change MAX if it is smaller than the next element]

If MAX < A[I]

Then MAX= A[I]

3.2 [Prepare to examine next element in vector]

I = I+1

4. [Finished]

Exit

2.3 FORMAT CONVENTION OF ALGORITHM

Hence from this example we can consider the following format
conventions for writing the algorithm. These conventions are so general
that these may be used for writing any algorithm.

• Name of Algorithm: Every algorithm is given an identify name

• Introductory Comment: The algorithm name is followed by a brief
description of the tasks the algorithm performs.

• Steps: The algorithm is made up of a sequence of numbered steps,
each beginning with a phrase enclosed in square brackets which
gives an abbreviated description of that step.

• Comments: Every step of the algorithm is explained for better
understanding of it. These comments are expressed in brackets.
Comments specify no action and are included only for clarity.

• Statements and control Structures: It includes the various operators
and looping methods those are required for logical and arithmetical
operations. For example; Assignment statement, If-statement, Case
statement and looping methods.

• Variable names: An entity that possesses a value and its name is
chosen to reflect the meaning of the value it holds. For example
The MAX is considered as the variable in our previous example of
algorithm Greatest.

• Data structures: various data structures including static and
dynamic structures are used for the implementation of algorithm.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/19

• Arithmetic operations and expressions: The algorithm notation
includes the standard binary and unary operators according to their
standard mathematical order of precedence as follows:

Operation Symbol Order of

Evaluation

1. Parentheses () Inner to outer

2. Exponentiation, Unary

plus, minus

∧, ++ , _ _ Right to left

3. Multiplication, Division *, / Left to right

4. Addition, Subtraction =, - Left to right

• Relations and Relational Operators: There are standard relational
operators (<, <=, >=, ≠, =, ==) are used with their usual meaning
in the implementation of algorithm. A relation evaluates to a
logical expression that is, it has one of two possible values, True or
False.

• Logical operations and Expressions: The algorithmic notation also
includes the standard logical operators like NOT, OR & AND with
their usual meaning. These may be used to connect relations to
form compound relations whose only values are True or False. In
order that logical expressions be clear, we consider that operators
precedence is as follows:

Precedence Operator

1 Parentheses

2 Arithmetic

3 Relational

4 Logical

• Input and output: The algorithm notation must include the notation
for input and output. The input is obtained and placed in a variable
and output is obtained by getting the value from variable.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/20

• Functions: A function is used when we want a single value
returned to the calling routine. Transfer of control and returning of
the value are accomplished by ‘Return (value)’.

• Procedures: A procedure is similar to a function but there is no
value returned explicitly. A procedure is also invoked differently,
where there are parameters, a procedure returns its results through
the parameters.

All algorithms must satisfy the following criteria.

1. Input

2. Output

3. Definiteness

4. Finiteness

5. Effectiveness

The criteria 1 & 2 require that an algorithm produces one or more
outputs & have zero or more input. According to criteria 3, each operation
must be definite such that it must be perfectly clear what should be done.
According to the 4th criteria algorithm should terminate after a finite
number of operations. According to 5th criteria, every instruction must be
very basic so that it can be carried out by a person using only pencil &
paper.

After an algorithm has been designed its efficiency must be
analysed. This involves determining whether the algorithm is economical
in the use of computer resources, i.e. CPU time and memory
requirement. The term used to refer to the memory required by an
algorithm is memory space and the term used to refer to the
computational time is the execution time. The importance of efficiency of
an algorithm is the correctness. Thus, it always produces the correct result
and algorithm complexity which considers both the difficulty of
implementing an algorithm along with its efficiency.

Therefore the requirement for implementation of an algorithm with
correctness considers many aspects. The fundamental question arises is
that “How can we judge how useful a certain combination of data
structures and algorithm is?” Of course the answer of this question
depends that how can we evaluate the effort that arises from performing a
computation using the certain combination of data structures and
algorithms. There may be many algorithms devised for an application and
we must analyse and validate the algorithms to judge the suitable one.

Hence this effort is measured normally with following two important
factors those have the direct relationship with the performance of the
algorithm:

• Memory space used i.e. Space complexity. The space complexity
of an algorithm is the amount of memory it needs to run.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/21

• CPU time involves runtime or execution time for the program
based on the algorithm i.e. Time Complexity. The time
complexity of an algorithm is given by the number of steps taken
by the algorithm to compute the function it was written for.

2.4 COMPLEXITY OF ALGORITHM

The Complexity of algorithm is considered actually as in the form
of computational complexity. Computational complexity is a
characterization of the time or space requirements for solving a problem
by a particular algorithm. These requirements are expressed in terms of a
single parameter that represents the size of the problem. For example we
consider a problem of size n. Let the time required of a specific algorithm
for solving this problem is expressed by a function:

f: R⟼R

Such that f(n)is the largest amount of time needed by the algorithm to
solve the problem of size n. The function ‘f’ is usually called the time
complexity function. Thus, we can say that the analysis of the algorithm
requires two main considerations:

• Time Complexity

• Space Complexity

The time complexity of an algorithm is the amount of computer time that
it needs to run to completion. The space of an algorithm is the amount of
memory that it needs to run to completion.

2.5 TIME COMPLEXITY

In order to compute the time complexity of an algorithm we
consider only the frequency count of the important steps or instructions.
Since these data structures are so widespread, it is important to implement
them efficiently. This efficiency is measured using the following two
methods:

• Asymptotic Analysis

• Big-O analysis

It is very general that the actual time (wall-clock time) of a program is
affected by:

• Size of the input

• Programming language

• Programming tricks

• Compiler

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/22

• CPU Speed

• Multiprogramming level

Hence instead of wall clock time for the program if we consider the
pattern of the program’s behaviour as the program size increases. This is
called the Asymptotic Analysis.

Big- O Analysis
If f(n) represent the computing time of some algorithm and g(n) represents
a known standard function like n, n2, n log n etc then to write: f(n) is O
g(n) means that f(n) of n is equal to biggest order of function g(n). This
implies only when:

f(n)≤Clog (n) for all sufficiently large integers n, where C is the constant.
Thus from the above statements we can say that the computing time of an
algorithm is O(g(n)), we mean that its execution time is no more than a
constant time g(n), n is the parameter which characterizes the input and /
or outputs. From the practical point of view, we get the Big-O notation for
a function by:

1. Ignoring multiplicative constants (these are due to pesky difference
in compiler, CPU, etc.)

2. Discarding the lower order terms (as n gets larger, the largest term
has the biggest impact). Like;

• 8410 = O(1)

• 100n3+nlogn+67n7+4n = O(n7)

The Big-O notation helps to determine the time as well as space
complexity of the algorithms. The Bog-O notation has been extremely
useful to classify algorithms by their performances. Now we consider the
three simple algorithms with different number of sequences or steps:

Algorithm 1:

a=a+1

Algorithm 2:

For i= 1 to n do:

a=a+1

end loop

Algorithm 3:

For i=1 to n do

For j= 1to n do

a=a+1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/23

end loop

end loop

Now we do the analysis of these three algorithms and can see their
performance with Big – O notation. In the algorithm 1 we may find that
the execution statement a=a+1 is the independent and is not constrained
within any loop. Therefore, the number of times this will execute is 1.
Thus, the frequency count of this algorithm is 1. Hence its Time
Complexity is O(1).

In the second algorithm, the execution statement a=a+1 is inside the loop.
The number of times it is executed is n as the loop runs for n times. The
frequency count for this algorithm is n. Hence its Time Complexity is
O(n).

In the third algorithm, the frequency count for the execution statement
a=a+1 is n2 as the inner loop runs n times, each time the outer loop runs,
the outer loop also runs for n times. Hence its Time Complexity is O(n2).

Therefore during the analysis of algorithm we have the concern to
determine the order of magnitude of an algorithm. Thus, we consider only
those statements which may have the greatest frequency count.

2.6 COMMON COMPUTING TIMES OF
ALGORITHM

The common computing times of algorithms in the order of their
performance are as follows:

• O(1): It means that the computing time of the algorithm is constant

• O(log n): It means that the computing time of the algorithm is
logarithmic

• O(n): It means that the computing time of the algorithm is directly
proportional to n. It is known as the linear time.

• O(n log n): It means that the computing time of the algorithm is
logarithmic

• O(n2): It is known as the quadratic time

• O(n3): It is known as the cubic time

• O(2n): It is known as the exponential time. Generally the algorithm
with exponential time has no practical use.

There are different types of time complexities which can analyse for an
algorithm:
• Best case time complexity: The best case complexity of an

algorithm is a measure of the minimum time that the algorithm will
require for an input of size ‘n’. The running time of many

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/24

algorithm varies not only for the input of different size but for the
different inputs of the same size.

• Average case time complexity: The time that an algorithm will
require to execute input data of size ‘n’ is known as average case
time complexity. We can say that the value that is obtained by
averaging the running time of an algorithm for all possible inputs
of size ‘n’ can determine average-case time complexity.

• Worst case time complexity: The worst time complexity of an
algorithm is a measure of the maximum time that the algorithm
will require for an input of size ‘n’. The worst case complexity is
useful for a number of reasons. After knowing the worst case time
complexity, we can guarantee that the algorithm will never take
more than this time.

Hence the computation of exact time taken by the algorithm for its
execution is very difficult. Thus, the work done by an algorithm for the
execution of the input of size ‘n’ defines the time analysis as function f(n)
of the input data items.

2.7 EXAMPLE AND ANALYSIS

Example: This example exhibits the analysis of linear search algorithm
complexity.

Consider the algorithm to search vector (array) V of size N for the location
containing value X.

Algorithm SEARCH [Given a vector V containing N elements, this
algorithm searches V for the value of a given X. FOUND is a Boolean
variable. I and LOCATION are integer variables.]

1. [Search for the location of value X in vector V]

FOUND = false

 I=1

 Do while ((I<=N) && (FOUND ==false))

 If V[I] ==X

 Then FOUND==true

 LOCATION = I

 EXIT

Else I = I + 1

Print(“Value of”, X,”NOT FOUND”)

2. [Finished]

Exit

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/25

Analysis : A reasonable active operation in the algorithm is the
comparison between values of V and X. However, a problem arises in
counting the number of active operations executed and the answer depends
on the index of the location containing X. The best case is when X is equal
to V [1] since only one comparison is used. The worst case is when X is
equal to V [N] and N comparisons are used. Now to obtain the time of
execution for the average case we need to know the probability
distribution for the value X in the vector, i.e. the probability of X occurring
in each location. If we assume the vector is not sorted, it is reasonable to
assume that X is equally likely to be in each of the locations. But X might
not be in the list at all. Let q be the probability that X is in the list. Then
using the above assumption, we have;

Probability X is in location = q/N;

Probability X is not in the vector = 1-q;

The average time is given by:

∑=
S

avgT
sin

)((Probability of situation s) * (time for situation s) [where S

is the set of all possible situations where the X can be found]

∑ ∑
= =

−+
+

=−+=−+=
N

s

N

s
NqNqNqs

N
qNqs

N
qavgT

1 1
*)1(

2
)1(**)1(*)1(*)(

Thus if q=1, then:
2

)1()(+
=

NavgT

And if q=1/2, then:
4

3
24

)1()(NNNavgT ≈+
+

=

So in either case the time is proportional to N.

Thus we obtain the time complexity for three cases as:

Best - case time for the linear search is O (1)

Worst-case time for the linear search is O (N)

Average-case time for the linear search is O (N)

Space Complexity

The space needed by the program is the sum of the following components:

• Fixed space requirement: This includes the instruction space, for
simple variables, fixed size structured variables and constants.

• Variable space requirement: This consists of space needed by
structured variables whose size depends on particular instance of
variables.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/26

2.8 SUMMARY

This unit described the algorithm and its analysis in very concise
manner. The algorithm provides the way for solving the given problem in
a systematic way. The following points are described in this unit:

• The term algorithm refers to the sequence of instructions that must
be followed to solve a problem.

• An algorithm is a logical representation of the instructions which
should be executed to perform a meaningful task.

• Analysis of the algorithm is done after determining the running
time of an algorithm based on the number of basic operations it
performs.

• There are two basic approaches for designing the algorithm i.e.
Top-down approach and Bottom –Up approach.

• The running time varies depending upon the order in which input
data is supplied to it.

• Analysis of an algorithm is done on the following basis:

∗ Best case time complexity

∗ Worst case time complexity

∗ Average case time complexity

• Comparison of algorithm is done on the basis of the programming
efforts for a program and on the basis of time and space
requirements for the program.

• Big ‘O’ notation is extremely useful for classifying algorithms by
their performances.

• Examples and analysis for computing the time complexity of the
algorithm is explained.

Bibliography
Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Ulrich Klehmet: “Introduction to Data Structures and Algorithms”, URL:
http://www7 . Informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/27

http://www7/

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

V. Abo. Hopcropft, Ullaman, “data Structure and Algorithms”, I.P.E.

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/28

SELF EVALUATION
1. Algorithm must be:

a. Efficient

b. Concise and compact

c. Free of ambiguity

d. None of these

2. In top-down approach:

a. A problem is subdivided into sub problems.

b. A problem is tackled from beginning to end in one go.

c. Sub-problems are solved first; these all solutions to sub-
problems are put to solve the main problem.

d. None of these.

3. Which one of the following is better computing time?

a. O (N) b. O (2N)

c. O(log2 N) d. None of the above

4. Define algorithm and design an algorithm to find out the total
number of even and odd numbers in a list of 100 numbers.

5. Explain different ways of analyzing algorithm.

6. What is time and space complexity for the algorithm?

7. What is Big-O method for algorithm analysis?

8. Determine the complexity of the algorithm with Big - O notation
for the following statement:

for i = 1 to n

for j = 1 to n

for k = i to n

a = a*2;

b = b+1

end loop

end loop

end loop

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/29

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/30

UNIT-3 ARRAY

Structure

3.0 Introduction

3.1 Objective

3.2 Definition of Array

3.3 Declaration and initialization of array

3.4 One dimensional array and its memory representation

3.5 Operation on Linear Array

3.6 Two-Dimensional Array

3.7 2-D array representation

3.8 Multi-Dimensional Arrays

3.9 Sparse Matrices

3.10 Summary

3.0 INTRODUCTION

This unit discusses about one of the linear type data structure i.e.
Array. It also presents about the various operations that can be performed
on Arrays. This unit also presents the two-dimensional and
multidimensional arrays and their representations in row-major and
column-major order. It also considers about the formulation of address
calculation for single, two and multi dimensional arrays. In the last it
introduces the concept of sparse matrices.

3.1 OBJECTIVE

Array is a linear data structure with contiguous memory location.
The array data structure is used to store the same type of data type in
sequential manner. At the end of this unit, you will be able to;

1. Understand the definition and representation of one dimensional
array.

2. Know about the representation of two dimensional and
multidimensional arrays in row-major and column-major way.

3. Calculation of address for one, two and multidimensional arrays.

4. Understanding and representation of the sparse matrices.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/31

3.2 DEFINITION OF ARRAY

The simplest type of linear data structure is an array. The array is
preferred for the situation which requires similar type of data items to be
stored together as in contiguous memory location in static memory
allocation manner. Thus, an array is a finite collection of similar elements
stored in adjacent memory locations, for example an array may contain all
integers or all characters. Therefore an array is a collection of variables of
the same type that are referred by a common name. Alternatively we can
also say that an array is a list of a finite number n of similar data elements
referenced respectively by a set of n consecutive numbers, usually 1, 2, 3,
…n.

An array with n number of elements is referenced using an index that
ranges from 0 to n-1. The lowest index of an array is called its lower
bound and highest index is called the upper bound. The number of
elements in an array is called its range or length or size of the array. For
example the element of an array A[n] containing n elements are referenced
as A[0], A[1], A[2],......A[n-1] here the 0 (zero) is the lowest bound and n-
1 is the upper bound of the array. The array defined in this form is
considered as the linear array or the one-dimensional array. The linear
or one-dimensional array may also be defined as:

A linear array is a list of a finite number n of inhomogeneous data
elements (i.e., data elements of the same type) such that:

a) The elements of the array are referenced respectively by an index
set consisting of n consecutive numbers.

b) The elements of the array are stored respectively in successive
memory locations.

As an example if we choose the name A for the array, then the elements of
A are denoted by subscript notation: a1, a2, a3 , ……., an

Or, by the parenthesis notation: A (1), A (2), A (3) ,……., A(N)

Or, by the bracket notation: A [1], A [2], A [3] ,…….., A[N]

Regardless of the notation, the number K in A [K] is called a subscript and
A [K] is called a subscripted variable. The general equation to find the
length or the number of data elements of the array can define as:

Length = UB – LB + 1

Here, UB is the upper bound or largest index of the array and LB is the
lower bound or the smallest index of the array. This is quite obvious that
if: LB = 1 then Length = UB.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/32

3.3 DECLARATION & INITIALIZATION OF
ARRAY

Here we consider the declaration of array and its initialization. As
per the majority of people are aware from the C language so we choose the
syntax of C language for the declaration of array as well as for its
initialization. Therefore an array can be declared just like any other
variable in C i.e. data type followed by array name with subscription in
bracket which indicates the number of elements it will hold. Thus by
declaring an array, the specified number of memory locations i.e. the size
of array are allocated in the memory. The declaration of array is specified
with given example as:

int A[10]; // This is an integer type array where each element holds an
integer value and in total 10 integers can hold.

float b_charge [20]; // This is a float type array where each element holds
a float value and in total 20 values can hold.

char name [50]; // This is a character type array where each element holds
a character value and in total 50 characters can hold.

The elements of an array can be easily processed as they are stored in
contiguous memory locations and it can be seen from the following
example:

int a [5]

This is stored as:

100 102 104 106 108
a[0] a[1] a[2] a[3] a[4]

Initialization of Array
Any array can be initialized at the time of its declaration as specified in
following example:

int A[5] = [67, 102, 6, 8, 90];

float B[3] = [20.67, 100.78, 1000];

This array declaration and its initialization can be represented as:

 [0] [1] [2] [3] [4]
67 102 6 8 90

 Address⟼ 100 102 104 106 108

In this array representation the address is mentioning the memory location
i.e. the array A is of type integer and every integer occupies 2 bytes in the
memory. So if the first element of array stores at memory location 100

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/33

then the next element of array will store on location 102 and so on. Thus,
it is showing the contiguous memory location for the array.

Now we consider the example of an array of character and its
representation in the form of contiguous memory location.

Char name [4] = “Ram”

The values assigned in the name array as follows:

[0] [1] [2] [3]
R a m ‘\0’

Address⟼ 100 101 102 103

An array of characters is called a string and it is terminated by a null
character (‘\0’).

3.4 ONE DIMENSIONAL ARRAY AND ITS
MEMORY REPRESENTATION

The one dimensional array is the simplest form of a linear array.
The array is represented with its name and the elements those are referred
by the subscripts or indices of the array. A one dimensional array is used
to store a large number of items in memory. It references all item in
uniform manner. Now we consider a linear array A in memory of the
computer. As we know that the memory of the computer is simply a
sequence of addressed location as:

1000

1001

1002

1003

1005

.

.

.

.

.

.

.

Computer Memory with address location
Let us use the following notation when calculating the address of
any element in linear array or one dimensional array:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/34

LOC (A [k]) = address of the element A [K] of the array A. As we
have discussed previously that the elements of any linear array stores in
contiguous or successive memory locations. Therefore the computer does
not need to keep track of the address of every memory element of the
array but it needs to keep track of the address of the first element of the
array. This address of the location of first element of the array we
represent it by base address of the array as: Base (A). The address of any
element of the array can be calculated by using this base address of the
array as:

Loc (A [k]) = Base (A) + w (k- lower bound); here w is the
number of words per memory cell for the array A.

Note: The time to calculate Loc (A [k]) is essentially the same for any
value of k. We can locate and access the content of A [K] without
scanning any other element of A.

Examples of Array :
1. Let us consider an Array D of 5 – element linear array of integers

such that:

D [1] = 247, D [2] = 56, D [3] = 429, D [4] = 135, D [5] = 87

The array D will be represented as:

247 56 429 135 87

2. Let us consider a company which uses an array C to record the
number of items sold each year from 1932 to 1984.

Therefore rather than starting from the index 1 of the array we begin the
index set with 1932. So we know that:

 C [k] = number of items sold in the year k.

Then, Lower bound (LB) = 1932 and the upper bound (UB) = 1984 of
the array C. Now we can find the length of the array as:

Length = UB – LB + 1 = 1984-1932+1 = 53.

Hence there will be the 53 elements in the array C and the index of
the array will start from the index 1932 and ends on 1984.

3. Now from the example 2 of the array C if the base address of the
array is 200 and w = 4 words per memory cell for array C. Now
the base addresses of the following arrays are:

Loc(C [1932]) = 200, Loc(C [1933]) = 204, Loc(C [1934]) = 208,
…….. Now we find the address of the array element for the year k = 1965.
So that we have:

Loc(C [1965]) = Base(C) + w (1965 – LB) = 200 + 4 (1965 – 1932) =
332

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/35

3.5 OPERATION ON LINEAR ARRAY

Let A be a collection of data elements stored in the memory of
computer in successive memory locations. Now to print the contents of
each element of array A or count the number of elements of A with a given
property so that each element of A will have to be accessed or processed at
least once is known as the Traversing of the array.

Algorithm Traversing :
[Let A be the linear array with lower bound LB and upper bound
UB. This algorithm traverses A for each element of A.]

1. [Initialize an integer variable counter with value of lower
bound]

k = LB

2. [Repeat the following steps]

Do while k < UB

[read the elements of array into a temporary variable temp
and print the read value]

temp = A [k];

print(temp p);

[Increase the counter variable]

k = k + 1

3. [Exit the loop]

Exit.

Insertion and Deletion operation in Array
Let A be a collection of data elements in the memory of the computer.
“Inserting” refers to the operation of adding another element to the
collection A. Inserting an element at the end of a linear array can easily be
done if memory space allocated to the array is large enough to
accommodate the additional element. The element can also be inserted in
the middle of the array. In this, on the average, half of the elements must
be moved downward to new locations to accommodate the new element
and keep the order of the other elements. The “deleting” refers to the
operation of removing one of the elements from A. Deleting an element at
the “end” of an array presents no difficulties, but deleting an element
somewhere in the middle of the array would require that each
subsequent element be moved one location upward in order to fill up the
array.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/36

Algorithm Insertion :
[Let A be a linear array. The function is INSERT (A, N, K, ITEM). N is
the number of items, K is the positive integer such that K<= N. The
following algorithm inserts an element ITEM into the Kth position of array
A.]

1. [Initialize Counter]

J=N;

2. [Repeat step 2 and 3 till J>=K]

While J>=K

{

A [J+1]= A [J]; /* Move Jth element downward */

J=J-1; /* Decrease Counter */

}

3. [Insert element]

A[K] = ITEM;

4. [Reset N]

N= N+1;

5. Exit

Algorithm Deletion :
[Let A be a linear array. The function used to delete from the array is
DELETE (A, N, K, ITEM). N is the number of items, K is the positive
integer such that K<= N. The following algorithm delete Kth element from
the array.]

1. [Set the value of ITEM]

ITEM = A[K]

2. [Repeat the step]

for(J=K; J<=N-1;J++)

A[J] = A[J+1] /* Move J+1 element upward */

3. [Reset the number N of elements in A]

N=N+1

4. Exit

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/37

Example :
Consider T has been declared as a 5-element array but data have been
recorded only for T [1], T [2], and T [3]. If X is the value to the next
element, then we may simply assign, T [4] = X to add X to the Linear
Array. Similarly, if Y is the value of the subsequent element, then we may
assign, T [5] = Y to add Y to the Linear Array. Thus, we cannot add any
new element to this Linear Array for T [6] because it exceeds the limit of
this array upper bound.

3.6 TWO-DIMENSIONAL ARRAY

A two-dimensional array of size m x n is a collection of elements
placed in m rows and n columns. Each element in array is specified by a
pair of integers (such that j, k) knows as subscripts, with the following
property:

0 <=j<=m and 0<=k<=n

Thus, there are two subscripts in the syntax of 2-D array in which one
specifies the number of rows and the other the number of columns. In a 2-
D array each element is itself an array. Let A be a 2-D array. The element
of A with first subscripts j and second subscript k is represented as:

kjA , Or],[kjA

Any 2-D array is also called as the matrix in mathematics and Table in
business application. Thus, a 2-D array is also called the matrix arrays.

An example of 2-D array can be A[2][4] containing 2 rows and 4 columns
and A[0][7] is an element placed at 0th row and 7th column in the array. A
2-D array can be represented as:

Column 0 Column 1 Column 2

Row 0 A[0][0] A[0][1] A[0][2]

Row 1 A[1][0] A[1][1] A[1][2]

Row 2 A[2][0] A[2][1] A[2][2]

Representation of 2-D array in memory

Example :

Let each student in a class of 10 students is given 4 tests. Assume the
students are numbered from 1 to 10, the test scores can be assigned to a 10
x 4 matrix array SCORE as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/38

Student Test 1 Test2 Test3 Test4

1 23 56 29 38

2 56 67 92 83

3 47 78 39 48

4 78 87 93 84

5 82 77 49 58

6 56 65 94 85

7 30 56 59 68

8 65 45 95 86

9 78 54 69 78

10 36 35 96 87

Representation of Array SCORE

Thus, SCORE [K, L] contains the Kth student’s score on the Lth test.
Hence the second row of an array is containing the four test scores of the
second student.

SCORE [2, 1]=56 SCORE [2, 2]=67 SCORE[2,3] = 92
SCORE [2, 4]= 83

Let A is a 2-D m x n array. The first dimension of A contains the index set
1,……..,m with lower bound 1and upper bound m. The second
dimension of A contains the index set 1,2,……n, with lower bound 1 and
upper bound n. The length of a dimension is the number of integers in its
index set. The product of length m x n is called the size of the array. Let us
find the length of a given dimension i.e. the number of integers in its index
set from the formula:

Length = upper bound – lower bound + 1

3.7 2-D ARRAY REPRESENTATION

As we know that all elements of a matrix or 2-D array set is stored
in the memory in a linear fashion. Let A be a 2-D m x n array. Since A is
pictured as a rectangular array of block of m, n sequential memory
locations. This sequential memory representation can be considered in two
ways; Row Major Order and Column major Order. In row-major
representation the first row of the array occupies the first set of memory
locations, second occupies the next set and so on. This form of the
representation can be represented as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/39

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2] A[2][0] A[2][1] A[2][2]

Row 0 Row 1 Row 2

Representation of 2-D Array in Row-Major Order

In column-major representation the first column of the array occupies the
first set of memory location, second occupies the next and so on. This
form of the representation can represent as:

A[0][0] A[1][0] A[2][0] A[0][1] A[1][1] A[2][1] A[0][2] A[1][2] A[2][2]

Column 0 Column 1 Column 2

Representation of 2-D Array in Column-Major Order

As we have discussed already about the linear array and its base address.
A linear array A does not keep track of the address of every element of the
array A, but does keep track of Base (A). Hence the address of the Kth
element of A can be computed as:

)1(*)(])[(−+= KwBaseKLOC AA . Here w is the
number of words per memory cell for the array A, and 1 is the lower
bound of the index set of A.

3.8 ADDRESS IN 2-D ARRAY

A similar situation as we have discussed for the linear array also
holds for any 2-dimensional m x n array A. Hence the computer keeps
track of Base (A) i.e. the address of the first element of A [0, 0] of A. The
address of any element say A[J, K] can compute for row-major order and
also for column- major order.

(i) Row-major order:
The formula for row-major order is:

)]()([*)(]),[(lKlJNwBaseKJLOC −+−+= AA
Here w denotes the number of words per memory location for
array A, l is the lower bound and N are the number of columns in
the array.

(ii) Column-major order:
The formula for Column-major order is:

)]()([*)(]),[(lJlKMwBaseKJLOC −+−+= AA

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/40

Here w denotes the number of words per memory location for
array A, l is the lower bound and M are the number of Rows in the
array.

Example :
Calculate the address of an element in the following 2-D array:

int M [3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8},{9, 10, 11, 12}};

The base address of the array M is 100. Since w = 2 (The array is of
integer type and integer occupies 2 byte in memory), according to the row-
major formula the address of (2, 3)th element in the array M is:

LOC (2, 3) = 100 + 2[4*(2-1) + (3-1)] = 100 + (4+2)*2 = 112
[lower bound of the array is assumed to be 1]

Now according to the column-major formula the address of (2, 3)th
element in the array M is:

LOC (2, 3) = 100 + 2[3*(3-1) + (2-1)] = 100 + (6+1)*2=114

3.9 MULTI-DIMENSIONAL ARRAYS

The arrays can also have more than two dimensions. For example,
a three – dimensional (3-D) array may be declared as:

int A[2][3][4];

The number of elements in any array is the product of the ranges of all its
dimensions. Therefore the array A contains 2*3*4 = 24 elements of type
integers. An element of this array is referenced with three subscripts. The
first specifies the plane or rack number, the second specifies the row
number and the third specifies the column number. It is just like the library
of books. The book is available in a particular column of the selected row
in the specific rack. This array can be represented in memory as:

A[0][0][0] A[0][0][1] A[0][0][2] A[0][0][3]

A[0][1][0] A[0][1][1] A[0][1][2] A[0][1][3]

A[0][2][0] A[0][2][1] A[0][2][2] A[0][2][3]

A[1][0][0] A[1][0][1] A[1][0][2] A[1][0][3]

A[1][1][0] A[1][1][1] A[1][1][2] A[1][1][3]

A[1][2][0] A[1][2][1] A[1][2][2] A[1][2][3]

3-Dimensional Memory Representation if array in row major order

Similarly the column major order can be considered. The general
multidimensional arrays are defined analogously. More specifically, an n-
dimensional m1 x m2 x…………x mn, array A is a collection of m1, m2,
…………, mn, data elements in which each element is specified by a list of

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/41

n integers such as K1, K2, …………Kn called subscripts, with the property
that:

0 <= K1 <= m1, 0 <= K2 <= m2, ……….. 0 <= Kn <= mn,

The element of B with subscripts K1, K2,…. Kn will be denoted by:

B[K1, K2,…. Kn]

The array will be stored in memory in a sequence of memory locations.
Specifically, the programming language will store the array B either in
row-major order or column-major order.

3.10 SPARSE MATRICES

Any matrices with relatively high proportion of zero or null entries
are called sparse matrices. Thus, a sparse matrix can be defined as a
matrix with maximum number of zero entries. In the sparse matrix space
and computing time could be saved if the non-zero entries were stored
explicitly i.e. ignoring the zero entries the processing time and space can
be minimized in sparse matrices. A sparse matrix can be divided into two
categories:

• N2 Sparse matrix: N2 sparse matrix is a matrix with zero entries
that form a square or a bar.

• Triangular sparse matrix: In this sparse matrix the zero entries
are in its diagonal, either in the upper or lower side.

Now we consider the following sparse matrix:



























0080000
00180000
0090000
0000000
0500000
00024000

In this sparse matrix we have the 6 rows and 7 columns. There are 5
nonzero entries out of 42 entries. Therefore it requires an alternate form to
represent the matrix without considering the null entries. Now we consider
a data structure triplet to represent a sparse matrix. The triplet is a two
dimensional array having t+1 rows and 3 columns. Here t is the total
number of nonzero entries.

In this representation of triplet the first row contains number of rows,
columns and nonzero entries available in the matrix in its 1st, 2nd and 3rd
column respectively. Second row onwards it contains the row subscript,
column subscript and the value of the nonzero entry in its 1st, 2nd and 3rd

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/42

column respectively. Now we represent the given sparse matrix in the
triplet form of a 6 x 3 two dimensional array as:

6 7 5
1 4 24
2 6 5
4 5 9
5 5 18
6 5 8

Triplet representation of the given sparse matrix

There is another method also available for the representation of the sparse
matrix. This method is known as 3-Tuple method. In this method only
the non-zero entries from the given sparse matrix are stored in three tuples
form. These three tuples are: row, column and value.

Let us consider a sparse matrix with 3 rows and 4 columns as:

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3

15

22

0

0

11

19

0

0

35

21

0

16

 Now the 3-tuple representation of above matrix will be represented as:

Row Column Value

A[0] 1 1 15

A[1] 1 4 21

A[2] 2 1 22

A[3] 2 2 11

A[4] 3 2 19

A[5] 3 3 35

A[6] 3 4 16

Example:

Consider the following sparse matrix and represent it using array.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/43



















=
1635190
001122
210015

A

As we know that a sparse matrix is one where most of its elements are
zero. The idea is to store information of non-zero elements. Information
about non-zero elements has three parts:

• An integer representing its row.

• An integer representing its column.

• The data associated with its elements.

The elements of the above sparse matrix can be represented as follows
using array:

0, 0, 15 0, 3, 21 1, 0, 22 1, 1, 11 2, 1, 19 2, 2, 35 2, 3, 16

3.11 SUMMARY
An array is a simplest type of linear data structure. The array is

preferred for the situation which requires similar type of data items to be
stored together as in contiguous memory location in static memory
allocation manner. An array is a finite collection of similar elements stored
in adjacent memory locations. This unit has described the linear data
structure array. The contents of this unit can be summarized as:

• An array is a finite collection of similar elements stored in adjacent
memory locations.

• There are many operations which could be performed on arrays
like insertion, deletion, searching, sorting and traversing.

• Arrays can be single-dimensional, two-dimensional or multi-
dimensional.

• There are two ways of representing two-dimensional arrays in
memory i.e. Row-major and column-major order.

• Multidimensional arrays have more than two dimensions.

• Any matrices with relatively high proportion of zero or null entries
are called sparse matrices.

• In the sparse matrix space and computing time could be saved if
the non-zero entries were stored explicitly i.e. ignoring the zero
entries the processing time and space can be minimized in sparse
matrices.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/44

Bibliography
Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Ulrich Klehmet: “Introduction to Data Structures and Algorithms”, URL:
http://www7 . Informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

T. H. Cormen, C. E. Leiserson and R. L. Rivest, “ introduction to
Algorithms”, MIT Press, Combridge, 1990

R. Sedgewick, “Algorithm in C++”, Addison-Wesley, 1992

R. B. Patel “Fundamental of Data Structures in C”, PHI Publication

V. Abo. Hopcropft, Ullaman, “data Structure and Algorithms”, I.P.E.

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/45

http://www7/

SELF EVALUATION

Multiple Choice Questions :
1. Elements of an array are accessed by:

a. Accessing function in built –in data structure.

b. Mathematical Function.

c. Index.

d. None of these.

2. Array is a:

a. Linear data structure

b. Non-linear data structure

c. Complex data structure

d. None of the above

3. Row-major order in 2-Dimensional array refers to an
arrangement where:

a. All elements of a row are stored in memory in sequence
followed by next row in sequence and so on.

b. All elements of a row are stored in memory in sequence
followed by next column in sequence and so on.

c. All elements of a column are stored in memory in sequence
followed by next column in sequence.

d. None of the above.

4. An element of sparse matrix consists of integers…………….

a. Two

b. Three

c. Six

d. Ten

5. A sparse matrix is one where most of its elements are:

a. Even

b. Prime

c. Zero

d. Odd

6. An array A is declared as: double A[2][4]; The array A has:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/46

a. 2 elements

b. 4elements

c. 8 elements

d. None of these.

Answer the following Questions:
1. Write a ‘C’ function to find out the maximum and second

maximum number from an array of integers.

2. Write a ‘C’ function to compute the product of two sparse
matrices, represented with two-dimensional arrays.

3. Calculate the address of an element M [2][3] and M [3][1] in the
following 2-D array:

int M [4][4] = { {10, 12, 23, 14}, {15, 16, 17, 18},{19, 1, 2,
3}, {5, 6, 9, 4}};

The base address of the array M is 200.

4. The number K in A[K] is called a……… and A[K] is called
a………….

5. In linear array, the “downward” refers to………

6. At Maximum, an array can be a Three dimensional Array (True /
False)

7. In……………………, the elements of array are stored column
wise.

8. Write an algorithm to add the two one dimensional arrays and
stored the sum in third array.

9. Write an algorithm to read the array in reverse order i.e. from
upper bound to lower bound.

10. Calculate the address of an element A[4] and A[2] in the following
one dimensional array

int A[6] = {3, 6, 8, 1, 90, 62}; The base address of the array is 100.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/47

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/48

BLOCK

2
Stack, Queue and Recursion
UNIT-4

Stack

UNIT-5

Recursion

UNIT-6

Queue

Bachelor in Computer Application

Uttar Pradesh Rajarshi Tandon
Open University

 BCA-1.2Vol-2/B.Sc.
(UGCS-04 /UGCS-103)

(''C'' Programming and Data Structure)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/49

53-70

71-80

81-94

Curriculum Design Committee
Coordinator

Member

Member

Member

Member Secretary

Dr.P.P.Dubey
Director, School of Agri. Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav,
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Mr. Prateek Kesrwani
Academic Consultant-Computer Science
School of Science, UPRTOU, Prayagraj

Course Design Committee
Member

Member

Member

Prof. U. N. Tiwari
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav,
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Faculty Members, School of Sciences
Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU,
Prayagraj
Ms. Marisha Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science,
UPRTOU, Prayagraj

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/50

Dr. Academic Consultant (Maths), School of Science, UPRTOU,
Prayagraj
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science,
UPRTOU, Prayagraj
Dr. Deepa pathak, Academic Consultant (Chemistry), School of Science,
UPRTOU, Prayagraj
Dr. A. K. Singh, Academic Consultant (Physics), School of Science,
UPRTOU, Prayagraj
Dr. S. S. Tripathi, Academic Consultant (Maths), School of Science,
UPRTOU, Prayagraj

Course Preparation Committee
Prof. Manu Pratap Singh, Author
Dept. of Computer Science
Dr. B. R. Ambedkar University, Agra-282002
Dr. Ashutosh Gupta Editor
Director, School of Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science
Baranas Hindu University, Varanasi
Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-15-4
All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2018.
Printed By: Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/51

BLOCK INTRODUCTION

This block will cover the two important types of linear data structures i.e.

stack and queue with an important problem solving technique i.e.

Recursion. This block includes the formal definition of these data

structures and the method of their implementations. The array is used for

the representation of these linear data structures. Therefore these data

structures are implemented in sequential and static manner. There are

various operations like insertion and delete are discussed for these two

data structures. The applications in the computer and for computation of

these data structures are discussed. Enough number of examples is

discussed to show the operations of stack and queue.

Recursion is an important concept in computer science specially for

solving the many problems of recursive nature. Any problem is considered

as recursive nature if the certain step of the problem or the entire problem

is repeating with different parameters each time of repetition. Thus, many

algorithms can be best described in terms of recursion. Recursion is an

important facility in many programming languages. There are many

problems whose algorithmic description is best described in a recursive

manner. The recursive implementation of various problems is discussed

with examples.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/52

UNIT-4 STACK

Structure

4.0 Introduction

4.1 Objectives

4.2 Stack

4.3 Array Representation of Stack

4.4 Operations on stack

4.5 Evaluation of Arithmetic expression (infix, postfix and prefix
notions) using stack

4.6 Applications of Stack

4.7 Summary

4.0 INTRODUCTION

This unit is introducing the concept of another linear data structure
i.e. Stack. It provides the definition of stack, its representation in memory,
implementation procedure and different common and important operations
those can perform on the elements of stack. This unit also includes the
method for evaluation of arithmetic expressions using stack. In the end it
highlights about the multiple stack concept and the different applications
of the stack.

4.1 OBJECTIVES

After going through this unit, you should be able to:

• Understand for the concept of stack

• Implementation of the stack using array.

• Implementation for the various operations on stack (Push, Pop).

• Understanding for the method of evaluation of arithmetic
expressions using stack (infix, prefix and postfix representation).

• Understanding the concept of multiple stacks and its application.

4.2 STACK
A stack is a linear data structure where all the elements in the stack

can insert and delete from one side only rather than at the middle or from
both the side. Thus, from the stack the elements may be added or removed
only from one side. The following figure shows the three everyday

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/53

common use examples of such structure i.e. a stack of dishes, a stack of
coins and a stack of folded towels.

As the items in this type of data structure can be added or removed from
the top, it means the last item to be added to the stack is the first item to be
removed. Therefore stacks are also called Last –in-First-out lists. Thus, the
stack follows the principle of Last-in-First-out (LIFO) or First-in-Last-Out
(FILO) type working system. Thus, the element which is inserted first in
the stack will remove or delete last from the stack. The other names used
for the stacks are “piles” and “push-down list”. Therefore we can
understand that a stack is a list of elements in which an element may be
inserted or deleted only at the end, called the Top of the stack. A stack of
elements of any particular type is a finite sequence of elements of that
together with the following operations:

• Initialize the stack to be empty.

• Determine whether stack is empty or not.

• Determine if stack is full or not.

• If stack is not full, then add or insert a new node at the Top. This
operation is called push.

• If the stack is not empty, then retrieve the node at its Top.

• If the stack is not empty, then delete the node at its Top. This is
called pop.

The above definition of stack produces the concept of stack as an abstract
data type.

4.3 ARRAY REPRESENTATION OF STACK

Generally a stack may be represented with a linear array or one
way list. In the stack, a pointer variable TOP contains the location of the
top element of the stack. The variable N provides the maximum number of
elements that can be stored or held in the stack or size of the linear array.
Sometimes it is also called as the size of the Stack. The condition where
TOP is NULL, indicate that the stack is empty and when the TOP is N, the
stack is full. The following figure shows the array representation of a

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/54

stack. The TOP is pointing to 3 which says that stack has three items and
as the N = 6, there is still space for accommodating four items.

ITEM 1 ITEM 2 ITEM 3

 0 1 2 3 4 5 6

 Top N

Array Representation of a Stack

Example:

Suppose the following elements are inserted in order in an empty stack of
size 7:

AA, BB, CC, DD, EE, FF

This stack can represent in following ways using a linear array:

 0 1 2 3 4 5 6
AA BB CC DD EE FF

 TOP

6

5

4

3

2

1

0

FF

EE

DD

CC

BB

AA

TOP

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/55

4.4 OPERATION ON STACK

The operation to add an element into the stack (push) and the
operation to remove an element from the stack (pop) can be implemented
using the PUSH and POP functions. When we add a new element into the
stack, first we check that whether there is a free space in the stack for the
new element or not. If there is no free space available for the new element
then we have the condition of overflow. In the same way for the function
POP we must first check the condition that whether there is an element in
the stack to be deleted or not. If there is no element in the stack to delete
then we have the condition of underflow. These functions are defined as
follows:

Function PUSH (STACK, TOP, N, ITEM)

[This function adds or pushes an ITEM in the stack]

/* check the condition of overflow*/

If (TOP == N)

Printf (“stack is overflow”); exit;

Else {

TOP = TOP+1; /* Increase TOP by 1 */

STACK [TOP] = ITEM; } /* Insert ITEM in new TOP
position */

RETURN

Function POP (STACK, TOP, ITEM)

[This function deletes or pops the TOP element of STACK and
assigns it to the variable ITEM]

/* check the condition of underflow*/

If (TOP == -1)

Printf (“stack is underflow”); exit;

Else {

ITEM = STACK [TOP]; /* assign TOP element to ITEM */

TOP = TOP – 1; } /* Decrease TOP by 1]

RETURN

We can see from the above defined functions that the value of TOP is
changed before adding the element in the stack in function PUSH but the
value of TOP is changed after removing the element from stack in
function POP.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/56

Example:

Consider the following stack with size of 9.

XX YY ZZ

0 1 2 3 4 5 6 7 8

 TOP N

If we perform the operation PUSH (STACK, WW); then the status of the
stack can determine as:

Since TOP = 2, so TOP = 2 + 1 = 3.

And STACK [TOP] = STACK [3] = WW.

Therefore the item WW is now top element of the stack. This can
represent as:

XX YY ZZ WW

 0 1 2 3 4 5 6 7 8

TOP N

Now, on the same stack we perform the operations POP (STACK, ITEM);
POP (STACK, ITEM); then the status of the stack can determine as:

Right now the TOP = 3 and the operation POP is performed two
times. So, after the execution of first POP operation:

ITEM = WW and TOP = 3-1 = 2

Now after the execution of second POP operation:

ITEM = ZZ and TOP = 2-1 = 1

Therefore STACK [TOP] = STACK [1] = YY is now the top
element in the stack.

XX YY

 0 1 2 3 4 5 6 7 8

TOP N

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/57

4.5 EVALUATION OF ARITHMETIC
EXPRESSION (INFIX, POSTFIX AND
PREFIX NOTIONS) USING STACK
This is well known that the computer system can understand and

work only on binary paradigm. In which an arithmetic operation can take
place between two operands only like A + B, C * D, D / A. generally an
arithmetic expression may consist of more than one operator and two
operands, for example (A + B) * (D / (J + D)). Such form of the arithmetic
expression is commonly known as the infix expression. Normally the
evaluation of the any arithmetic expression does not take place in its infix
form. Here we are introducing the method for evaluating the infix
expression form computation point of view. The stack is found to be more
efficient to evaluate an infix arithmetical expression by first converting to
a prefix or postfix expression and then evaluating these converted
expressions. This approach will eliminate the repeated scanning of an infix
expression in order to obtain its value. Therefore there are three basic
notations are referred for the representation of any complex arithmetic
expression. These forms are as follows:

• If the operator symbols are placed before its operands, then the
expression is in prefix form.

• If the operator symbols are placed after its operands, then the
expression is in postfix form.

• If the operator symbols are placed between the operands then the
expression is in infix form.

Hence, a normal arithmetic expression is normally called as infix
expression i.e. A+B. A Polish mathematician found a way to represent the
same expression called polish notation or prefix expression by keeping
operators as prefix i.e. +AB. We use the reverse way of the above
expression for our evaluation. The representation is called Reverse Polish
Notation (RPN) or postfix expression i.e. AB+.

Let Q be an infix arithmetic expression involving constants and
operations. This expression will be evaluated with the common rule of
arithmetic evaluation with the following level of operator precedence:

Highest: Exponentiation (↑)

Next highest: Multiplication (*) and division (/)

Lowest: Addition (+) and Subtraction (-)

Now let we evaluate the following parenthesis free arithmetic expression:

6/1222*532 −↑+↑

First we evaluate the exponentiations to obtain:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/58

8 + 5 * 4 – 12 / 6

Then we evaluate the multiplication and division to obtain 8 + 20 – 2.
Last, we evaluate the addition and subtraction to obtain the final result i.e.
26. We can observe that in this evaluation the whole expression is
traversed three times, each time corresponding to a level of precedence of
the operations.

Second important issue about the infix notation is that these expressions
use parentheses for clarity and to make the evaluation convenient like (A +
(B – C)) * D) / E. On the other hand the polish notation expression i.e.
prefix and reverse polish notation expression i.e. postfix do not include any
parentheses for clarity.

Now we consider for example the step by step translation of following
infix expression into polish notation using square brackets i.e. [] to
indicate a partial translation:

CDABCDABDCBA
BCABCACBA

ABCCABCBA

−+=−+=−+
+=+=+
+=+=+

/]/[][)/()(
][)*(

**][*)(

The fundamental property of Polish notation is that the order in which the
operations are to be performed is completely determined by the positions
of the operators and operands in the expression. There is no need of
parentheses when writing expressions in Polish notation. The computer
usually evaluates an arithmetic expression written in infix notation in
following two steps.

 Coverts the expression in Reverse Polish notation form (post
fix notation).

 Evaluate the post fix expression using stack.

Algorithm for transforming Infix Expression into Postfix Expression

Let Q be an arithmetic expression written in infix notation. The following
algorithm transforms the given infix expression Q into its equivalent
postfix expression P. This algorithm uses a stack to temporarily hold
operators and left parentheses. The postfix expression P will be
constructed from left to right using the operands from Q and the operators
which are removed from STACK. We begin by pushing a left parenthesis
onto STACK and adding a right parenthesis at the end of Q. The algorithm
is completed when STACK is empty:

Algorithm: Conv_POLISH (Q, P)
[Suppose Q is an arithmetic expression written in infix notation. The
algorithm finds the equivalent postfix expression P]

1. Push “(“onto STACK, and add “)” to the end of Q.

2. Scan Q from left to right and repeat step3 to 6 for each element of
Q until the STACK is empty.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/59

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered, push it onto STACK.

5. If an operator is encountered, then:

a. Repeatedly pop from STACK and add to P each operator (on
the top of STACK) which has the same precedence as or
higher precedence than operator.

b. Add operator to STACK.

[end of If]

6. If a right parenthesis is encountered, then:

a. Repeatedly pop from STACK and add to P each operator
(on top of STACK) until a left parenthesis is encountered.

b. Remove the left parenthesis. [Do not add the left
parenthesis to P.]

[End of if]

[End of step 2 loop]

7. Exit.

Example:
Consider the following arithmetic infix expression:

Q: A + (B * C - (D / E ↑ F) * G) * H)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The elements of Q have now been labeled from left to right for easy
reference. Following table shows the status of STACK and of the Postfix
string P as each element of Q is scanned to follow the following steps of
algorithm.

1. Each element is simply added to P and does not change STACK
from A to C; operators +. (, * are pushed to stack and A, B, C are
added to P.

2. The subtraction operator (- in row 7 sends * from STACK to P
before it (-) is pushed onto the STACK.

3. The right parenthesis in row 14 sends ↑ and then / from STACK to
P and then removes the left parenthesis from the STACK.

4. The right parenthesis in row 20 sends * then + from STACK to P
and then removes the left parenthesis from the top of STACK.

After step 20 is executed, the stack is empty.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/60

Symbol Scanned
STACK Expression P

(1) A (A

(2) + (+ A

(3) ((+(A

(4) B (+(AB

(5) * (+(* AB

(6) C (+(* ABC

(7) - (+(- ABC*

(8) ((+(-(ABC*

(9) D (+(-(ABC*D

(10) / (+(-(/ ABC*D

(11) E (+(-(/ ABC*DE

(12) ↑ (+(-(/↑ ABC*DE

(13) F (+(-(/↑ ABC*DEF

(14)) (+(- ABC*DEF↑ /

(15) * (+(-* ABC*DEF↑ /

(16) G (+(-* ABC*DEF↑ /G

(17)) (+ ABC*DEF↑ /G*-

(18) * (+* ABC*DEF↑G*-

(19) H (+* ABC*DEF↑G*-H

(20)) ABC*DEF↑G*-H*+

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/61

Evaluation of Post Fix Expression
As we know that in the infix expression it is difficult for the computer to
keep track of precedence of operators. On the other hand, a postfix
expression itself determines the precedence of operators due to the
placement of the operator. Hence it is easier for the computer to perform
the evaluation of a postfix expression. The evaluation rule for the postfix
expression is stated as:

1. Read the expression from left to right.

2. If it is an operand then push the element into the stack.

3. If the element is an operator except NOT operator, pop the two
operands from the stack and evaluate them with the read operator
and push back the result of the evaluation into the stack.

4. If it is the NOT operator then pop one operand from the stack and
then evaluate it and push back the result of the evaluation into the
stack.

5. Repeat it till the end of stack.

Now we define the algorithm for evaluation of postfix expression using
STACK. Let P be a arithmetic expression written in postfix notation. The
following algorithm uses the STACK to hold the operands and evaluate
expression P.

 [This algorithm finds VALUE of an arithmetic expression P written in
postfix notation.]

1. Add a right parenthesis “)” at the end of P.

2. Scan P from left to right and repeat step 3 and 4 for each element
until “)” is not encountered.

3. If an operand is encountered , put it on STACK

4. If an operator is encountered then:

a. Remove the two top elements of STACK, where A is the top
element and B is the next –to-top element.

b. Evaluate B and A for the encountered operator.

c. Place the result of evaluation on step b back on STACK

[End of if]

[End of step 2 loop].

5. Set VALUE equal to the top element on STACK.

6. Exit.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/62

Example

Evaluate the following arithmetic expression Q written in infix notation:

Q: 10 * (8 + 4) – 6 / 3

The equivalent postfix notation for the given infix notation is:

P: 10, 8, 4, +, *, 6, 3, /, - [Here Commas are used to separate
the elements of P]

Now we apply the algorithm to evaluate the postfix notation:

First we add ‘)’ at the end of right side in expression P.

P: 10, 8, 4, +, *, 6, 3, /, -,)

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

The evaluation procedure with contents of STACK can consider
from the following table:

Symbol Scanned Stack

(1) 10

(2) 8

(3) 4

(4) +

(5) *

(6) 6

(7) 3

(8) /

(9) –

(10))

10

10, 8

10, 8, 4

10, 12

120

120, 6

120, 6, 3

120,2

118

The final number in STACK is 118, which will assign to the VALUE
when ‘)’ encounters. Thus the evaluation of postfix notation P is 118.
Algorithm to convert infix into prefix expression form
Suppose Q is an arithmetic expression written in infix form. The following
steps find its equivalent prefix expression P.

1. Push ‘)’ onto STACK and add ‘(‘to the begin of Q.
2. Scan Q from right to left and repeat steps 3 to 6 for each element

of P until the STACK is empty.
3. If an operand is encountered add it to P.
4. If a right parenthesis is encountered, push it onto stack.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/63

5. If an operator is encountered then:
a. Repeatedly pop from STACK and add to P each operator (on

the top of STACK) which has same or higher precedence
than the operator.

b. Add operator to STACK.
6. If a left parenthesis is encountered then

a. Repeatedly pop from the STACK and add to P until a right
parenthesis is encountered.

b. Remove the Right parenthesis
7. Exit

Example:
Convert the following given infix expression in its equivalent prefix
notation form.

Q: (A + B * C – D + E / (F + G))
The procedure for converting the given infix expression into its equivalent
prefix notation form by applying the algorithm can represent in following
table:

Symbol Scanned Stack Prefix expression

)
)))
G)) G

+)) + G
F))+ FG
(Empty +FG
/)/ +FG
E)/ E+FG
+)+ / E+FG
D)+ D/E+FG
-)+- D/E+FG
C)+- CD/E+FG
*)+-* CD/E+FG
B)+-* BCD/E+FG

+)+-+ *BCD/E+FG

A)+-+ A*BCD/E+FG
(Empty +-+A*BCD/E+FG

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/64

Hence the resultant equivalent prefix notation for the given infix notation
is:

P: +, -, *, +, A, B, C, D, / E + F G

Algorithm for evaluation of Prefix Expression

[This algorithm performs the evaluation for the infix notation expression.
Here the expression will read from right to left]

1. Read the next element.

2. If element is operand then

a. Push the element in the stack

3. If element is operator then

a. Pop two operands from the stack

b. Evaluate the expression formed by two operands and
the operator

c. Push the results of the expression in the stack

4. If no more elements then

a. Pop the result

Else

Go to step 1.

Example:

Evaluate the following prefix notation expression.

P: + 2 * 3 + 4 5

Now we start to read it from right to left: +2 * 3 + 45+

Symbol Scanned Stack

5

4

+

3

*

2

+

5 (push)

4, 5 (push)

9 (pop, push)

3, 9 (push)

27 (pop, push)

2, 27 (push)

29 (pop, push)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/65

The final number in STACK is 29. Thus the evaluation of prefix notation
P is 29.

4.6 APPLICATION OF STACKS

The stack has various applications in computer science. It includes
the application of the level of computer organization and programming
level. Generally being a linear data structure the following applications of
stacks are highlighted:

• The stack is used for reversal of a given list. We can accomplish
this task by pushing each element onto the stack as it is read. When
the line is finished, elements are then popped off the stack, so they
come off in reverse order.

• The important application of the stack in computer organization is
for the evaluation of arithmetic expressions. It accomplishes by
converting first the given expression in reverse polish notation and
then evaluates the expression.

• It is also used for the zero address instruction implementation in
computer organization.

• Stacks are used for the address holding in function calling
procedure of programming.

• The stacks are used to implement recursive procedures. Recursion
is useful in developing algorithm for specific problems. Suppose a
function contains either a call statement to itself or a call statement
to a second function that may eventually result in a call statement
back to the original function. Then such a function is called
recursive function. The stacks are used generally for the
implementation of such type of recursive functions.

4.7 SUMMARY

In this unit we presented another important linear data structure i.e.
Stack. A stack is a linear data structure where all the elements in the stack
can insert and delete from one side only rather than at the middle or from
both the side. We have explored the implementation of stack in static
manner using array. The two basic operations of PUSH and POP are
discussed with example for the stack. The contents can be summarized as
follows:

• A stack is a linear structure implemented in LIFO (Last In First
Out) manner where insertions and deletions take place at the same
end.

• An insertion is a stack is called pushing and deletion from a stack
is called popping.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/66

• When a stack implemented as an array, is full and no new element
can be accommodated, it is called OVERFLOW.

• When a stack is empty and an attempt is made to delete an element
from the stack, it is called UNDERFLOW.

• The main application of stack can be implementation of Polish
notation which refers to a notation in which operator symbol is
placed either before its operands (prefix notation) or after its
operands (postfix notation). The usual form, in which operator is
placed in between the operands, is called infix notation.

• The other application of stack can be reversing a list and providing
recursion in various programs.

• It is also used for the zero address instruction implementation in
computer organization.

• Stacks are used for the address holding in function calling
procedure of programming.

Bibliography
• Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,

Computer Science Press, 1978

• J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures
with Applications”, Tata McGraw-Hill, 1984

• M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

• Ulrich Klehmet: “Introduction to Data Structures and Algorithms”,
URL: http://www7 . Informatik.uni-
erlangen.de/~klehmet/teaching/SoSem/dsa

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• M. E. D’imperio, “Data structures and their representation in
storage”, Annual Review in Automatic programming, Vol. 5 pp. 1-
75, Pergammon Press, Oxford, 1969.

• B. Flaming, “Practical Data Strcture in C++”, Jhon Wiley & Sons,
New York, 1983

• D. E. Knuth, “The art of Computer programming”, Vol. 2:
Seminumerical Algorithms, 3rd edition, Addison-Wesley, 1997.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/67

http://www7/

SELF EVALUATION

Multiple Choice Questions:
1. form of access is used to add and remove nodes

from a stack

(a) LIFO (b) FIFO

(c) Both (a) and (b) (d) None of these

2. A data structure in which elements are added and removed only at
one end is know as:

(a) Queue (b) Stack

(c) Array (d) None of these

3. Underflow is a condition where you:

(a) Insert a new node when there is no free space for it

(b) Delete a non-existent node in the list

(c) Delete a node from the empty list

(d) None of the above

4. Stack is:

(a) Static data structure

(b) Dynamic data structure

(c) A built in data structure

(d) None of these

5. Which operation in the stack is used for getting value of most
recent node and delete the node:

(a) PUSH

(b) POP

(c) Empty

(d) None of these

6. If A, B, C are inserted into a stack in the lexicographic order, the
order of removal will be:

(a) A, B, C

(b) C, B, A

(c) B, C, A

(d) None of these.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/68

Fill in the blank:
1. A stack may be represented by a …………… linked list. (linear /

non-linear)

2. Push operation in stack may result in……………… (overflow /
underflow)

3. If TOP points to the top of stack, then TOP is……. (increased /
decreased)

State whether True or False
1. Push operation in stack is performed at the rear end.

2. PUSH operation in stack may result in underflow

3. For a stack implemented with linear array arbitrary amount of
memory can be allocated.

Descriptive Questions
1. Consider the following stack, where STACK is allocated N = 6

memory cells.

STACK: AA, DD, EE, FF, GG…………………..

Describe the stack as the following operations take place and also
consider the overflow condition.

a. PUSH (STACK, KK)

b. POP (STACK, ITEM)

c. PUSH (STACK, LL)

d. PUSH (STACK, SS)

e. POP (STACK, ITEM)

f. PUSH (STACK, TT)

2. Write an algorithm which upon user’s choice, either pushes or
Pops an element from the stack implemented as an array (the
element should not shifted after the push or pop).

3. Write a program to convert an infix arithmetic expression into a
prefix arithmetic expression. The algorithm for your program
should use the following expression:

Q: (A – B) * (C / D) + E

Show in tabular form the changing status of stack.

4. Convert the expression (A + B) / (C – D) into postfix expression
and then evaluate it for A = 10, B = 20, C = 15, D = 5. Display the
stack status after each operation.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/69

5. Write a program to read a string (one line of characters) and push
any vowels in the string to a stack. Then pop your stack repeatedly
and count the number of vowels in the string.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/70

UNIT-5 RECURSION

Structure

5.0 Introduction

5.1 Objectives

5.2 Definition of Recursion

5.3 Process of Recursion

5.4 Designing of Recursive algorithm

5.5 Examples of Recursive Algorithms

5.6 Summary

5.0 INTRODUCTION

This unit introduces the concept of Recursion. It highlights the
basic concepts of recursion, its definition with the method for its working.
The solutions of some problems are performed with the recursive method.
The unit also considers the recursive algorithm for solving the problems. It
also explores the use of stack for recursive algorithms or finding the
solution with recursive method.

5.1 OBJECTIVES

At the end of this unit, you may be able to:

• Understand the concept of Recursion and recursive method.

• Understand the principle of recursion and use of stack for the
implementation of recursive methods.

• Understand the working of recursive procedures and
implementation it for the solution of problems.

• Designing of Recursive algorithm for the solution of some popular
problems.

5.2 DEFINITION OF RECURSION

Recursion is an important concept in computer science specially
for solving the many problems of recursive nature. Any problem is
considered as recursive nature if the certain step of the problem or the
entire problem is repeating with different parameters each time of
repetition. Thus, many algorithms can be best described in terms of
recursion. Suppose P is any function containing either a Call statement to
itself or a call statement to a second function that may eventually result in
a call statement back to the original function P. The P is called a recursive

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/71

function. Thus, a recursive function is a function that either directly or
indirectly makes a call to itself. The important aspect is that the function P
calls itself on a different, generally simpler instance, for example files on a
computer are generally stored in directories. Users may create
subdirectories that store more files and directories. Suppose that we want
to examine every file in a directory D, including all files in all
subdirectories and subdirectories, and so on. We do so by recursively
examining every file in each subdirectory and then examining all files in
the directory D. Hence this logic seem to be circular logic but with the
method to come out from this infinite circular loop.

Therefore, a recursion is an important facility in many programming
languages. There are many problems whose algorithmic description is best
described in a recursive manner. Hence, a function is called recursive if
the function definition refers to itself or does refer to another function
which in turn refers back to the same function but this procedure should
not include infinite loop or endless process. Hence in order for the
definition does not contain any endless circular process, t must have the
following properties:

(i) There must be certain arguments called base values, for which the
function does not refer to itself. Alternatively there must be certain
criteria, called base criteria, for which the function does not call
itself.

(ii) Each time the function does refer to itself, the argument of the
function must be closer to the base value.

Any recursive function with these two properties is said to be well defined
recursive function. Similarly, a function is said to be recursively defined
if the function definition refers to itself.

5.3 PROCESS OF RECURSION

Recursion is a powerful problem-solving tool. Many algorithms
are most easily expressed in a recursive formulation. Furthermore, the
most efficient solution for many problems is based on this recursive
formulation but this formulation does not contain any infinite loop and
process. Generally the idea of Recursion is closely related to the principle
of mathematical induction which provides the following issues for the
recursion procedure:

• Solve the problem for small problem instances.

• Assume a solution for smaller problem instance.

• Figure out how to do a little more work which in combination with
solutions to smaller instances, solves the larger problem instance.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/72

It can see that sometimes mathematical functions are defined recursively.
Let us consider the example of sum S (N) for the first N integers. The base
condition is defined as S (1) = 1, and the recursive function can define as:

NNSNS +−=)1()(

Here we have defined the function S in terms of a smaller instance of
itself. The straight forward recursive evaluation of the sum of the first N
integers based on the recursive function as given above with its base
condition can define as:

[Recursive function to compute sum of first n integers.]

Function sum (int n)

{

If (n == 1) /* base condition */

Return 1;

Else

Return (s (n – 1) + n);

}

We can realize from the above algorithm that if N=1, we have the basis,
for which we know that S (1) = 1 and the recursive step is with the return
statement as S (N) = S (N-1) + N. Now from the algorithm we can get an
idea for the working process of the recursive method and as well as for the
recursive function. We can consider in the above algorithm that a base
case is an instance that we can solve without recursion. Any recursive call
must progress towards the case in order to terminate eventually. Thus we
have the two fundamental rules of recursion:

1. Base case : Always have at least one case that can be solved
without using recursion.

2. Make Progress : Any recursive call must progress toward a base
case.

This is quite obvious that if the base condition is not available for the
recursive function then the function will stuck in infinite recursive call and
never terminates.

5.4 DESIGNING FOR RECURSIVE
ALGORITHM

We have discussed about the recursive function and recursive
process. The important point which we have analyzed is that any recursive
function should have a based criteria or base condition or termination
condition otherwise the recursive procedure becomes unsolvable. Thus in
order to design any recursive process in terms of the algorithm, the base

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/73

condition and progress condition should clearly describe and stated. For
example the problem of factorial can be solved using a recursive
procedure. Now we consider the factorial of number and its algorithm
described recursively as:

The product of the positive integers from 1 to n, inclusive, is called “n
factorial” and is usually denoted by N! :

N! = 1.2. 3.4.5.......(N-2)(N-1)N for every positive integer N

So that we have, N! = N * (N-1)!

(N-1)! = N-1 * (N-2)! And so on up to 1.

Therefore we can define the factorial function in the form of a recursive
function with its two conditions as:

(a) If n = 0, then n! = 1.

(b) If n>0, then n! = n * (n-1)!

We define the function FACT which finds the factorial of the given
number N from recursive process:

/* Function:*/ int FACT (N)

{

if N==0 return 1

else

if

 N==1

return 1

else

return (N * FACT(N-1))

}

To perform this recursive algorithm, let us consider N = 5. Hence
according to the definition we can see that the FACT (5) will call FACT
(4), FACT (4) will call FACT (3), FACT (3) will call FACT (2), and FACT
(2) will call FACT (1). The execution will return back by finishing the
execution of FACT (1), then FACT (2) and so on up to FACT (5) as
described below:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/74

1) 5! = 5 * 4!

2) 4! = 4 * 3!

3) 3! = 3 * 2!

4) 2! = 2 * 1!

5) 1! = 1

6) 2! = 2 * 1 = 2

7) 3! = 3 * 2 = 6

8) 4! = 4 * 6 = 24

9) 5! = 5 * 24 = 120

From above it is clear that every sub function contain parameters and local
variables. The parameters are the arguments which receive values from
objects in the calling program and which transmit values back to the
calling program. The sub-function must also keep track of the return
address in the calling program. This return address is essential since
control must be transferred back to its proper place in the calling program.
After completion of the sub-function when the control is transferred back
to its calling program, the local values and returning address is no longer
needed. Suppose our sub-program is a recursive one, when it calls itself,
then current values must be saved, since they will be used again when the
program is reactivated. Thus, in recursive process a data structure is
required to handle the data of ongoing called function and the function
which is called at last must be processed first i.e. the data accessed last
must be processed fist i.e. Last in first out principle. So, a stack may be
suitable data structure that follows LIFO to implement recursion. Thus
when a recursive method is executed, each invocation of the method gets a
separate stack frame. Hence each invocation has a separate copy of the
following:

• Formal parameters

• Local variables

• Return value

Therefore the recursion is useful in developing algorithms for specific
problems and the Stack may use to implement recursive functions or
processes. Now we discuss the method for translating a recursive method
into a non-recursive method using stack.

5.5 EXAMPLES OF RECURSIVE
ALGORITHMS

Here we are presenting some examples of very common and
important recursive algorithms:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/75

1. Fibonacci number: Here we are defining the recursive algorithm
for computing the Nth Fibonacci number. As we know that the
next Fibonacci number we can compute by adding the previous
two numbers i.e. the nth Fibonacci number we can find as:

Fib(n) = fib(n-1)+fib (n-2)

Fib (n-1) = fib (n-2) + fib (n-3)

And so on, in the last we can see Fib(3) = fib (2) + fib (1)

Here fib (1) = 1 and fib (2) = 1.

Thus we can see that the process of computing the Fibonacci number is a
recursive with two base conditions i.e. fib (1) = 1 and fib (2) = 1. Hence
the recursive algorithm for computing the Fibonacci number can define as:

Int fib (int n)

{

If (n <= 1)

Return n;

Else

Return fib (n-1) + fib (n – 2);

}

2. Greater common divisor of two integers: Here we are defining
the recursive algorithm for obtaining the greatest common divisor
of two integers.

Int gcd (int a, int b)

{

If (b == 0)

Return a;

Else

Return gcd (b, a % b);

}

For example if we compute the gcd of 70 and 25 then the above recursive
algorithm will execute as:

First the recursive function will call with gcd (70, 25). On next iteration it
will call with gcd(25,20). After that the third call will call with gcd(20,5).
The last call of the recursive function will be of gcd(5,0)⟹5. Here the
base condition satisfied and the recursive procedure will terminate.
Therefore the gcd of these two numbers is 5 as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/76

gcd (70, 25) ⟹gcd(25,20)⟹gcd(20,5)⟹gcd(5, 0)⟹5

3. Tower of Hanoi: The Tower of Hanoi is an example of a problem
that is much easier to solve using recursion rather than non-
recursive method. The problem is defined as follows:

• There are 3 pegs and n disks, all of different sizes

• Initially all disks are on the start peg, stacked in decreasing
size, with largest on bottom and smallest on top.

• We must move all the disks to the end peg, one at a time and
without ever putting a larger disk on top of a smaller disk.

• The third peg can be used as a spare.

Initially we explore the solution for the 2 disks i.e. n = 2.After that we
consider the recursive algorithm for the generalize case i.e. for n disks.

1. Move smaller disk from start peg to spare peg.

2. Move larger disk from start peg to end peg.

3. Move smaller disk from spare peg to end peg.

Now we consider the recursive procedure for solving this problem with n
disks as:

1. Move the top n-1 disks from the start peg to the spare peg using
recursive call

2. Move the bottom disk directly from the start peg to the end peg.

3. Move the n-1 disks from the spar peg to the end peg using
recursive call.

4. The n = 1 will work as the base condition for recursive process.
Therefore the peg can be moved directly.

The algorithm of the whole process can describe as:

Function Tower (int n, int stast, int finish, int spare)

{

If (n == 1)

Move disk from start to finish

Else

{

Tower (n-1, start, spare, finish) /* move n-1 disks from start to
spare */

Move disk from start to finish /* move bottom disk directly to finish
*/

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/77

Tower (n-1, spare, finish, start) /* move n-1 disks from spare to
finish */

}

}

5.6 SUMMARY

Recursion is useful in developing algorithm for specific problems.
Suppose a function contains either a call statement to itself or a call
statement to a second function that may eventually result in a call
statement back to the original function. Then such a function is called
recursive function. The stacks are used generally for the implementation
of such type of recursive functions. Any problem is considered as
recursive nature if the certain step of the problem or the entire problem is
repeating with different parameters each time of repetition. Thus, many
algorithms can be best described in terms of recursion. The contents of
this unit can be summarized as follows:

• Recursion is the name given to the phenomenon of defining a
function in terms of itself.

• There must be base condition in the recursive definition of any
process which indicates its initial condition.

• Each time the function does refer to itself, the argument of the
function must be closer to the base value.

• Recursion is closely related to the principle of mathematical
induction.

• A stack may be suitable data structure that follows LIFO to
implement recursion.

• Important examples like factorial, GCD and tower of Hanoi are
explained and implemented with the help of recursive process.

Bibliography
• Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,

Computer Science Press, 1978

• J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures
with Applications”, Tata McGraw-Hill, 1984

• M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

• Ulrich Klehmet: “Introduction to Data Structures and Algorithms”,
URL: http://www7 . Informatik.uni-
erlangen.de/~klehmet/teaching/SoSem/dsa

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/78

http://www7/

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• T. H. Cormen, C. E. Leiserson and R. L. Rivest, “Introduction to
Algorithms”, MIT Press, cambridge, Mass., 1990

• B. Flaming, “Practical Data Strcture in C++”, Jhon Wiley & Sons,
New York, 1983

• R. Sedgewick, “Algorithms in C++”, Addison-Wesley, 1992.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/79

SELF EVALUATION
1. State whether it is TRUE or FALSE: “ Recursion is generally more

efficient than iteration”

2. What are the two fundamental rules of recursion?

3. Stack is used whenever ……………….. function is called
(Recursive / Non- recursive)

4. Write a program for evaluating
n

r
c for the given value of n and r

using recursive procedure.

5. Formulate the recursive function for evaluating the least common
multiplier (LCM).

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/80

UNIT-6 QUEUE

Structure

6.0 Introduction

6.1 Objectives

6.2 Definition of Queue

6.3 Representation of Queue

6.4 Insertion and deletion in Linear Queue

6.5 Example

6.6 Circular Queue

6.7 Insertion and Deletion in the circular Queue

6.8 Example

6.9 Types of Queue

6.10 Summary

6.0 INTRODUCTION

This unit introduces the concept of another important linear data
structure used to represent a linear list i.e. Queue. This unit starts by
giving an introduction to the basic concept of queue. It also defines the
operation of insertion and deletion from the Queue. The queue allows
insertion of an element to be made at one end and deletion of an element
to be performed at the other end. This unit further introduces various type
of queues like circular queue, de-queue and priority queue. It also provides
the operation of insertion and deletion in these types of queues. In the last
it highlights the application of queue.

6.1 OBJECTIVES

After working through this unit, you should be able to:

• Understand the concept of queue and its working with its
definition.

• Implementation of queue using Array and perform the operation of
insertion and deletion in it with the condition of overflow and
underflow of the queue.

• Understand the concept of circular queue and its implementation
with array.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/81

• Implementation of insertion and deletion operations in the circular
queue with overflow and underflow condition.

• Understand the concept of de-queues and priority queues with their
implementation details using array.

• Familiarity with the different application of queues in computer.

6.2 DEFINITION OF QUEUE

Queue is linear data structure in which the element is inserted from
one end of the queue called rear, and the deletion of the element from
other end of the queue called front. For example the people waiting for
their turn in railway reservation counter window, payment bill line at the
big bazaar cash counter and many other example of real world where the
line is maintain for the service. The service for these type of lines are on
the bases of first come first serve (FCFS) i.e. the person who comes first
for the service is on the front of the queue and the person who just arrived
for the service or join the queue for the service entered from the rear of
the queue. Therefore queue provides the service to handle the elements for
insertion and deletion on the basis of First-in-First-out (FIFO) or Last-in-
Last-out (LILO). Thus Queue is also called First-in-First-out (FIFO) list
since the first element in queue will be the first element out of the queue.
An important example of a queue in computer science occurs in a time
sharing system in which programs with the same priority form a queue
while waiting to be executed. The other example which can see more
common in computer system is the queue of tasks waiting for the line
printer, for access to disk storage. Following figure is a representation of a
queue illustrating how an insertion is made to the rightmost element in the
queue, and how a deletion consists of deleting the leftmost element in the
queue.

 Front Rear

 Deletion Insertion

In this case of a queue, the updating operation is restricted to the
examination of the last or end element. The size of the queue is fixed and
the maximum number of elements can enter in the queue up to the limit of
its size. This is called as the liner queue. A queue of elements of type A is
a finite sequence of elements of A together with the following operations:

1. Initialization a queue to be empty.

2. Determine if a queue is empty or not.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/82

3. Determine if a queue is full or not.

4. Insert a new element after the last element in a queue, if it is not
full.

5. Retrieve the first element of a queue, if it is empty.

6. Delete the first element in a queue, if it is not empty.

6.3 REPRESENTATION OF QUEUE

Queues may be represented in the computer in various ways,
generally by means of one-way lists or linear arrays. Queues are
maintained by a linear array say QUEUE and two pointer type variables:
FRONT, containing the location of the front element of the queue (the
oldest element in the queue or the element which will be first delete); and
REAR, containing the location of the rear element of the queue (the
newest element in the queue or the recently inserted element in the queue).
The condition FRONT = REAR = NULL will indicate that the queue is
empty and FRONT = 1, REAR = FRONT = MAX_SIZE indicates that
the queue is full. These conditions are valid only for the linear queue. The
following figure represents the implementation of queue as an array which
is declared to its maximum size as per the requirement of the problem or
the number of elements those has to be entered in the queue. The size of
the Queue keeps on changing as the elements are either removed from the
front end or added at the rear end but the size of the array will remain
fixed.

 X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

A B C D E F G H

 Front Rear

6.4 INSERTION AND DELETION IN THE
LINEAR QUEUE

Now we formulate algorithms for the insertion of an element of an
element to and the deletion of an element from a queue. We consider a
linear array of arbitrary size. This array is assumed to consist of a large
number of elements, enough to be sufficient to handle the elements of the
linear queue. This array representation of a queue consists with two
pointer type variables Rear (R) and Front (F). The algorithms of insertion
and deletion from the linear queue which is implemented with linear array
(Q) can describe as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/83

Function QINSERT (Q, F, R, Y): [Given F and R, pointers to the front
and rear elements of a queue, a queue Q consisting of N elements, and an
element Y, this function inserts Y at the rear of the queue.]

If(R>=N) /* check for the overflow condition */

 Printf (“Overflow”); return;

Else

{

R = R + 1; /*Increment rear pointer */

Q[R] = Y; /* insert element */

If (F == 0) /* set the front pointer */

F = 1;

Return;

}

Function QDELETE (Q, F, R): [Given F and R, pointers to the front and
rear elements of a queue respectively and the queue Q to which they
correspond, this function deletes and returns the last element of the queue.
Y is a temporary variable.]

If (F==0) /* check for the underflow condition */

 Printf (“underflow”); return 0; /* 0 denotes the empty queue */

Else

{

Y = Q [F]; /* delete element */

If (F == R)

F = R = 0;

Else

F = F + 1; /* increment front pointer */

Return Y;

}

6.5 EXAMPLE

Consider an example where the size of the queue is four elements.
Initially, the queue is empty. It is required to insert symbols ‘A’, ‘B’ and
‘C’, delete ‘A’ and ‘B’, and insert ‘D’ and ‘E’. The trace for the insertion
and deletion algorithms can represent as follows for the given Queue:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/84

F R
A

F R
A B

 F R
A B C

F R

B C

 F R
C

F R
C D

F R

C D

 F R (Over Flow)

Note : R will increment only when there is no overflow i.e. if (R>=N) it
simply print “Overflow”

Empty

Insert A

Insert B

Insert C

Delete A

Delete B

Insert D

Insert E

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/85

3.6 CIRCULAR QUEUE

A more suitable method of representing a queue, which prevents
an excessive use of memory, id to arrange the elements Q [1], Q
[2],……….Q [n] in a circular fashion with Q [1] following Q [n]. Thus
circular queues are the queues implemented in circular form rather than in
a straight line. Hence circular queues overcome the problem of unutilized
space in linear queue implemented as an array. In the array implemented
there is a possibility that the queue is reported full even though slots or
space in the queue are empty (since Rear has reached to the end of array).
The concept of circular queues can also understand as follows:

Suppose an array Q of n elements is used to implement a circular queue. If
we go on adding elements to the queue we may reach Q [n-1]. We cannot
add any more elements to the queue since the end of the array has been
reached. Instead of reporting the queue is full, if some elements in the
queue have been deleted then there might be empty slots at the beginning
of the queue. In such case these slots would be filled by new elements
added to the queue. Thus, just because we have reached the end of the
array, the queue would not be reported as full. The queue would be
reported full only when all the slots in the array are occupied. The circular
queue can view in the following figure as:

The Circular Queue

Hence in the linear arrangement of the queue always considers the
elements in forward direction. In the insertion and deletion algorithms for
the linear queue, we had seen that, the pointers front (F) and rear (R) are
always incremented as and when we delete or insert element respectively.
Suppose in a queue of 10 elements front points to 4th element and rear
points to 8th element as follows.

 1 2 3 4 5 6 7 8 9 10

QUEUE XX XX XX XX XX

 F R

When we insert two more elements then the array will become

Front

Rear

G

F E

D

C
BA

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/86

 1 2 3 4 5 6 7 8 9 10

QUEUE XX XX XX XX XX XX XX

 F R

Later, when we try to insert some elements, then according to the logic
when REAR is 10 then it encounters an overflow situation. But there are
some elements are left blank at the beginning part of the array. To utilize
those left over spaces more efficiently, a circular fashion is implemented
in queue representation. The circular fashion of queue reassigns the rear
pointer with 1 if it reaches 10 and beginning elements are free and the
process is continued for deletion also. Such logic is used for insertion and
deletion in Circular Queue.

6.7 INSERTION AND DELETION IN THE
CIRCULAR QUEUE

Now we formulate algorithms for the insertion of an element of an
element to and the deletion of an element from a circular queue. We
consider a array of arbitrary size. This array is assumed to consist of a
large number of elements, enough to be sufficient to handle the elements
of the linear queue. This array representation of a queue consists with two
pointer type variables Rear (R) and Front (F). The algorithms of insertion
and deletion from the circular queue which is implemented with array (Q)
can describe as:

Function CQINSERT (Q, F, R, Y): [Given F and R, pointers to the front
and rear elements of a circular queue, F and R, a queue Q consisting of N
elements, and an element Y, this function inserts Y at the rear of the
queue.]

If (R==N) /* Reset rear pointer */
 R = 1;
Else
R = R + 1;
If (F==R) /* Check over flow condition */
{
Printf (“Over Flow”)
Return
}
Else
{
Q[R] = Y; /* insert element */

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/87

If (F == 0) /* set the front pointer */
F = 1;
Return;
}

Function CQDELETE (Q, F, R): [Given F and R, pointers to the front
and rear of a circular queue, respectively, and a Queue Q consisting of N
elements, this function deletes and returns the last element of the queue. Y
is a temporary variable.]

If (F==0) /* check for the underflow condition */
 Printf (“underflow”); return 0; /* 0 denotes the empty queue */
Else
{
Y = Q [F]; /* delete element */
If (F == R) /* Check whether the queue is empty */
{
F = R = 0;
Return (Y); }
Elseif (F == N)
F = 1;
else
F = F + 1; /* increment front pointer */
Return Y;
}

6.8 EXAMPLE

Consider an example of a circular queue that contains a maximum
of four elements. It is required to perform a number of insertion and
deletion operations on an initially empty queue. It is required to insert
symbols ‘A’, ‘B’, ‘C’ and ‘D’, delete ‘A’, insert ‘E’, delete ‘B’, insert ‘F’,
delete ‘C’, ‘D’, E’ and ‘F’. The trace for the insertion and deletion
algorithms can represent as follows for the given Queue:

F R

Empty

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/88

A

F R
A B

 F R

A B C

F R

 A B C D

F R

B C D

F R

E B C D

R F
E C D

R F

E F C D

 R F

E F D

 R F

Insert A

Insert B

Insert C

Insert D

Delete A

Insert E

Delete B

Insert F

Delete C

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/89

E F

F R

F

 F R

 F R

6.9 TYPES OF QUEUES

There are two types of Queues

 Priority Queue

 Double Ended Queue

Priority Queue
A priority queue is a collection of elements such that each element

has been assigned a priority value such that the order in which elements
are deleted and processed comes from the following rules:

1. An element of higher priority is processed before any element of
lower priority.

2. Two elements with the same priority are processed according to
the order in which they were added to the queue.

There are various ways of maintaining a priority queue in memory. One is
using one way list. The sequential representation is never preferred for
priority queue. We use linked Queue for priority Queue.

Double Ended Queue
A Double Ended Queue is in short called as Deque (pronounced as Deck
or dequeue). A deque is a linear queue in which insertion and deletion can
take place at either ends but not in the middle.

There are two types of Deque.

1. Input restricted Deque

2. Output restricted Deque

Delete D

Delete E

Delete F

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/90

• A Deque which allows insertion at only at one end of the list
but allows deletion at both the ends of the list is called Input
restricted Deque.

• A Deque which allows deletion at only at one end of the list
but allows insertion at both the ends of the list is called
Output restricted Deque.

The two possibilities that must be considered while inserting or
deleting elements into the queue are:

• When an attempt is made to insert an element into a deque
which is already full, an over flow occurs.

• When an attempt is made to delete an element from a deque
which is empty, underflow occurs.

The Deque can represent as follows:

A B C D E

 F R

6.10 SUMMARY
Queue is linear data structure in which the element is inserted from

one end of the queue. Queue is also called First-in-First-out (FIFO) list
since the first element in queue will be the first element out of the queue.
In this unit we have described the insertion and deletion of an element in
the linear queue with the condition of Overflow and underflow. The same
operations are performed for circular queue and again the conditions of
overflow and underflow are explicitly defined. The contents of this unit
can be summarized as:

• Queue is a linear data structure that permits insertion of new
element at one end and deletion of an element at the other end.
Queue is also referred to as first-in-first-out (FIFO) list.

• Two pointers are used in the queue i.e. rear and front. From rear
the elements are inserted and from front the elements are deleted
but one at a time.

• Circular queues are the queues implemented in circle rather than a
straight line.

• Conditions of overflow and underflow are different for linear
queue and circular queue.

• Deques are the queues in which elements can be added or removed
at either end but not in the middle.

Deletion
 Insertion

Insertion
Deletion

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/91

• An input-restricted deque is a deque which allows insertion at only
one end but does not allow deletions at both the ends of the list.

• An output-restricted deque is a deque which allows deletions at
only one end of the list but allows insertions at both the ends of the
list.

• A queue in which it is possible to insert an element or remove an
element at any position depending on some priority is called
priority queue.

• Queue is a data structure used in many applications like event
simulation, job scheduling, etc.

Bibliography
• Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,

Computer Science Press, 1978

• J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures
with Applications”, Tata McGraw-Hill, 1984

• M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

• M. C. Harrison, “Data Structures and Programming”, Scott,
Foresman and Company, Glenview, III, 1973

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• A. I. Forsythe, T. A. Keenan, E. I. Organick and W. Stenberg,
“Computer Science: A First Course”, John Wiley & sons, Inc. New
York, 1969.

• Seymour Lipschutz, “Data Structure”, Schaum’s outline Series.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/92

SELF EVALUATION

Multiple Choice Questions :
1. “FRONT = REAR” pointer refer to empty:

a. Stack

b. Queue

c. Array

d. None of the above

2. A data structure in which insertion and deletion can take place at
both ends is called:

a. Deque b. Stack

c. Circular Queue d. None of these

3. Using arrays, most efficient implementation of queue is on:

a. Linear queue b. Priority queue

c. Circular queue d. None of the above

4. …………… form of access is used to add and remove nodes from
a queue

a. LIFO, Last In First Out.

b. FIFO, First In First Out

c. LILO, Last in Last Out

d. Both b and c.

5. New nodes are added to the ……………. of the queue.

a. Front

b. Back

c. Middle

d. Both a and b.

Fill in the Blanks

1. A queue can be defined as a ……………. (data type / data
structure)

2. The term head of the queue is same as the term…………. (front /
rear)

3. FRONT = REAR pointer refers to……………. Queue. (empty /
full)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/93

4. A / An……………… is a queue in which insertion of an element
takes place at both the ends but deletion occurs at one end only.
(input-restricted / output restricted)

5. A --------------------is a data structure that organizes data similar to
a line in the super market, where the first one in the line is the first
one out (Linear queue / Circular queue)

State whether True or False
1. A queue can be implemented using a circular array with front and

rear indices and one position left vacant.

2. Queue is a useful data structure for any simulation application.

3. A priority queue is implemented using an array of stacks.

4. Queues are often referred to as Last in First out (LIFO) data
structure.

5. A deque is a generalization of both a stack and a queue.

Descriptive Questions:

1. Show how a sequence of insertion and removals from a queue
represented by a linear array can cause overflow to occur upon an
attempt to insert an element into an empty queue.

2. How would you implement a queue of stacks? A stack of queues?
A queue of queues? Write routines to implement the appropriate
operations of each of these data structures.

3. What is a circular queue? Write a C program to insert an element
in the circular queue. Write another C function for printing
elements of the queue in reverse order.

4. Given the circular queue of with F = 6 and R = 2, give the values
of R and F after each operation in the sequence: insert, delete,
delete, insert and delete.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/94

BLOCK

3
Linked List, Tree and Graph
UNIT-7

Linked List

UNIT-8

Tree

UNIT-9

Graph

Bachelor in Computer Application

Uttar Pradesh Rajarshi Tandon
Open University

 BCA-1.2Vol-2/B.Sc.
(UGCS-04 /UGCS-103)

(''C'' Programming and Data Structure)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/95

99-132

133-180

181-226

Curriculum Design Committee
Dr.P.P.Dubey Coordinator
Director, School of Agri. Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Mr. Prateek Kesrwani Member Secretary
Academic Consultant-Computer Science
School of Science, UPRTOU, Prayagraj

Course Design Committee
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,
MNNIT, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Faculty Members, School of Sciences
Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU,
Prayagraj
Ms. Marisha Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science,
UPRTOU, Prayagraj

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/96

Dr. Academic Consultant (Maths), School of Science, UPRTOU,
Prayagraj
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science,
UPRTOU, Prayagraj
Dr. Deepa pathak, Academic Consultant (Chemistry), School of Science,
UPRTOU, Prayagraj
Dr. A. K. Singh, Academic Consultant (Physics), School of Science,
UPRTOU, Prayagraj
Dr. S. S. Tripathi, Academic Consultant (Maths), School of Science,
UPRTOU, Prayagraj

Course Preparation Committee
Prof. Manu Pratap Singh, Author
Dept. of Computer Science
Dr. B. R. Ambedkar University, Agra-282002
Dr. Ashutosh Gupta Editor
Director, School of Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science
Baranas Hindu University, Varanasi
Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-15-4
All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2018.
Printed By: Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/97

BLOCK INTRODUCTION

This block will cover the one linear but non-contiguous data structure i.e.
linked list and two non-linear & non-contiguous data structure i.e. Tree
and Graph. All of these three data structures support dynamic memory
allocation. The operations of insertion and deletion are explained with the
help of examples for single linked list, circular linked list and doubly
linked list. The applications of linked list data structure are discussed
specifically for representation of polynomial. Enough number of
examples is discussed to show the operations in linked list.

Tree data structure is also discussed in full detail. The basic terminology
of tree and its representation is explained with suitable examples. The
concepts of binary tree, complete binary tree, binary search tree, AVL
tree, B-tree are illustrated with suitable examples. The traversing for the
tree is explained with in-order, pre-order and post-order manner. The
iterative and recursive algorithms for these traversing are also described.
The insertion and deletion of an element from the binary tree and binary
search tree is also explained with suitable examples. Threaded tree is
explained and its representation is considered with example. The
operations of insertion and deletion are defined for B-tree and AVL-tree
also.

Graph is explained with its used terminology. Various methods for graph
representation are covered like matrix representation and linked list
representation. The adjacency matrix, path matrix and reach matrix are
explained with suitable examples. The acyclic graph and directed graph
are also covered in this block. The two basic search techniques of
searching i.e. Breadth first search and depth first search for the graph is
also discussed and explained with examples. The concept of spanning tree
and minimum spanking tree is stated with the Kruskal’s and prim’s
algorithm for minimum spanning tree construction form the given
weighted digraph. The Shortest path algorithms like bellman Ford,
Dijkstra’s and Floyd-Warshall are explained with examples. The
topological sort for the graph is also covered with example.

This block will help you to realize the concept of non-primitive data
structures and illustrate you about the application of these important data
structure in the computer organization and for processing of various
common operations of system software.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/98

UNIT-7 LINKED LIST

Structure

7.0 Introduction

7.1 Objectives

7.2 Definition of linked list

7.3 Dynamic memory Allocation for Linked list

7.4 Creation of Linked list in ‘C’

7.5 Operation on Linked List

7.6 Insertion into a Linked List

7.7 Deletion form the Linked List

7.8 Copy of the Linked List

7.9 Circular Linked List

7.10 Doubly Linked Lists

7.11 Insertion in doubly linked list

7.12 Deletion in doubly linked list

7.13 Doubly linked list as Queue

7.14 Circularly doubly linked list

7.15 Application of linked list: Polynomial representation

7.16 Stack implementation with Linked list

7.17 Garbage Collation

7.18 Summary

7.0 INTRODUCTION

A list can be defined as a collection of elements. We can add,
search, or delete elements in a list. The list in maintained either with array
or linked list. This unit introduces the concept of another important linear
but non-contiguous data structure i.e. linked list which is a linear
collection of data elements called nodes, which pointing to the next node
by means of pointers. This unit starts with the representation and
implementation of the single liked list with operation of insertion and
deletion of the element in the liked list on various locations i.e. at first, last
and at middle. It gives the implementation of stack and queue with the
help of single liked list. The concept and implementation of circular liked
list & doubly liked list is presented with the operation of insertion and
deletion of an element on different locations. The application of linked list

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/99

is presented for representation of a polynomial and shows the operation of
addition in between two polynomials by using linked list. In the last the
concept of garbage collection is introduced. Linked lists overcome the
drawbacks of arrays. In a linked list the number of elements need not be
predetermined; more memory can be allocated and released during
processing. It supports the dynamic memory allocation mechanism to
make insertion and deletion easier.

7.1 OBJECTIVES

After going through this unit, you should be able to:

• Understand the concept of linked list and its representation.

• Implementation of single linked list and performing for the
operation of insertion and deletion for an element in the existing
linked list on various locations.

• Implementation of stack and queue with single linked list.

• Understand the concept of circular linked list and its
representation.

• Implementation of circular linked list and performing for the
operation of insertion and deletion for an element in the existing
circular linked list on various locations.

• Implementation of doubly linked list and performing for the
operation of insertion and deletion for an element in the existing
doubly linked list on various locations.

• Understand the application of linked list for the representation of
polynomial and performing the operation of addition for two
polynomials using linked list.

• Understand the concept of garbage collection.

7.2 DEFINITION OF LINKED LIST

A structure involved in many data processing activities is the
ordered list of data items, like alphabetical lists of names. This type of
data processing is conveniently performed with Array. In Array there is a
linear relationship; between the data elements those are stored in memory
at contiguous location with static memory requirement. The address of any
element in the array can be easily computed but it is very difficult to insert
and delete any element in an array. Usually, a large block of memory is
occupied by an array which may not be in use and it is difficult to increase
the size of an array, if required. There is another way also for storing the
ordered list is to have each element in a list contain a field called a link or
pointer, which contains the address of the next element in the list. Thus it
provides the non contiguous memory allocation but in liner relationship.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/100

Hence the successive elements in the list need not occupy adjacent space
in memory. This type of data structure is called a linked list. Thus, Linked
list is the most commonly used data structure used to store similar type of
data in memory. The elements of a linked list are not stored in adjacent
memory locations as in arrays.

Therefore, a linked list or one-way list is a liner collection of data
elements, called nodes, where the linear order is given by means of
pointers. That is, each node is divided into two parts:

1. First part: It contains the information of the element (Info)

2. Second part : It contains the address of the next node in the list
(Link)

Any node of the linked list can represent as:

INFO LINK

Node

In this type of list representation with linked list which is containing nodes
for the presentation of elements a pointer is used to represent the address
of the next element of the linked list. A pointer to the starting of the linked
list i.e. for the first node or head of the linked list is used to gain access to
the list itself and the end of the list is denoted by a NULL pointer. In ‘C’
language the structure is used to implement a single linked list as:

Struct node

{

Int INFO;

Struct node *LINK; }

The structure declared for linear linked list holds two members, an integer
type variable INFO which holds the elements and another member of type
node which has the variable LINK, which stores the address of the next
node in the list.

Now we consider an example for the representation of a linked list of 4
nodes as shown in the following figure. Each node is considering two
parts. The left part represent the information part of the node, which may
contain an entire record of data items. The right part represents the Link
part i.e. a pointer field which contains the address of the next node. The
pointer of the last node contains the NULL pointer, which is any invalid
address.

Start INFO 1 INFO 2 INFO 3 INFO 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/101

(NULL Pointer)

7.3 DYNAMIC MEMORY ALLOCATION FOR
LINKED LIST

The ‘C’ language requires the number of elements in an array at
compile time. This may cause wastage of memory space. Such situation
can take care by using the concept of dynamic memory allocation
concepts. Dynamic memory techniques allow us to allocate additional
memory space or to release unwanted space at the time execution. This
may cause minimum wastage to memory space with respect to the static
memory allocation at compile time. The C language supports the
following functions for allocating and free memory during the execution
of the program:

• Malloc () : It allocates requested size of bytes

• Calloc () : It allocates space for an array of elements

• Free () : It Frees previously allocated space

• Realloc () : It modifies the size of previously allocated space.

7.4 CREATING THE LINKED LIST IN ‘C’

The linked list can create in ‘C’ language by using pointers and
dynamic memory allocation functions such as malloc(). The head pointer
is used to create and access unnamed nodes. The following code segment
is used in ‘C’ for creating the linked list:

Struct linked_list

{

Int INFO;

Struct linked_list *next; }

Typedef struct linked_list node;

Node *head;

Head = (node*) malloc (size of (node));

Thus the above segment of code obtains memory to store a node and
assigns its address to head which is a pointer variable.

7.5 OPERATION ON LINKED LIST

We can perform the following operations on the linked list:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/102

1. Traversing a Linked List
Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. Suppose we want to traverse
LIST and print the element of the list in order to process each node
exactly once. Our traversing algorithm uses a pointer varivable
PTR which points to the node that is currently being processed.
Accordingly, LINK[PTR] points to the next node to be processed.
The assignment PTR = LINK[PTR] moves the pointer to the next
node in the list. The algorithmic steps for the traversing process are
as follows:

Algorithm (Traversing a Linked List) :
[Initialize PTR and then process INFO [PTR], the information at
the first node. Update PTR by the assignment PTR = LINK[PTR],
and then process INFO[PTR], the information at the second node
and so on until PTR = NULL, which signals the end of the list.]

1. PTR = START [Initialize pointer PTR]

2. Repeat steps 3 and 4 while PTR ≠NULL

3. Print (INFO [PTR])

4. PTR = LINK [PTR] [Update pointer]

[End of step 2 loop]

5. Return

2. Count the nodes in a Linked List
Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. Suppose we want to count the
number of nodes in the linked list by traversing the LIST in order
to process each node exactly once. Our counting algorithm uses a
pointer varivable PTR which points to the node that is currently
being processed. Accordingly, LINK[PTR] points to the next node
to be processed. The assignment PTR = LINK[PTR] moves the
pointer to the next node in the list. The algorithmic steps for the
traversing process are as follows:

Algorithm COUNT (INFO, LINK, START, NUM)
[Initialize PTR and NUM and then process INFO [PTR], the
information at the first node. Update PTR by the assignment PTR
= LINK[PTR], and then process INFO[PTR], and increment the
NUM by one each time of this processing until PTR = NULL,
which signals the end of the list.]

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/103

1. PTR = START and NUM = 0; [Initialize pointer PTR and
NUM]

2. Repeat steps 3 and 4 while PTR ≠NULL

3. NUM = NUM + 1; [Increase NUM by 1]

4. PTR = LINK [PTR] [Update pointer]

5. Print (“The number of nodes in the linked list are = “,
NUM)

[End of step 2 loop]

6. Return

3. Searching a Linked List

Let we have the linked list LIST in memory with its two fields
INFO and LINK with START pointing to the first element and
NULL indicating the end of LIST. We have given an ITEM of
information. The process here is for finding the location LOC for
the node where ITEM first appears in LIST.

Algorithm (Searching a Linked List):

[Initialize PTR and then process INFO [PTR], the information at
the first node. Update PTR by the assignment PTR = LINK[PTR],
and then process INFO[PTR]. Now compare the content
INFO[PTR] of each node with LOC, one by one by updating the
pointer PTR by PTR = LINK[PTR] until PTR = NULL, which
signals the end of the list. Here we have the two terminating
condition i.e. the end of the linked list or the item LOC is found i.e.
INFO[PTR]=ITEM.

Search(INFO, LINK, START, ITEM, LOC)

1. PTR = START [Initialize pointer PTR]

2. Repeat steps 3 while PTR ≠NULL

3. If (ITEM == INFO[PTR]) {

LOC = PTR; Return (PTR); }

Else

PTR = LINK [PTR] [PTR now points to the next node]

[End of Step 2 loop]

4. LOC = NULL [Search is unsuccessful.]

5. Exit.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/104

7.6 INSERTION INTO A LINKED LIST

Let LIST be a linked list on any arbitrary nodes. An element A is
to be inserted into the list. There may be the following three conditions in
which the given element can insert in the existing list:

1. The new element A can insert at the beginning of the list as the
first node.

2. The new element A can insert at the end of the list.

3. The new element A can insert in between any two already existing
nodes in the list.

All the three locations for the insertion of given new element A into the
existing linked list can view diagrammatically as:

Existing Linked List

 Eliminated pointer Address

 Actual current Pointer Address

(a) Situation First for the insertion in existing List

(b) Situation second for the insertion in
existing List

Start INFO 1 INFO 2 INFO 3 INFO 4

A

Start INFO 1 INFO 2 INFO 3 INFO 4

 A

S tart INF O 1 INFO 2 INFO 3 INFO 4

Start INFO 1 INFO 2 INFO 3 INFO 4

 A

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/105

Eliminated pointer Address

Actual current Pointer Address

(c) Situation Third for the insertion in existing List

Now we present the algorithm of insertion on these three locations in the
given linked list. Thus we discuss three insertion algorithms for the
following cases:

• The first one inserts a node at the beginning of the list

• The second one inserts a node into after the node with a given
location.

• The third one inserts a node into the last or into a sorted list.

In all the following algorithms we consider a linked list i.e. LIST (INFO,
LINK, START, AVAIL) and that the variable ITEM contains the new
information to be added to the list. Since our insertion algorithms will use
a node in the AVAIL list, all of the algorithms will include the following
steps:

(a) Check the condition for overflow. This condition will check to
examine the AVAIL list i.e. if AVAIL = NULL then it shows the
condition of overflow.

(b) Removing the first node from the AVAIL list. Using the variable
NEW to keep track of the location of the new node, this step can
be implemented as:

NEW = AVAIL, AVAIL = LINK [AVAIL]

(c) Copying new information into the new node as:

INFO [NEW] = ITEM

The algorithms for these three cases are described as:

(i) Insertion at the beginning of a List

This algorithm inserts a new element at the beginning of the
given linked list:

INSFIRST (INFO, LINK, START, AVAIL, ITEM)

[This algorithm will insert the given ITEM as the first node in
the list]

If (AVAIL == NULL) /* Check the condition for overflow
*/

{

Printf (‘OVERFLOW’);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/106

Return;

 }

Else {

NEW = AVAIL;

AVAIL = LINK [AVAIL]; /* remove first node from
AVAIL list */

INFO[NEW] = ITEM; /* Copy new data into new
node */

LINK [NEW] = START; /* new node to point the
original first node */

START = NEW; /* Change START so it points
to the new node */

}

Return (NEW);

(ii) Insertion at end of a List

This algorithm inserts a new element at the end or at the last of the
given linked list:

INSFIRST (INFO, LINK, START, AVAIL, ITEM)

[This algorithm will insert the given ITEM as the last node in the list]

If (AVAIL == NULL) /* Check the condition for overflow */

{

Printf (‘OVERFLOW’);

Return;

 }

Else {

NEW = AVAIL; /* obtain address of next free
node */

AVAIL = LINK [AVAIL]; /* re remove first node from
AVAIL list */

INFO [NEW] = ITEM; /* Copy new data into new
node */

LINK [NEW] = NULL /* new node to point the last
node of the list */

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/107

If (START == NULL) /* check for the list that is list
empty? */

Return (NEW);

TEMP = START /* Initiate search for the last
node */

 while (LINK [TEMP] != NULL)

{

TEMP = LINK [TEMP]

}

LINK [TEMP] = NEW /* Set LINK field of last node
to NEW */

Return (START)

 }

(i) Insertion after a given Node of a List

This algorithm inserts a new element after the given node of the
given linked list:

INSORDER (INFO, LINK, START, AVAIL, ITEM)

[This algorithm inserts the given node ITEM into LIST on the
given location i.e. LOC is the location of a node say A. Thus ITEM
follows node A. Let N denote the new node (whose location is NEW). If
LOC=NULL, then N is inserted as the first node in LIST. Let the node N
point to node B (which originally followed node A) by the statement,
LINK [NEW] = LINK [LOC] and we let node A point to the new node N
by the statement, LINK [LOC] = NEW;

If (AVAIL == NULL) /* Check the condition for overflow
*/

{

Printf (‘OVERFLOW’);

Return;

 }

Else {

NEW = AVAIL; /* obtain address of next free
node */

AVAIL = LINK [AVAIL]; /* re remove first node from
AVAIL list */

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/108

INFO [NEW] = ITEM; /* Copy new data into new
node */

If (LOC == NULL) /* check for the list that is list
empty? */

{

LINK [NEW] = START;

START = NEW; /* Insert as first node */

 }

Else

{

 LINK [NEW] = LINK [LOC];

 LINK [LOC] = NEW; /* Insert the node after LOC

}

 }

Return (START);

7.7 DELETION FORM THE LINKED LIST

Let LIST be a linked list on any arbitrary nodes. An element A is
an existing node of the linked list which has to be deleted from the list.
There may be the following three conditions in which the given element
can insert in the existing list:

1. The node of the element A is the first node of the linked list which
has to be deleted.

2. The node of the element A is the last node of the linked list which
has to be deleted.

3. The node of the element A is the any middle node of the linked list
which has to be deleted. A specific location is given for a node and
that node which is at that location should delete.

All three situations for the deletion of given node of element A into the
existing linked list can view diagrammatically as:

Existing Linked List

Start A INFO 2 INFO 3 INFO 4

S tart I NFO 1 INFO 2 INFO 3 INFO 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/109

Eliminated pointer Address

Actual current Pointer Address

(a) Situation First for the deletion from the existing List

(b) Situation second for the deletion from the existing List

Eliminated pointer Address

Actual current Pointer Address

Eliminated pointer Address

Actual current Pointer Address

(c) Situation Third for the deletion from the existing list

Now we present a general algorithm for deleting an element from the
given linked list. This algorithm encompasses all the three situations as
described in above mentioned figures for deletion.

Algorithm DELTE (X, FIRST): [Given X and FIRST pointer variables
whose values denote the address of a node in a linked list and the address
of the first node in the linked list, respectively, this procedure deletes the
node whose address is given by X. TEMP is used to find the desired node,
and PRED keeps track of the predecessor of TEMP. FIRST is changed
only when X is the first element of the list.]

If (FIRST == NULL) /* Check the condition for empty list
*/

{

Printf (‘UNDER FLOW’);

Start INFO 1 INFO 2 INFO 3 INFO 4

 A

Start INFO 1 INFO 2 A INFO 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/110

Return;

 }

Else { /* Initialize search for X */

TEMP = FIRST;

While ((TEMP != X) && (LINK (TEMP) != NULL)) /* find
X */

{

PRED = TEMP /* Update predecessor
marker */

TEMP = LINK (TEMP) /* Move to next node */

}

If (TEMP != X) /* end of the list */

{

Printf (“Node not found”);

Return;

}

If (X == FIRST) /* X is the first node i.e. the deletion
of the first node */

FIRST = LINK (FIRST);

Else

LINK (PRED) = LINK (X);

LINK (X) = AVAIL; /* Return node to available
area */

AVAIL = X;

Return;

}

7.8 COPY OF THE LINKED LIST

Let LIST be a linked list on any arbitrary nodes. We formulate a
algorithm which copies a linked list into the another linked list. A general
algorithm to copy a linked list is as follows:

Algorithm COPY (FIRST): [Given FIRST, a pointer to the first node in a
linked list, this algorithm makes a copy of this list. A typical node in the
given list consists of INFO and LINK fields. The new list is to contain
nodes whose information and pointer fields are denoted by FIELD and

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/111

PTR, respectively. The address of the first node in the newly created list is
to be placed in BEGIN. NEW, SAVE and PRED are pointer variables.]

If (FIRST == NULL) /* Check the condition for empty list
*/

{

Printf (‘EMPTY LIST’);

Return; }

Else

{

If (AVAIL == NULL)

{

Printf (“Availability stack underflow”);

Return (0); }

Else {

NEW = AVAIL; /* copy the first node */

AVAIL = LINK (AVAIL);

FIELD (NEW) = INFO (FIRST);

BEGIN = NEW; }

SAVE = FIRST; /* Initialize traversal */

While (LINK (SAVE) != NULL) /* Move to next node if not at
end of list */

{

PRED = NEW;

SAVE = LINK (SAVE); /* update predecessor and
save pointer */

NEW = AVAIL;

AVAIL = LINK (AVAIL);

FIELD (NEW) = INFO (SAVE); /* copy node */

PTR (PRED) = NEW;

}

PTR (NEW) = NULL;

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/112

Return (BEGIN); /* Set link of last node and
return */

}

7.9 CIRCULAR LINKED LIST

In the previous discussion we have concerned about linked lists in
which the last node of such lists contained the null pointer. Now we
consider a slight different modification of this representation which results
in a further improvement in processing. This is accomplished by replacing
the null pointer in the last node of a list with the address of its first node.
Such a list is called a circularly linked linear list or simply a circular list.
The following figure illuSTARTes the structure of a circular list:

 First A circularly linked list

Circular lists have certain advantages over singly linked list. These
advantages can highlight as follows:

∗ Accessibility of a node: In a circular list every node is accessible
from a given node. That is, from this given node, all nodes can be
reached by merely chaining through the list.

∗ Deletion of a node: In the single linked list, to delete an element in
addition to the address X of the node to be deleted it is also
necessary to give the address of the first node of the list. This
necessity results from the fact that in order to delete X, the
predecessor of this node has to be found. To find the predecessor
requires that a search be carried out by chaining through the nodes
from the first node of the list. This search requirement does not
exist for a circular list, since the search for the predecessor of node
X can be initiated from X itself.

Beside these advantages the circular link list also has a disadvantage. In
circular linked list with if the processing is carried out without some care
it is possible to get into an infinite loop. In processing a circular list, it is
important that we are able to detect the end of the list. Hence to detect the
end of the list we place a special node which can be easily identified in the
circular list. This special node is called as the list head or header of the
circular list. The one of the important advantage of using the header node
in the circular list is that the list will never be empty because at least one
node will always present in the circular linked list. The representation of a
circular list with a header node can represent graphically as:

INFO 1 INFO 2 INFO 3 INFO 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/113

HEAD

A circularly linked list with a head node

Here the variable HEAD denotes the address of the list head. The INFO
filed in the list head node is not used, which is illuSTARTed by shading
the field. An empty list is represented by having:

LINK (HEAD) = HEAD. The following are the various operations
performed on a circular header list:

• Traversing a circular header list

• Searching in a circular header list

• Deleting from a circular header list

Now we consider the algorithms for these three operations.

Algorithm (Traversing a circular header Linked List)

[Initialize PTR and then process INFO [PTR], the information at the first
node. Update PTR by the assignment PTR = LINK [PTR], and then
process INFO [PTR], the information at the second node and so on until
PTR ≠ START.]

1. PTR = LINK [START] [Initialize pointer PTR]

2. Repeat steps 3 and 4 while PTR ≠START

3. Print (INFO [PTR])

4. PTR = LINK [PTR] [Update pointer]

[End of step 2 loop]

5. Return

Algorithm (Searching the circular header Linked List)

[This algorithm finds the location LOC of the node where ITEM first
appears in LIST or sets LOC = NULL.]

1. PTR = LINK [START]; [Initialize pointer PTR]

2. Repeat while INFO [PTR] ≠ ITEM and PTR ≠START

PTR = LINK [PTR]; [PTR now points to the next node]

[End of loop]

 INFO 1
INF O 2 INFO 3 INFO 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/114

3. If (INFO [PTR] == ITEM) then

LOC = PTR;

Else

LOC = NULL;

[End of if structure]

4. Exit

Algorithm CRDELTE (X, FIRST): [Given X and FIRST pointer
variables whose values denote the address of a node in a linked list and the
address of the first node in the linked list, respectively, this procedure
deletes the node whose address is given by X. TEMP is used to find the
desired node, and PRED keeps track of the predecessor of TEMP. FIRST
is changed only when X is the first element of the list.]

If (FIRST == NULL) /* Check the condition for empty list */

{

Printf (‘UNDER FLOW’);

Return;

 }

Else { /* Initialize search for
X */

TEMP = FIRST;

While ((TEMP != X) && (LINK (TEMP) != FIRST))
/* find X */

{

PRED = TEMP /* Update
predecessor marker */

TEMP = LINK (TEMP) /* Move to next node
*/

}

If (TEMP != X) /* end of the list */

{

Printf (“Node not found”);

Return;

}

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/115

If (X == FIRST) /* X is the first node i.e. the deletion
of the first node */

FIRST = LINK (FIRST);

Else

LINK (PRED) = LINK (X);

LINK (X) = AVAIL; /* Return node to
available area */

AVAIL = X;

Return;

}

7.10 DOUBLY LINKED LISTS

Now we discuss a two – way list, which can be traversed in
following two directions:

1. In the usual forward direction from the beginning of the list to the
end.

2. In the backward direction from the end of the list to the beginning.

This property of a linked linear list implies that each node must contain
two link fields instead of the single link field. The links are used to denote
the Predecessor and successor of a node. The link denoting the
predecessor of a node is called the left link, and that denoting its successor
its right link. A list containing this type of node is called a doubly linked
list or two-way list.

Therefore a two – way list is a linear collection of data structure, called
nodes, where each node N is divided into three parts:

(i) An information field INFO which contains the data of the element.

(ii) A pointer field L which contains the location of the preceding node
in the list.

(iii) A pointer field R which contains the location of the next node in
the list.

Any node of the doubly linked list can represent as:

LINK (L) INFO LINK (R)

Node

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/116

In this linked list there are two NULL pointers. One is along the forward
pass i.e. with R link and another is along the backward pass i.e. with L
link. Hence along the forward pass the last node of the list will contain the
NULL pointer and along the backward pass the first node will contain the
NULL pointer. Pictorially, such a liner list can be represented
diagrammatically as follows:

A doubly linked linear list

7.11 INSERTION IN DOUBLY LINKED LIST

Now we consider the problem of inserting a node into a doubly
linked linear list to the left of a specified node whose address is given by
variable M. There are number of cases possible for insertion of an element
into the existing doubly linked list. These cases are as follows:

• Insertion in the list which is originally empty. This is denoted by
setting both L and R pointers to the address of the new node and by
assigning a NULL value to the left and right link of the node being
entered.

• Insertion in the middle of the list.

• The insertion can be made to the left of the left-most in the list,
thereby requiring the pointer L to be changed.

The last two situation of inserting a new element can pictorially represent
as:

M

 NEW

Doubly linked list before insertion of the element

L R

L R

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/117

M

Doubly linked list after the insertion of an element in the middle

M

NEW

Doubly linked list before insertion of the element

M

Doubly linked list after the insertion of an element in

the left most side

Now we describe the general algorithm for inserting a node to the left of a
given node in a doubly linked list. The algorithm is stated as:

L R

L R

L

R

NEW

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/118

Algorithm DOUBINS (L, R, M, X):
[Given a doubly linked list whose left most and right most node addresses
are given by the pointer variables L and R, respectively, it is required to
insert a node whose address is given by the pointer variable NEW . The
left and right links of a node are denoted by LPTR and RPTR,
respectively. The information field of a node is denoted by the variable
INFO. The name of an element of the list is NODE. The insertion is to be
performed to the left of a specified node with its address given by the
pointer variable M. The information to be entered in the node is contained
in X.]

1. [obtain new node from availability stack]

NEW ⟸NODE;

2. [copy information field]

INFO (NEW) = X;

3. [Insertion into an empty list?]

If (R ==NULL)

{

LPTR (NEW) = RPTR (NEW) = NULL;

L = R = NEW;

Return (NEW);

}

4. [Left-most insertion]

If (M == L)

{

LPTR (NEW) = NULL;

RPTR (NEW) = M;

LPTR (M) = NEW;

L = NEW;

Return (NEW);

}

5. [Insertion in middle]

LPTR (NEW) = LPTR (M);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/119

RPTR (NEW) = M;

LPTR (M) = NEW;

RPTR (LPTR (NEW))= NEW;

Return (NEW);

7.12 DELETION IN DOUBLY LINKED LIST

Now we consider the problem of deleting a node from a doubly
linked linear list. In this process there is no need of any search for
determining the predecessor node of the node to be deleted. In the doubly
linked list on giving the address of the node which is to be deleted, the
predecessor and successor nodes are immediately known. Therefore
doubly linked lists are much more efficient with respect to deletions than
singly linked lists.

There are number of possibilities arises for the deletion operation in
doubly linked list. These possibilities are as follows:

• If the list contains a single node, then a deletion results in an empty
list with the left – most and right-most pointers being set to NULL.

• The node being deleted could be the left-most node of the list. In
this case the pointer variable L must be changed.

• The node being deleted could be the Right-most node of the list. In
this case the pointer variable R must be changed.

• The deletion can occur from the middle of the list.

A general algorithm for deleting a node from the doubly linked list is as
follows:

Algorithm DOUBDEL (L, R, OLD):

[Given a doubly linked list with the addresses of the left most and right
most nodes given by the pointer variables L and R, respectively, it is
required to delete the node whose address is given by the pointer variable
OLD. The left and right links of a node are denoted by LPTR and RPTR,
respectively.]

1. [check the condition for underflow]

If (R == NULL)

{

Printf (”Underflow”);

Return

}

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/120

2. [Delete the node]

If (L == R) /* single node in the list */

L = R = NULL;

Else if (OLD == L) /* Left-most node being deleted */

{

L = RPTR (L);

LPTR (L) = NULL;

}

Else if (OLD == R) /* Right-most node being deleted */

{

R = LPTR (R);

RPTR (R) = NULL;

}

Else

{

RPTR (LPTR (OLD)) = RPTR (OLD);

LPTR (RPTR (OLD)) = LPTR (OLD);

}

3. [Return deleted node]

Return (OLD);

7.13 DOUBLY LINKED LIST AS QUEUE

Doubly linked linear lists can be easily used to represent a queue
whose number of elements is very volatile. Such representation can see as:

Doubly linked linear list representation of a queue

Here R and F are pointer variables which denote the REAR and FRONT
of the queue, respectively. The insertion of a node whose address is NEW
at the REAR of the queue as shown below:

F R

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/121

NEW
Insertion in a doubly linked queue

The following sequence of steps accomplishes such insertion:

RPTR (R) = NEW;

RPTR (NEW) = NULL;

LPTR (NEW) = R;

R = NEW;

Similarly, a deletion from a doubly linked queue can represent as:

Deletion in a doubly linked queue

The deletion from the front of the queue is achieved by the following
algorithmic steps:

F = RPTR (F);

LPTR (F) = NULL;

7.14 CIRCULARLY DOUBLY LINKED LIST

The process of insertion and deletion can simplify if we combine
the advantages of doubly linked list and circular header linked list. The
doubly linked list may implement as the circular linked list by connecting
the two end nodes point back to its header node. Therefore the case of an
empty list is dispensed with by never permitting a list to be empty. This
can be accomplished by using a special node that always remains in the
list. Hence, it is the only node in an empty list. The special node is called
the Head node of the list. Thus, such a two-way list requires only one list

F

R

F R

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/122

pointer variable i.e. START, which points to the header node. This is
because the two pointers in the header node point to the two ends of the
list as shown in the following graphical representation of the circular
doubly linked list:

HEAD

A doubly linked circular list with a head node

In this representation we can see that the right link of the right-most node
contains the address of the head node and the left link of the head node
points to the right-most node. The empty list can present when both left
and right links of the head node point to itself. This can view graphically
as:

HEAD

An empty doubly linked circular list with a head node.
The algorithm for inserting a node in the doubly linked circular list to the
left of a specified node M now reduces to the following sequence of steps
with respect to the insertion algorithm in a double linked linear list:

Algorithm DOUBCRINS (L, R, M, X):
[Given a doubly circular linked list with the HEAD node. Now it is
required to insert a node whose address is given by the pointer variable
NEW. The left and right links of a node are denoted by LPTR and RPTR,
respectively. The information field of a node is denoted by the variable
INFO. The name of an element of the list is NODE. The insertion is to be
performed to the left of a specified node with its address given by the
pointer variable M. The information to be entered in the node is contained
in X.]

1. [obtain new node from availability stack]

NEW ⟸NODE;

2. [copy information field]

INFO (NEW) = X;

3. [Insertion the node]

RPTR (NEW) = M

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/123

LPTR (NEW) = LPTR (M)

RPTR (LPTR (M)) = NEW

LPTR (M) = NEW

Return (NEW);

The insertion of a node into an empty list can be represented before and
after the insertion as follows:

 HEAD

Empty doubly linked circular list

Before the insertion of new node NEW

HEAD

 Empty doubly linked circular list after the insertion of a new node

 M NEW

In the same manner, the deletion algorithm of a node with an address
given by the variable OLD from the doubly linear linked is modified and
this modification can present in the following steps as:

Algorithm DOUBCRDEL (L, R, OLD) :
[Given a doubly linked circular list with the HEAD node. This is required
to delete the node whose address is given by the pointer variable OLD.
The left and right links of a node are denoted by LPTR and RPTR,
respectively.]

1. [check the condition for underflow]

If (HEAD (LPTR) == HEAD (RPTR))

{

Printf (”Underflow”);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/124

Return

}

2. [Delete the node]

{

RPTR (LPTR (OLD)) = RPTR (OLD);

LPTR (RPTR (OLD)) = LPTR (OLD);

}

3. [Return deleted node]

Return (OLD);

7.15 APPLICATION OF LINKED LIST:
POLYNOMIAL REPRESENTATION

Here we consider the applications of linked list. A very common and
important application of linked list is for the representation of a
polynomial. A polynomial, p (x), is an expression in variable x of the form
(kjxbxax nn ++++ −1) where a, b, c, …k are real numbers and n is a
non-negative integer. The number n is called the degree of the polynomial.
An important characteristic of a polynomial is that each term in the
polynomial expression consists of following two parts:

• Coefficient

• Exponent

Consider the following polynomial:

dxcxbxax −−+ 235

Here, (a, b, -c, -d) are coefficients and (5, 3, 2, 1) are exponents.

Exponents are the placeholders for any value that remains constant for
each term in a single expression. In data structure, a polynomial can be
represented as a list of nodes where each node consists of coefficient and
an exponent.

Points to be considered when working with polynomials are:

• Sign of each coefficient and exponent is stored within the
coefficient and exponent itself.

• Only addition of term with equal exponent is possible.

• Storage of each term in the polynomial must be done in ascending /
descending order of their exponent.

Consider the example of representing a term of a polynomial in the
variables x, y, z. A typical node of the linked list can represent as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/125

POWER_X POWER_Y POWER_Z COEFF LINK

A typical node of the linked list for the representation of a
polynomial of three variables
This typical node consists of five sequentially allocated fields that we
collectively refer to as TERM. The first three fields represent the power of
the variables x, y, z, respectively. The fourth and fifth fields represent the
coefficient of the term in the polynomial and the address of the next term
in the polynomial, respectively. For example, the term 3xy would be
represented as:

1 1 0 3

We consider the pointer address P to reference the node for our
algorithmic notation. COEFF (P) denotes the coefficient field of a node
pointed to by P. Similarly, the exponents of x, y and z are given by
POWER_X (P), POWER_Y (P), and POWER_Z (P), respectively, and the
pointer to the next node is given by LINK (P).

Consider as an example the representation of the polynomial:
yzyxyx +++ 22 52 as a linked list. Assume that the nodes in the list are

to be stored such that a term pointed to by P precedes another term
indicated by Q if POWER_X (P) is greater than POWER_X (Q); or, if the
power of x is equal, then POWER_Y (P) must be greater than POWER_Z
(Q). For our example, the list is represented as:

We can formulate an algorithm which inserts a term of a polynomial into a
linked list.

Algorithm POLYFRONT (NX, NY, NZ, NCOEFF, POLY):

[Given the definition of the node structure TERM and an availability area
from which we can obtain such nodes, it is required to insert a node in the
linked list so that it immediately precedes the node whose address is
designated by the pointer POLY. The fields of the new term are denoted
by NX, NY, NZ, and NCOEFF, which correspond to the exponents for x,

2 0 0 2 1 1 0 5 0 2 0 1

0 1 1 1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/126

y, and z, and the coefficient value of the term, respectively. NEW is a
pointer variable which contains the address of the new node.]

1. [Obtain a node from available storage]

NEW ⟸ TERM

2. [Initialize numeric fields]

POWER_X (NEW) = NX;

POWER_Y (NEW) = NY;

POWER_Z (NEW) = NZ;

COEFF (NEW) = NCOEFF

3. [Set link to the list]

LINK (NEW) = POLY;

4. [Return first node pointer]

Return (NEW)

This function performs all its insertions at one end of the linked list. In
general, it is also possible to perform insertions at the other end or in the
middle of the list. The zero polynomial (polynomial with no terms) is
represented by the NULL pointer. Before any term of a polynomial has
been added to a list, its first node pointer, which we call POLY, has a value
of NULL. When function POLYFRONT is invoked, the address of the
created node is returned, and it is this value that replaces the function call
i.e. POLY = POLYFRONT (NX, NY, NZ, NCOEFF, POLY. The
construction of a linked list for a polynomial is achieved by having a zero
polynomial initially and by repeatedly invoking function POLYFRONT
until all terms of the polynomial are processed.

7.16 STACK IMPLEMENTATION WITH
LINKED LIST

The problem with array-based stacks is that the size must be
determined at compile time. Thus the size of the stack is fixed. The stack
implementation with array reflects the static memory allocation. Hence to
implement the stack with dynamic memory allocation we use a linked list,
with the stack pointer pointing to the TOP element, let FRESH be the new
node. To push a new element on the stack, we must do:

FRESH->NEXT= TOP;

TOP = FRESH;

To pop an item from a linked stack, we just have to reverse the operation.

ITEM = TOP;

TOP = TOP->NEXT;

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/127

7.17 GARBAGE COLLECTION

Garbage collection is the process of collecting all unused nodes
and returning them to available space. Therefore the garbage collection is
about freeing dynamically allocated memory when not in use. This
process is carried out in two phases:

• First phase, known as marking phase. It involves marking of all
nodes that are accessible from the external pointer.

• Second phase, known as collection phase. It involves proceeding
sequentially through memory and freeing all nodes that have not
been marked.

In the implementation for linked list when we delete a node from the
linked list and return it to the memory back i.e. free (node) then the space
allocated to the deleted node and its pointer address return back to the
memory. This process is considered as the garbage collection.

7.18 SUMMARY

Linked list is a linear dynamic data structure which allows storing
the elements in non-contiguous memory locations. It is not restricted as
the array. It provides the way of dynamic memory allocation. The contents
of this unit can be summarized as:

• Linked list is the most commonly used data structure to store
similar type of data in memory.

• It is linear type data structure but allocate the memory in non
contiguous manner.

• It is a data structure which allocates the dynamic memory
allocation aspect.

• Self referential structure and pointer data types may represent the
singly connected linked lists.

• To make the traversal operation easy, doubly connected linked lists
are used, in which every node contains links to its left and right
neighbours.

• The NULL value in the end of a single linked list denotes the end
of the list. The NULL link when set to the beginning of the list,
results in the list called circular linked list.

• The idea of dynamic memory allocation is to be able to allocate
and de-allocate memory at runtime in response to program
requirement and thus manage that space efficiently.

• Stack and queue can implement with the linked linear lists.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/128

• The polynomial can represent and implement with linked list.

Bibliography
Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Ulrich Klehmet: “Introduction to Data Structures and Algorithms”, URL:
http://www7 . Informatik.uni-erlangen.de/~klehmet/teaching/SoSem/dsa

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

T. H. Cormen, C. E. Leiserson and R. L. Rivest, “ introduction to
Algorithms”, MIT Press, Combridge, 1990

Yedidyah Langsam, Moshe J. Augentein, and Aaron M Tenenbau, “Data
structure using C and C++”, Second edition, PHI Publication.

R. B. Patel “Fundamental of Data Structures in C”, PHI Publication

Niklaus Wirth, “Algorithm +Data Structures = Programs”, PHI
publications .

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/129

http://www7/

SELF EVALUATION
Multiple Choice Questions:

1. In linked list, a node contains:

a. Node, address field and data field.

b. Node number, data field

c. Next address field, information field.

d. None of these

2. In linked list, the logical order of elements

a. Is same as their physical arrangement

b. Is not necessarily equivalent to their physical arrangement

c. Is determined by their physical arrangement.

d. None of the above

3. NULL pointer is used to tell

a. End of linked list.

b. Empty pointer field of a structure

c. The linked list is empty

d. All of the above

4. List pointer variable in linked list contains address of the:

a. Following node in the list

b. Current node in the list

c. First node in the list

d. None of the above

5. Due to the linear structure of linked list having linear ordering,
there is similarity between linked list and array in:

a. Insertion of a node

b. Deletion of a node

c. Traversal of element of list

d. None of the above

6. Searching of linked list requires linked list to be created:

a. In stored order only.

b. In any order

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/130

c. Without underflow condition

d. None of the above

Fill in the blanks
1. The next address field is known as............ (pointer / address)

2. Linked list provides memory allocation (static / dynamic)

3. In linked list, the identity of next element is...........defined.
(explicitly / implicitly)

4. Beside data field, each node of linked list contains at least...........
more fields. (one / two)

5. End of the linked list is marked by putting.......... in the next
address field in the last node. (next / NULL pointer)

6. Attempting to delete a new node in linked list results in
underflow. (Empty / non-empty).

7. Polynomials in memory can be represented by lists. (Linear /
Circular).

8. For representing polynomial in memory using linked list each node
must have fields (three / two)

9. A polynomial is made of different terms each of which consists of
a and

State whether True or False
1. Doubly linked list is the two way linked lists.

2. List – null can be used to initialize list as empty list.

3. In linked list, successive elements need not occupy adjacent space
in memory.

4. Circular linked list can be used without header node efficiently.

5. Linear queue cannot implement with doubly linked list.

Answer the following questions
1. Write a program in “C” which reads the name, age and salary of 10

persons and maintains them in linked list sorted by name.

2. There are two linked lists A and B containing the following data:

A : 2, 5, 9, 14, 15, 7, 20, 17, 30

B : 14, 2, 9, 13, 37, 8, 7, 28

Write programs to create :

(i) A linked list C that contains only those elements those are
common in linked list A and B.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/131

(ii) A linked list D which contains all elements of A as well as B
ensuring that there is no repetition of elements.

3. Define polynomial as an abstract data type. Write a “C” functions
to add the two polynomials and return the sum.

4. What do you mean by linked list? What are the elements available
in the list? Specify the advantages of doubly linked list over the
singly linked list. What is garbage collection?

5. Write a function in “C’ that constructs a doubly linked list with a
list head from a singly linked list that is accessed through a pointer
FIRST. The original singly linked list need not be destroyed.

6. Write a program in “C” to insert and delete the element from the
circular doubly linked list.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/132

UNIT-8 TREE

Structure

8.0 Introduction

8.1 Objectives

8.2 Tree and its basic terminology

8.3 Binary Tree

8.4 Binary Tree representation

8.5 Linked storage Representation for binary trees

8.6 Traversing Binary Tree

8.7 Operation on the binary Tree

8.8 Reconstruction of Binary Tree

8.9 Threaded Binary Tree

8.10 Binary Search Tree

8.11 Operation on BST

8.12 AVL Tree

8.13 Operation in AVL Tree

8.14 B- Tree

8.15 Insertion in a B-Tree

8.16 Deletion in B- tree

8.17 Summary

8.0 INTRODUCTION

This unit introduces one of the most important data structures
which is of type nonlinear and noncontiguous. The tree is a fundamental
structure in computer science. Almost all operating systems store files in
tree or tree like structures. Trees are also used in complier design, text
processing and searching algorithms. In this unit the concept of tree is
introduced with various kinds of trees and the operations on these trees.
This unit starts with the introduction of basic terminology used for the
tree. It introduces the concept of binary tree, complete binary tree and
extended binary tree and their representation with array and linked list.
This unit gives a detailed account of the various operations that can be
performed on the binary tree like traversing and searching in the binary
tree. The concept of threaded binary tree is introduced with its
implementation. This unit covers the discussion about BST, AVL tree and

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/133

B-tree with the operations of insertion and deletion of a node in these
trees. Various examples are used to elaborate the operations of traversing,
insertion and deletion from the tree.

8.1 OBJECTIVES

After going through this unit, you should be able to:

• Define and understand the basic terminology used for tree.

• Understand the concept of tree, binary tree, complete binary tree
and extended binary tree.

• Explore of various operations like traversing, searching, insertion
and deletion from the binary tree.

• Understand and implementation of the binary search tree.

• Understand the examples for showing these operations in the
binary tree.

• Understand and implementation of the threaded binary tree.

• Define and understand the BST, AVL tree and B-tree

• Understand the concept of these trees with their examples.

• Implementation of insertion and deletion operations in the B- Tree.

8.2 TREE AND ITS BASIC TERMINOLOGY

A Tree consists of a set of nodes and a set of directed edges that
connect pairs of nodes. Trees are useful in describing any structure which
involves hierarchy. Familiar examples of such structures are family tree,
the decimal classification of books in library, the hierarchy of positions in
an organization, an algebraic expression involving operations for which
certain rules of precedence are prescribed. A Tree consists of a main node
from where all the branches emerged i.e. top of the tree which is called as
the Root node of the Tree. A rooted Tree has the following properties:

• One node is distinguished as the root.

• Every node c, expect the root, is connected by an directed edge
from exactly one other node p. Node p is c’s parent, and c is one
of p’s children.

• A unique path traverses from the root to each node. The number of
edges that must be followed is the path length.

The number of edges emerging from a node is called the out degree of the
node. Thus, in a directed tree, any node which has out degree zero is
called a terminal node or leaf node. Other nodes those have nonzero out
degree are called the branch nodes. The number of edges directing for a

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/134

node is called the in degree of the node. Thus, in a directed tree, any node
which has in degree zero is called a root node. It is important to note that
every tree must have at least one node. A single isolated node is also
called as the directed tree.

The level of any node is the length of its path from the root. The level of
the root of a directed tree is zero, while the level of any node is equal to its
distance from the root.

The Tree with the information of height and depth

In this given tree the root node is A: A’s children are B, C, D and E.
Because A is the root, it has no parent. All other nodes have parents like
B’s parent is A. The leaves in this tree are C, F, G, H, I and K. The length
of the path from A to K is 3 (edges). The length of the path from A to A is
0 (edges). A tree with N nodes must have N-1 edges because every node
except the parent has an incoming edge. The depth of a node is a tree is
the length of the path from the node to the deepest leaf. Thus the height of
E is 2. The height of any node is 1 more than the height of its maximum
height child. Thus, the height of a tree is the height of the root.

Nodes with the same parent are called siblings. Thus B, C, D and E are
siblings. If there is a path from any node u to node v, then u is an ancestor
of v and v is a descendant of u. If u ≠ v, then u is a proper ancestor of v
and v is a proper descendant of u. The size of a node is the number of
descendants the node has (including the node itself). Thus the size of B is
3, and the size of C is 1. The size of a tree is the size of the root. Thus the
size of the given tree is the size of its root A, or 11.

If in a directed tree the out degree of every node is less than or equal to m,
then the tree is called an m-ary tree. If the out degree of every node is

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/135

exactly equal to m or 0 and the number of nodes at level i is 1−im
(assuming that the root node has a level number of 1), then the tree is
called a full or complete m- ary tree. For m = 2, the trees are called binary
and complete binary tree. We shall now m- ary tree consider in which the
m (or fewer) children of any node are assumed to have m distinct
positions. If such positions are taken into account, then the tree is called a
positional m- ary tree. The following graphical representations are
expressing the different form of the binary tree.

 A Binary Tree A Complete Binary Tree

A Binary Tree with distinct position

Example :
Represent the following expression with binary tree.

)(* 54321 vvvvv ↑+−

The binary tree representation is as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/136

 -

 * +

 v1 v2 v3 ↑

 v4 v5

Therefore we can define the Tree formally as:

A tree is a non linear data structure and is generally defined as a non
empty finite set of elements, called nodes such that:

• Tree contains a distinguished node called root of the tree.

• The remaining elements of the tree form an ordered collection of
zero or more disjoint subsets called sub tree.

8.3 BINARY TREE

A Binary tree is a special type of tree in which every node or
vertex has no children, one child or two children. A Binary tree is an
important class of tree data structure in which a node can have at most two
children (as sub trees). Child of a node in a binary tree on the left is called
the “left child” and the node in the right is called the “right child”. A
binary tree is defined as a finite set of elements, called nodes, such that:

• Tree is empty (called the null tree of empty tree) or

• Tree contains a distinguished node called root node, and the
remaining nodes form an ordered pair of disjoint binary trees.

Complete Binary Tree

A binary tree is said to be complete if all its level except the last, have
maximum number of possible nodes, and if all the nodes at the last level
appear as far left as possible as shown below:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/137

Full binary tree

A binary tree said to be full if all its level have maximum number of
possible node as shown below:

Extended Binary Tree
A binary tree can be converted to an extended binary tree by adding new
nodes to its leaf nodes, and to the nodes that have only one child. These
new nodes are added in such a way that all the nodes in the resultant tree
have either zero or two children. The extended tree is also known as a 2-
tree. The nodes of the original tree are called internal nodes and the new
nodes that are added to binary tree, to make it extended binary tree, are
called external nodes. The extended binary tree can represent as :

The following points important about the binary trees:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/138

• If a tree has n nodes then the number of branches it has is n-1.

• Every node in a tree has exactly one parent except the root node.

• Extended binary tree can have either no children or two children.

• For binary tree of height h the maximum number of nodes can be
2h+1-1.

• Any binary tree with n internal nodes has (n+1) external nodes.

Skewed Tree
A tree is called Skew if all the nodes of a tree are attached to one side
only. i.e A left skew will not have any right children in its each node and
right skew will not have any left child in its each node.

 Left Skew Right Skew

Heap

A binary tree is also called a heap and there are two types of heap. There
are Max Heap and Min Heap. A heap is called maximum heap if value of
a node is greater than or equal to each of its descendant node. A heap is
called minimum heap if value of a node is less than or equal to each of its
descendant node.

8.4 BINARY TREE REPRESENTATION

Any binary tree can be represented in two ways. The first way is
with sequential manner like array and second way is with linked list.

The sequential representation of tree stores data in an array as per the
following rules:

1. The root node is stored in 1st position.

2. Every left and right child of a parent node at location k will be
stored in (2*K)th position and (2*K+1)th position respectively.

An example of such a tree structure, together with its sequential
representation can show as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/139

A 1

B 2 E 3

C 4 D 5 F 6 G 7

The array representation of this tree is expressed as:

Position 1 2 3 4 5 6 7

A B E C D F G

INFO

 Sequential representation of a complete binary tree

In this representation the locations of the left and right children of node i
are 2i and 2i +1, respectively. For example the index of the left child of
the node in position 3 (that is E) is 6. Similarly the index of the right child
is 7. Conversely, the position of the parent of node j is the index int (j / 2).
For example the parent of node 4 and 5 is 2.

Now we consider another example for representing the incomplete binary
tree with sequential representation.

A 1

 B 2 I 3

C 4 F 5

D 8 E 9 G 10 H 11

The array representation of this tree is expressed as:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/140

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B I C F - - D E G H - - - -

INFO

Sequential representation of an incomplete binary tree

We can observe from here is that a substantial amount of memory is
wasted in this case. Therefore, for large trees of this type, this method of
representation may not be efficient in terms of storage.

8.5 LINKED STORAGE REPRESENTATION
FOR BINARY TREES

Since a binary tree consists of nodes which can have at most two
offspring, an obvious linked representation of such a tree involves having
storage nodes as follows:

LPTR DATA RPTR

Here LPTR and RPTR denote the addresses or locations of the left and
right sub-trees, respectively, of a particular root node. Empty sub-trees are
represented by a pointer value of NULL. DATA specifies the information
associated with a node. Let us consider an example for the binary tree and
its representation with linked list form. Now consider the following binary
tree:

A

B C

D E F

 G H I

The linked list representation of this binary tree is:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/141

T

The pointer variable T denotes the address of the root node.

8.6 TRAVERSING BINARY TREE
One of the most common operations performed on tree structures

is that of traversal. Traversing is the process of visiting every node in the
tree exactly once in a systematic manner. Therefore, a complete traversal
of binary tree implies visiting or processes the nodes of the tree in some
linear sequence. If a particular sub tree is empty then the traversal is
performed by doing nothing. Thus, a null sub-tree is considered to be fully
traversed when it is encountered.

For example, a tree could represent an arithmetic expression. In this
context the processing of a node which represents an arithmetic operation
would probably mean performing or executing that operation. There are
three standard ways of visiting a binary tree T with root R:

• Preorder or depth-first order

• In-order or symmetric order

• Post-order

The easiest way to define the order of traversing is with recursion. So we
define these orders of traversing recursively:

The Pre-order traversal
The pre-order of a binary tree is defined as follows:

A

C B

D E F

G H I

NULL NULL NULL

NULL NULL NULL NULL NULL NULL

NULL

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/142

1. Process the root node R.

2. Traverse the left sub-tree in pre-order (Recursive call)

3. Traverse the Right Sub tree in Pre-order (Recursive call)

The In-order traversal
The in-order of a binary tree is given by the following steps:

1. Traverse the left sub-tree in In-order (Recursive call)

2. Process the root node R.

3. Traverse the Right Sub tree in In-order (Recursive call)

The Post-order traversal
The Post-order of a binary tree is given by the following steps:

1. Traverse the left sub-tree in Post-order (Recursive call)

2. Traverse the Right Sub tree in Post-order (Recursive call)

3. Process the root node R.

Example
Now we consider an example of a binary tree and its traversal from all
three orders i.e. Pre-Order, In-Order and Post-Order.

A

B D

C E G

F

The Pre-Order travel sequence is as follows:

A B C D E F G

The In-Order travel sequence is as follows:

C B A E F D G

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/143

The Post-Order travel sequence is as follows:

C B F E G D A

Now we can formulate the algorithms for the traversal. These algorithms
can formulate in recursive as well as in iterative manner.

Let us consider the traversal of binary trees by iterations. Since in
traversing a tree it is required to descend and subsequently ascend parts of
the tree, pointer information which will permit movement up the tree must
be temporarily stored. Because movement up the tree must be made in a
reverse manner from that taken in descending a tree, a stack is required to
save pointer variables as the tree is traversed. A general algorithm for a
Pre-order traversal of a binary tree using iteration is given as:

Algorithm PREORDER (T): [Given a binary tree whose root node
address is given by a pointer variable T. This method traverses the tree in
Pre-Order in iterative manner. S and TOP denote an auxiliary stack and
its associated top index, respectively. The pointer variable P denotes the
current node in the tree.]

/* Initialize the pointers */

If (T == NULL)

{

Printf (“Empty tree”)

Return

}

Else {

TOP = 0;

PUSH (S, TOP, T) /* the PUSH is the function call which
is already defined in stack previous unit */

}

While (TOP > 0)

{

P = POP (S, TOP) /* get stored address and branch left. The
PUSH is the function call which is already defined in stack
previous unit */

While (P != NULL)

Printf (DATA (P));

If (RPTR (P) != NULL)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/144

PUSH (S, TOP, RPTR (P)); /* store address of non-empty right
sub-tree */

P = LPTR (P)

}

Return;

A trace of the algorithm for the given binary tree as described above
already in the example can show as in the following table:

Stack Comments P Visit P Output String

A

A A A

D B B AB

D C C ABC

D NULL

D D ABCD

G E E ABCDE

G F NULL

G F F ABCDEF

G NULL

G G ABCDEFG

NULL

Trace of algorithm PREORDER for the given binary tree in the
example

An equivalent algorithm for a Pre-order traversal of a binary tree using
recursion can formulate as:

Algorithm RPREORDER (T): [Given a binary tree whose root node
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1. /* Process the root node */

If (T != NULL)

Printf (DATA (T));

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/145

Else {

Printf (“EMPTY TREE”);

Return

}

2. If (LPTR (T) != NULL)

RPREORDER (LPTR (T)); /* process the left sub-tree */

3. If (RPTR (T) != NULL)

RPREORDER (RPTR (T)); /* process the right sub-tree */

4. Return

A general algorithm for a Post-order traversal of a binary tree using
iteration is given as:

Algorithm POSTORDER (T): [Given a binary tree whose root node
address is given by a pointer variable T. This method traverses the tree in
Post-Order in iterative manner. S and TOP denote an auxiliary stack and
its associated top index, respectively. The pointer variable P denotes the
current node in the tree. In this process each node will be stacked twice,
once when its left sub tree is traversed and once when it right sub tree is
traversed. On completion of these two traversals, the particular node is
processed. Consequently, we need two types of stack entries, the first
indicating that a left sub-tree is being traversed, and the second that a right
sub-tree is being traversed. For convenience we use negative pointer
values to indicate the second type of entry.]

1. /* Initialize the pointers */
If (T == NULL)
{
printf (“Empty TREE”);
Return;
Else {

P = T;
Top = 0;
}

2. [Traverse in Post-order]
Repeat thru step 5 while true

3. [Descend left]
While (P != NULL) {
PUSH (S, TOP, P);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/146

P = LPTR (P); }
4. [Process a node whose left and right sub-tree have been traversed]

While (S [TOP] < 0)
{
P = POP (S, TOP);
Printf (DATA (P));
If (TOP == 0)
Return;
}

5. [Branch right and then mark node from which we branched]
P = RPTR (S [TOP]);
S [TOP] = -S [TOP];

An equivalent algorithm for a Post-order traversal of a binary tree using
recursion can formulate as:

Algorithm RPOSTORDER (T): [Given a binary tree whose root node
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1. /* Check for empty tree */

If (T == NULL)

{

Printf (“EMPTY TREE”);

Return

}

2. [Process the left subtree]

If (LPTR (T) != NULL)

RPOSTORDER (LPTR (T)); /* process the left sub-tree */

3. If (RPTR (T) != NULL)

RPOSTORDER (RPTR (T)); /* process the right sub-tree */

4. [Process the root node]

Printf (DATA (T));

5. [Finished]

Return

Now we present the recursive algorithm for traversing the binary tree in
In-order.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/147

Algorithm RINORDER (T): [Given a binary tree whose root node
address is given by a pointer variable T. This algorithm traverses the tree
in Pre-order in a recursive manner.]

1. /* Check for empty tree */

If (T == NULL)

{

Printf (“EMPTY TREE”);

Return

}

2. [Process the left subtree]

If (LPTR (T) != NULL)

RINORDER (LPTR (T)); /* process the left sub-tree */

3. [Process the root node]

Printf (DATA (T));

4. If (RPTR (T) != NULL)

RINORDER (RPTR (T)); /* process the right sub-tree */

5. [Finished]

Return

8.7 OPERATION ON THE BINARY TREE

Now we discuss the various operations on the binary tree. The
traversing operation we have discussed already. There are some other
important operations also exist for the binary tree. These operations are:

• Copy of the tree

• Insertion of an element in the tree

• Deletion of an element from the tree

• Reconstruction of binary tree

Hence we discuss these operations with the description of algorithm one
by one.

Copy of the Tree
The copy of the binary tree is an important operation for the tree. It
provides a duplicate copy of the binary tree. The original tree may be
destroyed during the manipulation or processing. So that it is required to
maintain a copy of the binary tree. Therefore, a copy of the tree is

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/148

produces before such processing begins. The following algorithm
generates a copy of a tree.

Algorithm Copy (T) [Given a binary tree whose root node address id
given by the pointer T. This algorithm generates a copy of the tree and
returns the address of its root node. New is a temporary pointer variable.]

1. [Check for the NULL pointer]

If (T ==NULL)

Return (NULL);

2. [Create a new node]

NEW ⟸NODE;

3. [Copy of the information field]

DATA (NEW) = DATA (T);

4. [Set the structural links]

LPTR (NEW) = COPY (LPTR (T));

RPTR (NEW) = COPY (RPTR (T));

5. [Return address of new node]

Return (NEW);

Insertion in the tree
A tree can be created through the repeated use of an insertion operation.
Now we assume that a binary tree exists. Such a tree, however, must be
constructed. This construction can be realized by the repeated use of an
insertion operation that adds a new node into an existing tree. For example
the insertion of a node into a lexically ordered tree must maintain that
ordering. Such an insertion is performed at the leaf level. There are two
cases arise:

1. As a special case, an insertion into an empty tree results in
appending the new node as the root of the tree.

2. The more general case involves inserting a new node into a
nonempty tree. The new node i.e. in lexically ordered tree the new
name is first compared with the name of the root node. If the new
name lexically precedes the root node, then the new node is
appended to the tree as a left leaf to the existing tree if the left sub
tree is empty, otherwise the comparison process is repeated with
the root node of the left sub tree. If on the other hand, the new
name lexically follows the root node name, then the new node is
appended as a right leaf to the present tree if the right sub-tree is
empty, otherwise the comparison process is repeated with the root
node of the right sub-tree.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/149

Example
Let us consider the following alphabets for the insertion in the tree:

N, R, J, B, L, P, K and M

A trace of the construction or insertion of the tree can exhibit as:

 Step 1 Step 2

 Step 3 Step 4

Step 4

Step 5

N N

R

N

J B

N

J
R

B

N

J

B

R

L

N

J
R

B L P

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/150

Step 6 Step 7

As we have seen from the example that a tree can be created through the
repeated use of an insertion operation. A general algorithm for performing
such an insertion into an existing lexically ordered binary tree is as
follows:

1. If the existing tree contains no nodes then append the new node as
the root of the tree and exit.

2. Compare the new name with the name of the root node,

If the new name is lexically less than the root node name

Then if the left sub tree is not empty

Then repeat step 2 on the left sub-tree

Else append the new name as a left leaf to the present tree

Exit

Else if the right sub-tree is not empty

Then repeat step 2 on the right sub tree

Else append the new name as a right leaf to the present tree

Exit.

Deletion from the tree
Now we have the inverse problem of insertion i.e. the deletion. Here we
are defining the algorithm for deleting i.e. removing the node with key X
in a tree with ordered keys. This process is straight forward if the element
to be deleted is a terminal node or one with single descendant. The
difficulty arises in removing an element with two descendants, for we

N

J R

B L P

K

N

J R

B L P

K M

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/151

cannot point in two directions with a single pointer. Here in this situation
the deleted element is to be replaced by either the rightmost element of its
left sub-tree or by the leftmost node of its right sub tree, both of which
have at most one descendant. This procedure distinguishes among three
cases:

1. There is no component with a key equal to X.

2. The component with key X has at most one descendant.

3. The component with key X has at most two descendants.

The detail process of delete in recursive manner can represent as follows:

Algorithm TREE_DELETE (HEAD, X) [Given a lexically ordered
binary tree with the node structure previously described and the
information value (X) of the node marked for deletion, this procedure
deletes the node whose information field is equal to X. PARAENT is a
pointer variable which denotes the address of the parent of the node
marked for deletion. CUR denotes the address of the node to be deleted.
PRED and SUC are pointer variables used to find the in-order successor
of CUR. Q contains the address of the node to which either the left or right
link of the parent of X must be assigned in order to compete the deletion.
Finally, D contains the direction from the parent node to the node marked
for deletion. It is assumed that the tree have a list head whose address is
given by HEAD. FOUND is a Boolean variable which indicates whether
the node marked for deletion has been found. ‘L’ and ‘R’ are representing
the left branch and right branch respectively.]

1. [Initialize]

If LPTR (HEAD) !=HEAD

{

CUR = LPTR (HEAD);

PARENT = HEAD;

D = ‘L’

}

Else

{

Printf (‘NODE NOT FOUND’)

Return;

}

2. [Search for the node marked for deletion]

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/152

FOUND = false;

While ((! FOUND) && (CUR != NULL))

{

If (DATA (CUR) == X)

FOUND = true;

Elseif (X < DATA (CUR))

{

PARENT = CUR;

CUR = LPTR (CUR);

D = ‘L’

}

Else

{

PARENT = CUR;

CUR = RPTR (CUR);

D= ‘R’

}

If (found == false)

{

Printf (‘NODE NOT FOUND’);

Return;

}

}

3. [perform the indicated deletion and restructure the tree]

If (LPTR (CUR) == NULL)

Q = RPTR (CUR); /* empty left sub tree */

Elseif (RPTR (CUR) == NULL)

Q = RPTR (CUR); /* empty right sub tree */

Else /* check right child for successor */

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/153

SUC = RPTR (CUR);

If (LPTR (SUC) == NULL)

{

LPTR (SUC) = LPTR (CUR)

Q = SUC;

}

Else /* search for successor of CUR */

{

PRED = RPTR (CUR);

SUC = LPTR (PRED);

While (LPTR (SUC) != NULL)

PRED = SUC;

SUC = LPTR (PRED);

/* connect successor */

LPTR (PRED) = RPTR (SUC);

LPTR (SUC) = LPTR (CUR);

RPTR (SUC) = RPTR (CUR);

Q= SUC;

/* connect parent of X to its replacement */

If D = ‘L’

LPTR (PARENT) = Q;

Else

RPTR (PARENT) = Q;

Return;

}

Example

In order to understand process of deletion we consider a Binary tree. Now
we delete successively the nodes with keys 13, 15, 5, and 10. The
resulting trees are as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/154

(item to be delete)

 (item to be delete)

(item to be delete)

(Final tree after the deletion of all the key items)

10

5 15

3 8 13 18

10

5 15

3 8 18

10

5

3 8

18

10

3 18

8

8

3 18

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/155

8.8 RECONSTRUCTION OF BINARY TREE

We have discussed already about the traversal of the binary tree.
There were three basic methods for binary tree traversing namely In-
Order, Post-Order and Pre-Order. The In-Order, Post-Order and Pre-
Order traversal of binary tree may result in different sequence of nodes
but by using In-order with preorder or Post-order we can uniquely find
the tree. As a result original tree cannot be reconstructed, given its In-
Order, Post-Order and Pre-Order traversal alone. However, if sequence
of nodes produced by In-Order and Post-Order traversal of a binary tree
are provided then a unique binary tree can be reconstructed. Consider the
following example which illustrates the reconstruction of a binary tree
given its In-Order and Post-Order traversal.

Example

The given In-order sequence: H D I J E K B A L F M C N G O

 The given Post-order sequence: H I D J K E B L M F N O G C A

 Since the first node visited in Post-order traversal of a binary tree is the
left node, the root of the binary tree becomes A. In reconstruction of
binary tree from In-order and Post-order, the first node is taken from the
right hand side of the Post-Order sequence, i.e. A as:

H D I J K E B L F M C N G O

H I D J K E B L M F N O G C

Therefore the nodes to the left of A in the given In–order sequence belong
to the left sub-tree and nodes to the right of A belong to the right sub-tree.
Moreover, the order in which the nodes to the left of A occur in the given
In-order sequence is the same as the In-Order sequence of the left sub-
tree.

Now the same scheme is applied to both the left and right sub-tree once
again. Therefore the left sub-tree i.e. In-order sequence is H D I J K E B
and Post-order sequence is H I D J K E B. From the Post-order sequence
the root of this sub-tree is B. The In-order sequences of the left and right
sub-tree of the sub-tree rooted at B are H D I J K E and H I D I K E. It can
see as:

A

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/156

H D I J E K L F M N G O

H I D J K E L F M N O G

Hence on continuing the same set of operations in each sub-tree, the tree
can be reconstructed. Further again from the Post-Order sequence, the
root of this sub-tree is E. The position of E in In-order sequence
determines its position on the left sub-tree rooted at B whereas again,
looking in the Post-Order sequence we find K as the next root and its
order in In-order sequence determines its position in the right sub-tree
rooted at E. Similarly, the steps are repeated for all the remaining left and
right sub-trees. Therefore, the reconstruction of the tree can be seen as:

H D I J K L F
 H I D J K L F

H D I, HID

A

B C

A

B C

E M G

N O

A

B C

E M G

N O J K
F

L

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/157

Reconstruction of the binary tree for the given sequence in In-order
and Post-Order

8.9 THREADED BINARY TREE

As we have seen that in a binary tree the empty sub-trees are set to
NULL i.e. left pointer of a node whose left child is an empty sub-tree is
normally set to NULL. Similarly, the right pointer of a node whose right
child is empty sub-tree is also set to NULL. Thus, a large number of
pointers are set to NULL. These null pointers can be used in different
ways. Assume that the left pointer of a node n is set to NULL as the left
child of n is an empty sub-tree, then the left pointer of n can be set to point
to the In-order predecessor of n. Similarly, if the right child of a node m
is empty the right pointer of m can be set to point to the In-order
successor of m. Thus, wasted NULL links in the storage representation of
binary trees can be replaced by threads.

A binary tree is threaded according to a particular traversal order. For
example, the threads for the in-order traversal of a tree are pointers to its
higher nodes. Therefore, if the left link of a node is NULL, then this link is
replaced by the address of the predecessor of the node. Similarly, the
NULL right link is replaced by the address of the successor of the node.
Hence the left or right link of a node can denote either a structural link or a
thread; we must somehow be able to distinguish them. Here, we can make
the assumption that a valid pointer values are positive and non-zero,
structural links can be represented, as usual, by positive addresses.
Threads on the other hand will represent by negative addresses. We
consider a Head node for the representation of the threaded tree. This
Head node is simply another node which serves as the predecessor and

A

B C

E M G

N O J K
F

L

D

I H

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/158

successor of the first and last tree nodes with respect to in-order traversal.
The empty threaded binary tree can represent as:

 HEAD

Here the dashed arrow denotes a thread link. The tree is attached to the
left branch of the Head node making the pointer to the root node of the
tree i.e. LPTR (HEAD). The threading of the binary tree for in-order
traversal is given as:

 HEAD

8.10 BINARY SEARCH TREE

When we place constraints on how data elements can be stored in
the tree, the items must be stored in such a way that the key values in the
left sub-tree of the root are less than the key value of the root, and the key

A

B

C

D

E G

F

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/159

values of all the nodes in the right sub-tree of the root are greater than the
key value of the root. When this relationship holds in all the nodes in the
tree than the tree is called a binary search tree. Binary search trees are
rooted and ordered binary trees that fulfill the following properties:

• Key (v) ≤ Key (w) for all nodes w in the right sub tree of v,

• Key (v) ≤ key (w) for all nodes w in the left sub-tree if v.
Every sub-tree of a binary search tree T is again a binary search tree. If x is
a node it T, we denote the sub-tree of T with root x by T (x). The binary
search tree property enables us to output the elements sorted by key. The
binary tree is travel with In-order traversal. The binary tree can represent
as:

Binary Search Tree

In such a binary search tree if we have a given key say K, we can check
that whether there is a node v in T with Key (v) = k. We just start at the
root r of T. If Key (r) = v, then we are done. If Key (r) < k, then we have
to look in the left sub-tree and otherwise in a right sub-tree.

8.11 OPERATION ON BST

We can perform the various operations on the binary. The first
operations that we perform is the Binary search algorithm for a binary tree
T with node x, and key k. The algorithm is defined as:

26

19

11 23

13

29

27 33

35
21

20 22

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/160

Algorithm BST-Search [This algorithm considers the two inputs. The
first input is the node x and the second input is the value of the key say k.
This algorithm returns a node y if Key (y) = k if such a y exists, otherwise
it returns NULL.]

if ((x == NULL) ||(k = key [x]))

return (x);

if (k < Key (y))

return (BST-search (LPTR (x), k));

else

return (BST-search (RPTR (x), k));

The second operation that we perform is to find the minimum in a binary
search tree. This operation is performed by always going to the left child
until we reach a node that has no left child. Now we present the algorithm
to determine the minimum in a binary search tree

Algorithm BST-minimum [This algorithm returns a node that has the
minimum key. Here we consider the input a node x in a binary tree T. The
output of the algorithm is a node in T (x) with minimum key.]

If (LPTR (x) != NULL)

Return (BST-minimum (LPTR (x));

Return (x);

The other operation that we perform on the BST is to determine the
successor of the given node x. This means that we are looking for the node
with smallest key that is greater than K (x). This successor is completely
determined by the position in the tree, so we can find it without comparing
any elements. If a node x has a right child, that is RPTR (v) ≠NULL, then
the successor simply is the node in T (RPTR (x)) with minimum key. If x
does not have a right child, then the successor of x is the lowest ancestor
of x that has a left child that is also an ancestor of x. BST-successor
computes the successor of a node x. The second part deals with the case
that x has no right child. We go up the paths from x to the root and y is
always the parent of x. We stop when either y = NULL or x = LPTR (y).
Now we present the algorithm for determining the successor of a given
node from the binary search tree.

Algorithm BST-successor [This algorithm returns the successor of a
given node x in a binary search tree T. The input to this algorithm is the
node x for the given binary search tree. The output of this algorithm is the
successor of node x, if x has it, otherwise it returns the value NULL.]

If (RPTR (x) != NULL)
Return (BST-minimum (RPTR (x));
y= parent (x);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/161

While ((y != NULL) && (x != LPTR (y))
x= y;
Y = parent (y)
Return (y);

8.12 AVL TREE

An AVL tree is binary search tree with the additional balance
property that, for any node in the tree, the height of the left and right sub-
tree can differ by at most 1. As usual, the height of an empty sub-tree is -1.
Therefore, the first balanced binary search tree was the AVL tree (named
after its discoverers, Adelson-Velskii and Landia), which illustrate the
ideas that are thematic for a wide class of balanced binary search tree.
Thus, it is binary search tree that has an additional balanced binary
condition. The simplest idea is to require that the left and right sub-tree
have the same height.

In other words we can say that an AVL tree is a binary search tree with
the extra property that for every internal node x, the height of the sub-tree
with root LPTR (x) and the height of the sub-tree with root RPTR (x) differ
by at most one. The AVL tree has the following properties:

1. An AVL tree fulfills the binary search tree property.

2. For every internal node say v, Bal (v) Є{-1, 0, 1}.

Now we define more precisely about the notation of a “balanced tree”.
The height of a binary tree is the maximum level of its leaves (depth of
tree). The height of null tree is defined as -1. Thus, a balanced binary tree
or AVL tree is a binary tree in which the heights of two sub-trees of every
node never differ by more than 1.

The balance factor of a node in a binary tree can have value 1, -1 or 0
depending on whether the height of its left sub-tree is greater than, less
than or equal to the height of its right sub-tree. The balance factor of each
node is defined as follows:

L

E T

B NJ V

P

-1

0

0 0

+1

+1

0

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/162

We consider the another example to highlight the diffence bwteen an
ordinary binary search tree and the AVL tree. Let us consider the
following two binary search trees.

Binary Search Tree (A)

Binary Search Tree (B)

12

8

4 10

6

16

14

2

12

8

4 10

6

16

14

2

1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/163

The binary tree (A) satifies the AVL balance condition and is thus an
AVL Tree. The binary search tree (B) is not the AVL tree because the
shaded nodes have left sub-tree whose heights are 2 larger than their right
sub-trees. If a new node say 13 is inserted then node 16 would also violate
the conditon for balancing because the left sub-tree would have height 1,
while the right sub tree would have height -1.

The major advantage of an AVL tree is that there are height balanced
tresses so that the operations like insertion and deletion have O(log n) time
complexity. Let us consider an example of the binary tree with keys: 1, 2,
3, 4, 5, 6, 7, the binary tree and corresponding AVL Tree for these keys
can represent as:

 AVL Tree

Binary Tree

8.13 OPERATION IN AVL TREE

Here we are describing the two basic operations on the AVL Tree,
namely, the operation of insertion and deletion of the node in or from the
AVL Tree.

Insertion
To discuss the insertion operation for the AVL Tree we consider an
example. Now consider the binary search tree with the balance factor as:

1

2

3

4

5

6

7

4

2
6

1 3
5 7

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/164

Binary Search Tree with Balance factor

Here, the balance factor of P is -1 and that of Q is 0. LC1 is the left child
of P and LC2 and RC2 are the left and right children of the node Q. After
insertion there are two cases that can make the tree unbalance. These cases
are as follows:

(a) The new node is inserted as a child (left to right) of the leaf node
of sub-tree RC2 as shown in figure (a)

(b) The new node is inserted as a child (left to right) of the leaf node
of sub tree of structure LC2 as shown in figure (b)

Figure (a) Figure (b)

Now to accomplish the balance in both these cases we consider the
following:

Case (a) Consider the given tree:

P

LC

RC2

Q

LC

-1

0

P

LC

RC2

Q

LC

-2

-1

Newly i nserted node

P

LC1
Q

LC2 RC

-2

-1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/165

Insertion of a new Node

As we can see from this binary search tree that on insertion of the new
node, the balance factor of the node containing the data 5 violates the
condition of an AVL tree. Now to rebalance the tree, we require making a
left-rotation of the tree along the node containing the data 5 as the left
child containing the data 11 and the node containing the data 9 as the right
child of the node containing the data 5. This can show as follow to
consider the case (a).

Rebalancing the Tree using Left Rotation

19

5

4 11

14

28

24

9

31

26

12 Newly inserted node 0

0 1
0

-1 -1 0

-2 -1

1

19

11

5 1
4

12

28

24

9

31

26

4

Left rotation

0 0 0

0

0

-1

-1
0

0

-
1

0

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/166

Case (b): Now suppose instead of 12, we insert a node with value 10. This
node would get inserted as the right child of the node containing value 9.
After this the tree no longer remains a balanced tree as the balance factor
of node containing value 5 breaks the rules of AVL tree as show follows:

Unbalance tree after addition of New Node

Now the tree will right roatate for its rebalancing.

Rebalancing the tree again using Right Rotation

19

5

4
11

14

28

24

9

31

26
10 Newly inserted node 0

-1

0
0

0 -1

1
0

-2

1

1

19

5

4
9

11

28

24

14

31

26
10 0 0

0

0

0 -1

-2
0

-2

1

2

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/167

We can see that even after right rotation, the tree remians unbalanced and
hence, it is rotated to left along the node 5. As a result node 9 becomes the
left child of node 19. Node 5 becomes the left child of node 9. Since there
is no left child for node 9 the right child of node 5 is empty. Thus finally,
tree becomes a balanced binary tree or an AVL Tree. This procedure of
rotating the tree, first to the right and then to the left is known as double
rotation. The resultant tree can show as:

Balance tree after double rotation

Delete Operation

Deletion is performed similar to insertion. We use the delete method from
binary search tree and then move the path up to the root and try to restore
the AVL Tree property.

When we delete a node from a binary search tree the following three cases
can occur:

• It is a leaf node of the binary search tree. Thus, it is an internal
node with two virtual leaves in our AVL Tree with balancing
factor 0.

• It is an internal node with only one child. Thus, in an AVL Tree,
this means that one of its children is a virtual leaf.

• It is a node note with two children that are internal nodes, too.
Then we delete its successor and copy the content of the successor
to the node.

19

9

5
11

4

28

24
14

31

26

10

0

0 0

0

-1

0
1

0

1

0

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/168

8.14 B TREE

To minimize the search in the binary tree our requirement is to
make the height of the tree as small as possible. We can accomplished this
by ensuring first that no empty sub-trees appear above the leaves, all
leaves be on the same level and every node expect the leaves has at least
some minimal number of children. Hence we require that each node has at
least as many children as the maximum possible. These conditions lead to
the following definition:

A B-tree of order m is an m-way tree in which:

• All leaves are on same level.

• All internal nodes except the root have at most m (non-empty)
children, and at least [m/2] non-empty children.

• The number of keys in each internal node is one less than the
number of its children, and these keys partition the keys in the
children in the fashion of a search tree.

• The root has at most m children, but may have as few as 2 if it is
not a leaf, or none if the tree consists of the root alone.

Example
Let us consider a B-Tree of order 5 with 3 levels. All pages contain 2, 3,
or 4 items. The exception is the root which is allowed to contain a single
item only. All leaf pages appear at level 3. This B-Tree can represent as:

B-Tree of order 5 with level 3

25

10 20
30 40

2 5 7 8 13 14 15 16 22 24 26 27 28 32 35 38 41 42 45 46

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/169

8.15 INSERTION IN A B-TREE
The B-Tree are not allowed to grow at their leaves instead they

are forced to grow at the root. The general method of insertion is as
follows:
• First a search is made to see if the new key is the tree. This search

will terminate in failure at a leaf.
• The new key is added to the leaf node. If the node was not

previously full, then insertion is finished.
• When a key is added to a full node, then the nodes split into two

nodes on the same level except that the median key is not put into
either of the new nodes but instead sent up the tree to be inserted
into the parent node.

• When a search is later made through a tree, a comparison with the
median key will serve to direct the search into proper sub-tree.

• When a key is added to full root, then the root splits into two and
the median key sent upward becomes a new root.

Example
Now we consider an example to understand the process of insertion in the
B-Tree. The following keys are inserted into the B-Tree of order 5.
a g f b k d m j e s i r x c l n t u p
The first four keys will insert into one node, as follows:

1. a g f b:
a

a g

a f g

a b f g

The keys are stored into proper order as they inserted.

2. k :

f

a b k g

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/170

Now the insertion of key k causes the node to split into two and the
median key f moves up to enter a new node.

3. d, h, m:

f

Since the split nodes are now only half full, the next three keys can be
inserted without difficulty. However, these simple insertions can require
rearrangement of keys within a node.

4. j:

f j

The next insertion j again splits a node and this time it is j itself that is the
median key and therefore moves up to join f in the root.

5. e s i r :

f j

6. x :

f
j

r

b d h g a k m

b d h g a k m

d e h g b k m a i r s

k m g h i s x a b c d.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/171

7
.

c l n t u:

c F j r

8
.

p
:

j

The insertion p splits the node originally containing k, l, m, n sending
median key m upward into the node containing e, f, j, r which is however
already full. Hence, this node in turn splits and a new node containing j is
created.

8.16 DELETE IN A B-TREE

Deletion of an item or items from a B-tree is fairly straight-
forward. As we have seen from the insertion operation that a new key
always goes first into leaf. If the key that is to be deleting is not the leaf
then its immediate predecessor or successor is promoted into the position
of the deleted key. The natural order of keys is guaranteed to be in the leaf
nodes. Hence, we can promote the immediate predecessor or successor
into the position occupied by the deleted key and delete the key from leaf.
If the leaf contains more than minimum number of keys, then one can be
deleted with no further action. If the leaf contains the minimum number,
then we first look at the two leaves that are immediately adjacent and
children of same node. If one of these has more than the minimum number

g h i k l m n

c f

g h i k l

s t u x a b d e

m r

a b d e n p s t u x

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/172

of keys, then one of them can be moved into the parent node and the key
from the parent is moved into the leaf where the deletion is occurring. If
finally the adjacent leaf has only the minimum number of keys, then the
two leaves and the median key from the parent can all be combined as one
new leaf which will contain no more than the maximum number of keys
allowed. If this step leaves parent node with too few keys, then the process
propagates upwards. In this case, the last key is removed from the root and
then the height of the tree decreases. Thus we may distinguish two
different circumstances in the deletion process:

1. The item to be deleted is on a leaf page. In this case the removal
algorithm is plain and simple

2. The item is not on a leaf page so it must be replaced by one of the
two lexicographically adjacent items which happen to be on leaf
pages and can easily be deleted.

Example
Here we consider an example for demonstrating the deletion the items or
keys from the given B-Tree. Here we have the following keys for them
the sequential deletion will occur.

Keys: 25 45 24; 38 32; 8 27 46 13 42; 5 22 18 26; 7 35 15;

 The sequential deletion of these key from the existing B-Tree can
represent as:

Given exisitng B-Tree

Solution Steps :
(1) Check the key from leaf, if the key that is to be deleting is not the

leaf then its immediate predecessor or successor is promoted into
the position of the deleted key.

25

10 20

2 5 7 8 13 14 15 18 22 24 26 27 28 32 35 38 41 42 45 46

30 40

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/173

Step 1

(2) Promote the immediate predecessor opr successor into

the
position occupied by the deleted key and delete the
key.

Step 2

(3) If the leaf contains the minimum number, then we first look at the
two leaves that are immediately adjacent and children of same
node. If one of these has more than the minimum number of keys,
then one of them can be moved into the parent node and the key
from the parent is moved into the leaf where the deletion is
occurring.

Step 3

25

10 22 30 40

5 7 8 13 15 18 20 26 27 32 35 38 42 46

10 22 30

5 7 8 13 15 18 20 26 27 35 40 42 46

10 20

5 7 8 13 15 18 22 24 26 27 32 35 42 45 46

30 40

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/174

(4) The two leaves and the median key from the parent can all be
combined as one new leaf which will contain no more than the
maximum number of keys allowed

Step 4

(5) , the last key is removed from the root and then the height of the
tree decreases

Step 5

Step 6

Deletion of given keys in step wise manner from the
Given B-Tree

8.17 SUMMARY
In this unit we described a very important non-linear data structure

i.e. Tree. The tree specifies the dynamic memory allocation. A Tree
consists of a set of nodes and a set of directed edges that connect pairs of
nodes. Trees are useful in describing any structure which involves
hierarchy. Various operations like insertion, deletion, copy and traversal of
the tree were discussed in full detail. Enough examples were used to

10 22

5 7 15 18 20 26 30

15

7 10 20 30 35 40

10 20 30 40

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/175

describe the tree and its various operations. The contents of this unit can
be summarized as:

• Tree is the nonlinear data structure.

• A tree consists of a root node and a number of sub-trees.

• There are different types of trees showing different types of
properties.

• There are many terms associated with a binary tree like its right
and left child, sub-tree, in-degree, out-degree, successor,
predecessor and leaf nodes.

• The binary tree can represent with sequential data structure like
array and with non-contiguous data structure like linked list.

• There are various operations can performs on the Binary tree like
insertion, deletion, searching and traversing.

• A fundamental and important operation on the tree is traversal.
Traversal of a binary tree implies visiting every node of that tree
exactly once in some specified sequence. There are three standard
traversal techniques for binary tree. These techniques are: In-order,
Post-Order and Pre-Order.

• The binary tree can construct from the given sequence of
traversing in the form of In-Order and Post-Order.

• The recursive and iterative methods can use for the traversing in
any specified order.

• In a binary tree, many nodes have one child or no children. The
pointers for the empty children for these nodes are set to NULL. A
more effective utilization of these pointers is possible if NULL left
pointers are set to point to the In-Order predecessor of that node
and NULL right pointers are set to point to the In-Order successor
of that node. These pointers, so introduced are called threads.
Threads help in writing non-recursive version of In-Order, Post-
order and Pre-Order traversal.

• When we place constraints on how data elements can be stored in
the tree, the items must be stored in such a way that the key values
in the left sub-tree of the root are less than the key value of the
root, and the key values of all the nodes in the right sub-tree of the
root are greater than the key value of the root. When this
relationship holds in all the nodes in the tree than the tree is called
a binary search tree.

• Operation of insertion and deletion can describe for the binary
search tree.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/176

• AVL Trees are height balanced trees where the difference between
heights of left and right sub-trees rooted at any node cannot be
larger than one.

• The fundamental operations, namely searching, insertion and
deletion can be performed more efficiently on AVL Trees.

• In an AVL Trees the only case that causes difficulty when the new
node is added to sub-tree of the root that is strictly taller than other
sub-tree then the height is increased. This would cause one sub tree
to have height 2 more than other; whereas the AVL Trees
condition is that the height difference is never more than1.

• When an AVL Trees is right high the action needed in this case is
called left rotation. On the other hand when the tree is left high, the
right rotation is performed. In some cases, the tree is needed to
rotate twice, and then the condition is called double rotation.

• A B-Tree of order m is an m-way search tree where each node
except the root must have m / 2 children at most “m” children. The
root node is allowed to have two children at the minimum.

• The searching insertion and deletion operation on a B-Tree are
same as that of 2-3 trees.

• It is interesting to note that B-Tree grows or shrinks upwards
during insertion and deletion of key values.

Bibliography
Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

Niklaus Wirth, “Algorithm +Data Structures = Programs”, PHI
Publications

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series

B. Flaming, “Practical Data Structures in C++”, John Wiley & Sons, New
York, 1994

R. Sedgewick, “Algorithms in C++, Addision-Wesley, 1992.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/177

SELF-EVALUATION

Multiple Choice Questions:
1. The in-order traversal of some binary tree produced sequence

DBEAFC, and the post-order traversal of the same tree produced
the sequence DEBFCA, which of the following is a correct pre-
order traversal sequence:

a. DBAECF

b. ABEDFC

c. ABDECF

d. None of the above

2. A balanced binary tree is a binary tree in which the heights of two
sub-trees of every node never differ by more than:

a. 2

b. 1

c. 3

d. None of the above

3. Which of the following statement is TRUE in view of a complete
binary tree?

a. The number of nodes at each level is 1 less than some power
of 2.

b. The out degree of every node is exactly equal to 2 or 0

c. Total number of nodes in the tree is always some power of 2

d. None of these

4. Level of any node of tree is:

a. The distance from the root.

b. Height of its left sub-tree minus height of its right sub-tree.

c. Height of its Right sub-tree minus height of its left sub-tree.

d. None of the above

5. What is the minimum of nodes required to arrive at a B-tree of
order 3 and depth 2? Assume that the root is at depth 0.

a. 4

b. 5.

c. 12.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/178

d. 13

6. The minimum height of a binary tree having 1000 nodes would be

a. 10

b. 11

c. 100

d. None of the above

7. The number of trees possible with 10 nodes is:

a. 1000

b. 1200

c. 1014

d. None of the above

8. If in a given directed tree, the out-degree of every nodes is less
than or equal to m, then it is called a:

a. Threaded binary tree

b. Complete m-ary tree

c. m-ary tree

d. None of these

Fill in the blanks
1. In a B-tree of order n, each non root node contains at least ……

keys. (n / n/2)

2. The minimum number of keys contained in each non-root node of
a B-tree of order 15 is…… (7 / 9)

3. A B-tree of order n is also called………………… (n-(n-1) / n +
(n-1)

4. A…………………is a complete binary tree where value at each
node is at least as much as values at children node. (heap / B-tree)

5. In a B-Tree of order m, no node has more than ……. Sub tree. (m
/ n)

6. The maximum level of any leaf in the tree is also known as----- of
the tree.

7. In an AVL tree the heights of the two sub trees of every node never
differ by more than….

8. In a tree, a node that has no children is called ….. node

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/179

9. A binary tree is threaded for a post order traversal, a NULL right
link of any node is replaces by the address as its……….

10. The number of nodes which must be traversed from the root to
reach a leaf of a tree is called the ….. of a tree.

State whether True or False
1. B-trees are balanced trees.

2. Total number of cycles contained in any tree is 0

3. The process of determining predecessor and successor nodes, for
any given node is easy for unthreaded tree compared to threaded
counterparts.

4. The in-degree of the root node in any binary tree is 1.

5. If Pre-order and post-order of any binary tree re known than the
tree can easily draw.

6. AVL – tree is not a complete binary tree.

7. Binary search tree is a special case of the B-tree

Answer the following questions
1. Define degree of B-tree.

2. What is complete binary tree? What is in degree and out degree of
a complete binary tree?

3. What is AVL Tree? Show the insertion and deletion operations in
AVL tree with the help of suitable example.

4. Write a ‘C’ function to formulate the iterative algorithm for
traversing a binary tree in in-order and post-order

5. How many different directed trees are there with three nodes?

6. Give a directed tree representation of the following formula: (a +b)
* (c + d) ↑ e

7. Show that in a complete binary tree, the total number of edges is
given by 2 (nt-1), where nt is the number of terminal nodes.

8. Write a ‘C’ program to construct a lexically ordered binary tree.
Also show the operation of insertion and deletion of a node from it.

9. Write a function in ‘C’ for finding the kth element in the pre-order
traversal of a Binary tree.

10. Write a function in ‘C’ language to search an element from the
binary search tree.

11. Compare and describe the advantages and disadvantages of AVL
tree and B-tree.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/180

UNIT-9 GRAPH

Structure

9.0 Introduction

9.1 Objective

9.2 Mathematical Definition of the graph and its basic terminology

9.3 Graph Representation

9.4 Path Matrix or Reach-ability Matrix

9.5 Linked Representation of the graph

9.6 Graph Traversal

9.7 Spanning Tree

9.8 Algorithm for computing Minimal Spanning Tree

9.9 Shortest Path Algorithms

9.10 Bellman-Ford Algorithm

9.11 Topological Sort

9.12 Summary

9.0 INTRODUCTION

This unit consists with the concept of graphs in general as well as
in mathematical form and its basic terminology. It includes the method for
the graph representation like matrix representation or adjacency matrix
form with linked list. It covers the various algorithms for searching the
graph like breadth first search and depth first search. The concept of
spanning tree for obtaining the optimal path from the graph is also
introduced and implemented with Kruskal’s and prism’s algorithms. The
technique for obtaining the shortest path from the graph is implemented
with Bellman ford algorithm, Dijkstr’s algorithm and Floyd-Warshall
algorithm. A Graph is a nonlinear data structure that is used to represent a
relational data e.g. a set of terminals in a network or a road map of all
cities in a country. Such type of complex relationship can only be
represented using a graphs data structure. Thus, a graph is such type of a
non linear data structure which is having point to point relationship among
the nodes. A tree can view as a restricted graph. Each node of the graph is
called as a vertex and link or line drawn between them is called edge. A
general graph can view with the following diagram which consists with 6
(six) nodes or vertices and eight (08) links or edges.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/181

9.1 OBJECTIVES

After reading this unit the learner is able to do the following task.

• Interpret the graph mathematically.

• Represent the graph as adjacency matrix and path matrix

• Perform the search in the graph either in breadth first or depth first
search manner

• Able to construct spanning tree from the given graph using
Kruskal’s and Prim’s algorithms

• Able to explore the shortest path from the given graph

9.2 MATHEMATICAL DEFINITION OF THE
GRAPH AND ITS BASIC TERMINOLOGY

Mathematically, A graph ‘G’ consists of two sets V and ‘E’ such
that G={V, E},Where V is finite nonempty set of vertices or nodes, V(G)
represents set of vertices, E is a set of edges and E(G) represents set of
Edges. Therefore we can say that a graph G consists of a non empty set V
called the set of nodes (points, vertices) of the graph, a set E which is the
set of edges of the graph, and a mapping from the set of edges E to a set of
pairs of elements of V.

Example

Let us consider the graph as follows:

A

B

D

C

E

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/182

The set of vertices in the above graph is {A, B, C, D, E} and the set of
edges are {(A, B), (A, D), (A, C), (C, D), (C, E)}

Adjacent Nodes
The definition of the graph G = (V, E) implies that to every edge of the
graph G, we can associate a pair of nodes of the graph. If an edge Ex∈ is
thus associated with a pair of node (u, v) where u, v Є V, then we say that
the edge x connects or joins the nodes u and v. Any two nodes which are
connected by an edge in a graph are called adjacent Nodes.

Directed and undirected graph
In a graph G = (V, E) an edge which is directed from one node to another
is called a directed edge, while an edge which has no specific direction is
called an undirected edge. A graph in which every edge is directed is
called a directed graph or a diagraph. A graph in which every edge is
undirected is called an undirected graph. If some of the edges are directed
and some are undirected in a graph, then the graph is a mixed graph. A
directed graph is also called as DAG. The directed graphs are shown in
the following figure:

Directed Graphs

Undirected Graph

A

B

D

C

E

A B

C D

A C

D B

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/183

Parallel edges
Let (V, E) be a graph and let Ex∈ be a directed edge associated with the
ordered pair of nodes (u, v) where u, v Є V, then the edge x is said to be
initiating or originating in the node u and terminating or ending in the
node v. The nodes u and v are also called the initial and terminal nodes of
the edge x. An edge Ex∈ which joins the nodes u and v, whether it is
directed or undirected, is said to be incident to the nodes u and v. If an
edge is having direction, then the source node is called adjacent to the
destination and destination node is adjacent from source. An edge of a
graph which joins a node to itself is called a loop. In some directed as well
as undirected graphs, we may have certain pairs of nodes joined by more
than one edge as shown below, such edges are called parallel.

In this graph the two edges from node 1 to 2 are parallel. Similarly the
edges from node 2 to 3 are parallel.

Path

A path is a sequence of consecutive edges between a source and a
destination through different nodes. A path is said to be closed if source is
equal to destination. The path is said to be simple if all nodes are distinct.
The length of such a path is number of edges on that path. A path in a
diagraph is a path in which the edges are distinct. A path in which all the
nodes through which it traverses are distinct is called an elementary path.
The path in the graph can show as:

Path in the graph:- {(A,B),(A,B,D),(A,B,D,C),(B,D),(D,C)}

1

2

3

4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/184

Connected Graph
A graph is called connected if there is a path from any vertex to any other
vertex. A graph G = (V, E) is connected if and only if there is a simple
path between any two nodes in G. A graph G is said to be completed if
every node u in G is adjacent to every other node v in G. A complete

graph with n nodes has
2

)1(* −nn edges. The connected graph can show

as:

Connected Graph

Cycle
A path from a node to itself is called a cycle. Thus, a cycle is a path in
which the initial and final vertices are same. Acyclic graph with all vertex
connected is a tree.

Example
Let us consider the following graph:

Cycle in the Graph

The path (A, B, C, A) or (A, C, D, B, A) are cycles of different lengths in
the graph. If a graph contains a cycle, it is cyclic, otherwise it is acyclic. A
tree is a graph but the graph does not need to be a tree.

Free tree or graph without cyclic

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/185

Loop
If an edge is having identical end points, then the edge is called a loop.
Thus, an edge e is called a loop if it has identical end points, i.e. e = (u, u).

Degree, incidence, adjacency

A vertex v is incident to an edge e if V is one of the two vertices in the
ordered pair of vertices that constitute e.

The degree of a vertex is the number of edges incident to it. The in-degree
of a vertex V is the number of edges that have V as the head and the out-
degree of a vertex V is the number of edges that have V as the tail.

Example

Let us consider the following graph

In this graph vertex V has in-degree 1, out-degree 2 and degree 3. A V
vertex is adjacent to vertex U if there is an edge from U to V. If V is
adjacent to U, V is called a successor of U and U a predecessor of V.

Isolated node
If degree of a node is zero i.e. if the node is not having any edges, then the
node is called isolated node.

Complete Graph
A graph is called complete if all the nodes of the graph are adjacent to
each other. A complete graph with n nodes will have n*(n-1)/2 edges.

Weighted Graph
A graph is said to be weighted if each edge in the graph is assigned a non-
negative numerical value called the weight or cost of the edge. If an edge
does not have any weight then the weight is considered as 1.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/186

Weighted Graph

Multi-graph
If a graph has two parallel paths to an edge or multiple edges along with
loop is said to be multi-graph.

Sub Graph
A Graph G’ is called a sub-graph of G = (V, E) if V’ is a subset of V and
E’ is a subset of E. For G’ to a sub-graph of G if all the edges and vertices
of G’ should be in G.

Example
Consider the following graph and obtain simple and elementary paths
form it.

In this graph some of the paths originating in node 2 and ending in node 4
are:

P1 = ((2, 4))

P2 = ((2, 3), (3, 4))

P3 = ((2, 1), (1, 4))

P4 = ((2, 3), (3, 1), (1, 4))

P5 = ((2, 3), (3, 2), (2, 4))

P6 = ((2, 2), (2, 4))

In this the paths P1, P2, P3, and P4 are elementary paths while paths P5 and
P6 are simple but not elementary.

1 2

3 4

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/187

The following are some of the cycles in this graph:

C1 = ((2, 2))

C2 = ((1, 2), (2, 1))

C3 = ((2, 3), (3, 1), (1, 2))

C4 = ((2, 1), (1, 4), (4, 3), (3, 2))

9.3 GRAPH REPRESENTATION

A diagrammatic representation of a graph may have a limited
usefulness. However, such a representation is not feasible when the
number of nodes and edges in a graph is large. There are different methods
for the alternative representation of graph. The basic three methods for the
methods for the graph representation are as follows:

• Representation of the graph by using matrices.

• Representation of a graph by a list structure.

• Representation of a graph by a Adjacency lists and edge lists.

Matrix Representation of Graphs
Given a simple diagraph G = (V, E), it is necessary to assume some kind
or ordering of the nodes of a graph in the sense that a particular node is
called a first node, another second node, and so on. A matrix
representation of G depends upon the ordering of the nodes. Therefore, in
the given diagraph G we have V = {v1, v2,……vn } and the nodes are
assumed to be ordered from v1 to vn. An n X n matrix A whose elements aij
are given by:





 ∈

=
otherwise

Eif vva ji
ij 0

),(1

This is called the adjacency matrix of the graph G.

Any element of the adjacency matrix is either 0 or 1. Any matrix whose
elements are 0 or 1 is called a bit matrix or a Boolean matrix. Hence the ith
row in the adjacency matrix is determined by the edges which originate in
the node vi. The number of elements in the ith row whose value is 1 is
equal to the out-degree of the node vi. Similarly, the number of elements
whose value is 1 in a column, say the jth column, is equal to the in-degree
of the node vj. An adjacency matrix completely defines a simple
diagraph. If two diagraphs are such that the adjacency matrix of one can
be obtained from the adjacency matrix of the other by interchanging some
of the rows and the corresponding columns, then the diagraphs are
equivalent.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/188

Example

Obtain the adjacency matrix for the following diagraph.

 Diagraph

The corresponding adjacency matrix for this diagraph is as follows:

 4321 vvvv

4

3

2

1

v
v
v
v



















0010
1011
0001
1010

Adjacency Matrix

Now we consider the powers of an adjacency matrix. Naturally, an entry
of 1 in the ith row and jth column of A shows the existence of an edge (vi,
vj), that is, a path of length 1 from vi to vj. Let us denote the elements of A2
by aij

(2). Then:

∑
=

=
n

k
kjikij aaa

1

)2(

So that for any fixed k, 1=aa kjik
if and only if both aik and akj

 equal 1;

i.e.),(ki vv and),(jk vv are edges of the graph. For each such k we get a
contribution of 1 in the sum. Now),(ki vv and),(jk vv imply that there is a

path from vi to vj of length 2. Therefore, 2
ija is equal to the number of

different paths of exactly length 2 from vi to vj. Similarly, the diagonal
element 2

ija shows the number of cycles of length 2 at the node for vi for
i=1, 2,….,,n. By a similar argument, one can show that the element in the
ith row and jth column of 3A gives the number of paths of exactly length 3
from vi to vj. In general, the following statement can be shown:

Let A be the adjacency matrix of the digraph G. The element in the ith row
and jth column of nA (n>1) is equal to the number of paths of length n
from the ith node and jth node.

V V

V
V

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/189

Example

Consider the following diagraph:

Diagraph

The corresponding matrices 2A , 3A and 4A for this diagraph can represent
as:



















=

0001
1021
1010
0011

2A



















=

1010
1022
0010
1011

3A



















=

0011
2032
1011
1021

4A

9.4 PATH MATRIX OR REACH-ABILITY
MATRIX

Suppose G = (V, E) is a simple digraph with n nodes and the
nodes of G are being ordered and are called v1,v2,v3,…..,vn. An n X n
matrix P is a Path matrix of the diagraph G if:

1, if there is a path between vi and vj

ijP =

0, otherwise

The path matrix only shows the presence or absence of at least one path
between a pair of points and also the presence or absence of a cycle at any
node. It is easily shown that in a simple diagraph with n nodes, the length
of an elementary path or cycle does not exceed n. Also, for a path between
any two nodes, one can obtain an elementary path by deleting certain parts

V2

V V4

V

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/190

of the path that are cycles. Similarly (for cycles), we can always obtain an
elementary cycle from a given cycle. If we are interested in determining
whether there exists a path from vi to vj, , all we need to examine are the
elementary paths of length less than or equal to n-1. In the case where vi =
vj and the path is a cycle, we need to examine all possible elementary
cycles of length less than or equal to n. Such cycles or paths are easily
determined from the matrix nB where;

n
n AAAAB ++++=32

The element in the ith row and jth column of Bn shows the number of paths
of length n or less which exist from vi to vj. If this element is non-zero,
then it is we need to know the existence of a path, and not the number of
paths between any two nodes. In any case, then matrix Bn furnishes the
required information about reach-ability of any node of the graph from
any other node.

Therefore, the path matrix can be calculated from the matrix Bn by
choosing pij = 1 if the element in the ith row and the jth column of Bn is
non-zero, and pij = 0 otherwise.

Example

Now we apply this method of calculating the path matrix to the given
diagraph in the above mentioned examples. The adjacency matrix A and
the powers 2A , 3A and 4A have already been calculated in the previous
example. We thus have B4 and the path matrix P given by:



















=

1032
5086
2033
3053

4B and



















=

0011
1011
1011
1011

P

The method of obtaining the path matrix of a simple diagraph can easily
be computed by using the following WARSHALL algorithm

Algorithm WARSHALL [Given the adjacency matrix A, this algorithm
produces the path matrix P.]

1. [Initialize]
P = A

2. [perform a Pass]
Repeat through step 4 for k = 1, 2,…..,n

3. [Process rows]
Repeat step 4 for I = 1, 2,……,n

4. [Process columns]
Repeat for j = 1, 2,….,n
Pij = Pij ⋁ (Pik ∧ Pkj)

5. [Finished]
Exit

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/191

9.5 LINKED REPRESENTATION OF THE
GRAPH

The Matrix representation of graph does not keeps track of the
information related to the nodes. Hence a linked representation is used to
represent a graph called adjacency structure. An adjacency list is a listing
for each node of all edges connecting it to adjacent nodes. For a graph G =
(V, E), a list is formed for each element x of V, containing all nodes y such
that (x, y) is an element of E. The manipulation of such structure is also
known as the list Processing. The adjacency structure of the graph
maintains two lists called node list and edge list.
Node List
Each node in the node list will correspond to a node in the graph and will
have three field. They are the information of the node called INFO,
Pointer to the next node of the list called NEXT, a pointer to the edge list
called ADJ.
Edge List
Each element of the edge list will correspond to an edge of the graph and
will give two fields. They are DEST contains the address of the
destination node and LINK contains the address of the next node of the
edge list.
Representation
In the context of list processing, we define a list to be any finite sequence
of zero or more atoms or lists. Here an atom is taken to be any object that
is distinguishable from a list by treating the atom as structurally
indivisible. If we enclose lists within parentheses and separate elements of
lists by commas, then the following can be considered to be lists:

(i) (a, (b, c, d), e, (f, g))
(ii) ()
(iii) ((a))

The first element contains four elements, namely, the atom a, the list (b, c,
d) which contains the atoms b, c and d, the atom e, and the list (f, g) whose
elements are the atoms f and g. The second has no elements, but the null
list is still a valid list. The third list has one element, the list (a), which in
turn contains the atom a. A graphic representation of these can show as:

(i) (a, (b, c, d), e, (f, g))

a

b

c d

e

f g

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/192

(ii) ()

(iii) ((a))

Another notation which is often used to illustrate lists is similar to that
used in the linked representation of trees. Each element of a list is
indicated by a box and a pointer indicates whether the boxes are members
of the same list or member of the sub lists. Each box is separate into two
parts. The second part of an element contains a pointer to the next element
in the same list or a null pointer to mark the end of the list. This
representation contains the two types of links: (a) Horizontal pointer and
(b) vertical pointer.

The horizontal pointer represents the relation of physical adjacency in a
list. The vertical pointer specifies the non-atomic element or hierarchical
relationship in a list. Now we consider this linked list representation for
our given list as :

(i)

(a, (b, c, d), e, (f, g))

(ii) ⟹ (null Pointer)

()

a e

f g

b c d

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/193

(iii)

((a))

Example

Consider the following graph and represent it with adjacency list edge list
representation.

The Adjacency list representation of this graph is as:

a b c d

b a c e

c d f

d e f

e F

f

The edge list of this graph is as follows:

a

B

A C

E

D F

6
1 1

2

3

6
1

1

2

2

2

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/194

1 A

2 B

3 C

4 D

5 E

6 F

The list is given as:

(a, b), (a, c), (a, d), (b, a),

(b, c), (b, e), (c, d), (c, f)

(d, e), (d, f), (e, f)

9.6 GRAPH TRAVERSAL

Traversing a graph means visiting all the vertices in a graph
exactly one. Normally we use the following two basic searching methods
for traversal of the graph:

• Breadth First Search

• Depth First Search

Breadth First Searching / Level order traversal

In general, breadth first search (BFS) can use to find the shortest distance
between some starting node and the remaining nodes of the graph. This
shortest distance is the minimum number of edges traversed in order to
travel from the start node to the specific node being examined. In this
searching we start from a node v, this distance is calculated by examining
all incident edges to node v, and then moving on to an adjacent node w
and repeating the process. The traversal continues until all nodes in the
graph have been examined. A queue is maintained in this technique to
maintain the list of incident edges and marked nodes. It is more
appropriate for a digraph.

We can consider this searching strategy from the following diagraph:

2 3 4

1 3 5

4

5

6

6

6

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/195

Using the BFS searching on this graph, the in-directed traversal results,
assuming node A is the start position and each edge is assigned a value of
one. The shortest distance from the start is given by the number associated
with each node. All nodes adjacent to the current node are numbered
before the search is continued. This ensures every node will be examined
at least once. The efficiency of a BFS algorithm depends on the method
used to represent the graph. The adjacency list representation is suitable
for this algorithm, since finding the incident edges to the current node
involves simply traversing a linked list, whereas an adjacency matrix
would require searching only particular row is traversed and that too only
one time. The representation of the node to implement this algorithm is as
follows:

Node table directory structure

 Edge Structure

Here:

 REACH specifies whether a node has been reached in the traversal and its
initial value is false.

NODENO identifies the node number.

DATA contains the information pertaining to this node.

A

C B D E

F

0

1
2

2
1

2

REAC NODENO DAT DIST LISTPT

DESTI EDGEP

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/196

DIST is the variable which will contain the distance from the start node.

LISTPTR is a pointer to a list of adjacent edges for the node.

DESTIN contains the number of the terminal node for this edge.

EDGEPTR points to the next edge in the list

Now, we represent the algorithm which calculates BFS distances using
two sub-procedures i.e. QINSERT and QDELETE (we have already
discussed them in unit six (06)). QINSERT enters a value onto the rear of
a queue, in this case a node whose incident edges have not yet been
examined. The procedure has two parameters, the queue name and the
value to be inserted. QDELETE removes a value from the front of a queue
specified, placing it in INDEX. In the algorithm, this value is the next
node which will be processed. Now we write the algorithm formally as:

Procedure BFS (INDEX): [This algorithm generates the shortest path for
each node using a breadth first search (BFS). INDEX denotes the current
node being processed and LINK points to the edge being examined. It is
assumed that the REACH field has been yet set to false when the structure
was created. QUEUE denotes the name of the queue.]

1. [initialize the first node’s DIST number and place node in queue]

REACH [INDEX] = TRUE;

DIST [INDEX]=0 ;

QINSERT(QUEUE, INDEX);

2. [Repeat until all nodes have been examined]

Repeat thru step 5 while queue is not empty.

3. [Remove current node to be examined from queue]

QDELETE (QUEUE, INDEX);

4. [Find all unlabeled nodes adjacent to current node]

LINK = LISTPTR [INDEX];

Repeat step 5 while LINK ≠NULL

5. [If this is an unvisited node, label it and add it to the queue]

If not REACH [DESTIN (LINK)]

Then DIST [DESTIN (LINK)]= DIST[INDEX] + 1;

REACH [DESTIN(LINK)] = TRUE;

QINSERT(QUEUE, DESTIN(LINK))

LINK = EDGEPTR(LINK) /* move down edge list */

6. [Finished]

Return

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/197

The storage representation for the above given graph can be shown as after
the result of this algorithm:

REACH NODENO DATA DIST LISTPTR

TRUE 1 A 0

2 B 2

3 C 1

4 D 2

5 E 1

TRUE

TRUE

TRUE

TRUE

TRUE 6 F 2

Storage representation of given graph

Check your progress:
A graph is connected if for every two nodes X and Y, there is either a path
from Y to X or from X to Y. modify Algorithm BFS to determine if a
graph is connected.

Depth First Search
A depth first search (DFS) of an arbitrary graph can be used to perform a
traversal of a general graph. As each new node is encountered, it is
marked with True indicating the order in which the nodes were
encountered to show that the node has been visited. The DFS strategy is as
follows:

A node S is picked as a start node and marked. An unmarked adjacent
node to S is now selected and marked, becoming the new start node,

DESTIN EDGEPTR

3

3

1

3

1

2

5

6

2

5

4

3

46

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/198

possibly leaving the original start node with unexplored edges for the
present. The search continues in the graph until the current path ends at a
node with out-degree zero or at a node with all adjacent nodes already
marked. Then the search returns to the last node which still has unmarked
adjacent nodes and continues marking until all nodes are marked.

Example
Consider the following graph:

Depth First Search Traversal

Therefore in this strategy result of the traversal indicated by the arrows,
assuming each edge has been assigned a value of one. Starting at node A,
the search numbers all nodes down until node F, where all adjacent nodes
have already been marked. This strategy returns to node C, which still has
an unlabeled adjacent node D. After node D and E are labeled, all nodes
are numbered and the search is complete. Thus the orders in which the
nodes will traverse are: A C B F D E.

Since adjacent nodes are needed during the traversal, the most efficient
representation is adjacency list. Therefore, the same data structure as used
in BFS will use here with the change that the DIST variable in the node
table directory to DFN (Depth first search number) as:

Node table directory structure

A

C B D E

F

2

5

6

 4

3

REAC NODENO DAT DFN LISTPT

DESTI EDGEP

1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/199

Edge Structure
It is clear from the example that the stack is required to implement the
DFS traversing. The formal algorithm for DFS is as follows:

Procedure DFS (INDEX, COUNT): [This recursive algorithm calculates
the depth first search numbers for a graph. INDEX denotes the current
node being processed and LINK points to the edge being examined.
COUNT is used to keep track of the current DFN number and is initially
set to zero outside the procedure. Finally, it is assumed the DFN filed was
initialized to zero when the adjacency list structure was created]

1. [Update the depth first search number, set and mark current node]

COUNT = COUNT + 1;

DFN [INDEX] = COUNT;

REACH [INDEX] = TRUE;

2. [Set up loop to examine each neighbor of current node]

LINK = LISTPTR [INDEX];

Repeat step 3 while LINK ≠NULL.

3. [If node has not been marked, label it and make recursive call]

If not REACH [DESTIN (LINK)]

Then DFS (DESTIN (LINK), COUNT);

LINK = EDGEPTR(LINK) /* Examine next adjacent
node */

4. [Finished]

Return

Check your progress :
Produce the input structure and DFN number for the following graph.

1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/200

9.7 SPANNING TREE

A spanning tree of a graph is an undirected tree consisting of only
those edges necessary to connect all the nodes in the original graph. A
spanning tree has the properties that for any pair of nodes there exists only
one path between them, and the insertion of any edge to a spanning tree
forms a unique cycle. Those edges left out of the spanning tree were
present in the original graph connect paths together in the tree. When
determine the cost of a spanning tree of a weighted graph, the cost is
simply the sum of the weights of the tree’s edges. A minimal cost
spanning tree is formed when the edges are picked to minimize the total
cost.

We may define the spanning tree alternatively as follows also:

“If G is a weighted graph and T1, T2 are two spanning trees of G than the
sum of weights of all edges in T1 may be different from that of T2. A
spanning tree T of G where the sum of weights of all edges in T is
minimum is called the minimal cost spanning tree or minimal spanning
tree of G.

Mathematical interpretation of the spanning tree can understand as
follows:

A sub-graph of a Graph G = (V, E) which is tree containing all vertices of
V is called a spanning tree of G. If G is not connected then there is no
spanning tree of G.

Example

Now consider the graph G given as follows:

0

3

1

4 5

6

2

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/201

There are two spanning trees of this graph can construct. These spanning
trees are as follows:

Spanning Trees

9.8 ALGORITHM FOR COMPUTING
MINIMAL SPANNING TREE

There are two popular algorithms to calculate minimal cost
spanning tree of a weighted undirected graph:

(a) Kruskal’s Algorithm
Kruskal’s algorithm functions on a list of edges of a graph where
the list is arranged in order of weight of the edges. It is a greedy
algorithm. In each step it chooses the highest edge that does not
create a cycle. We start with n trees, each consisting of a single
vertex. Then trees are joined until in the end, we have a single tree.
Thus in each step an edge is selected and added if the incorporation
does not from a cycle. The edge which is selected, it is deleted
from the list of edges. The algorithm continues until (n-1) edges
are added to the list of edges exhausted. When the algorithm ends
after adding (n-1) edges, a minimum spanning tree is produced.

1

0

2

3

4 5

6

0

2 1

3 4 5

6

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/202

Example

Consider the following graph. There are eleven edges. An edge
connecting the vertices ‘i’ and ‘j’ may be represented by a tuple (i,
j)

The list of edges of the graph sorted in non-descending order may be
given by:

{(0,2), (1, 2), (0, 1), (1, 3), (2, 3), (2, 5), (4, 6), (4, 5), (3, 6), (5, 6), (1, 4)}

The initial tree we can show as:

The first edge (0,2) from the list of edges is taken into account. Since the
addition of this edge does not form a cycle. It can be added to change the
partial minimum spanning tree as show below:

0

1 2

3

5

6

5

2

6 7 25

11
15

10

14

12

1 2

3

4 5

6

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/203

Now, (1, 2) is the next edge to be considered. Inclusion of this edge does
not result in a cycle and hence it will be added to the partially formed
minimum spanning tree, this can be shown as:

The next edge (0, 1) is not added to the partially formed tree as it forms a
cycle. The next edge (1, 3) is now taken into account. Since inclusion of
this edge does not form a cycle, this edge can be included and the partial
minimum spanning tree is created, it can be shown as:

0
1 2

3

4 5

6

2

0

1 2

3

4 5

6

2

2

0

1 2

3

4 5

6

2

2

6

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/204

If the next edge (2, 3) is added then a cycle 2-1-3-2 is formed. Therefore,
this edge is not added to the partially formed tree. The next edge (2, 5) is
selected. Since inclusion of this edge does not form a cycle, this edge can
be added and the partial minimal spanning tree is formed as:

Next the edge (4, 6) is chosen. This edge can be added. This can be shown
as:

The next edge in the list (4, 5) is added to complete the minimal spanning
tree as:

0

1 2

3

4 5

6

2

2

6 10

0

1 2

3

4 5

6

2

2

6 10

11

0

1 2

3

4 5

6

2

2

6 10

11 12

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/205

Now we formally define the kruskal’s Minimum spanning tree algorithm
as:

Function Kruskal [This algorithm accepts a connected weighted
undirected graph G = (V, E, w) as the input and produces a minimum
spanning tree T of G as output]

1. Sort the edges by increasing weight

2. For each vertex v Є V do

3. Make-set (v)

4. ET = Ф

5. For each edge e = {u, v} Є E, in order by increasing weight do

6. If Find (u) ≠Find (v) then

7. ET = ET  {e}

8. Union (u, v)

9. Return (V, ET)

(b) Prim’s Algorithm

Prim’s algorithm also works in a greedy manner but it does not
grow several components. It just extends one component by
successively adding new nodes. In this algorithm we store all
vertices in a priority queue. As long as a vertex y is not adjacent to
a vertex of the spanning tree selected so far, its key is set to ∞. If it
becomes adjacent to some vertex say x, then its key becomes the
weight of w({x, y}). If it becomes a adjacent to a new vertex, then
we only set the key to the new weight if this will decrease the key.
Thus, Key [x] is the cost of adding x to the tree grown so far.

Therefore we can say that the Prim’s algorithm starts with any
arbitrary vertex as the partial minimal spanning tree ‘T’. In each
iteration of the algorithm one edge say (u, v) is added to the partial
tree ‘T’ so that exactly one end of this edge belongs to the set of
vertices in ‘T’. Hence, of all such possible edges, the edge having
the least cost is selected. The algorithm continues to add (n-1)
edges.

Example

Consider the following graph:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/206

Now we start with the vertex 0 and construct the minimal spanning tree
from prim’s algorithm as:

Now we formally define the Prim’s Minimum spanning tree algorithm as:

Function Prim’s [This algorithm accepts a connected weighted undirected
graph G = (V, E, w) as the input and produces a minimum spanning tree T
of G as output]

1. Choose an arbitrary root r Є V.

2. Key [r] = 0; key [v] = ∞ for all v Є V expect r.

3. Let Q be a min-priority queue filled with the vertices in V.

4. P [r] = NULL

5. While Q is not empty do

6. X = Extract-min (Q)

7. If p [x] ≠ NULL then

12

1 2

3

4 5

6

5

2

6 7 25

11
15

10

14

0
2

1 2

3

4 5

6

2

6

11

10

14

0
2

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/207

8. Et = ET  {p[x], x}

9. For each vertex y adjacent to x do

10. If y Є Q and w({x, y}) < Key [y] then

11. P[y] = z;

12. Key [y] = w({x, y})

13. Return (V, ET)

9.9 SHORTEST PATH ALGORITHMS

Suppose we are given a directed graph G in which every edge has
a weight attached and our problem is to obtain the path which has the
shortest length between source and destination nodes or the length of
shortest path between the nodes. Thus we can say that let G = (V, E, w) be
an edge-weighted directed graph and let s, t Є V. Let P = (v0,…….,vl) be
the path from s to t, that is v0= s, vl=t. The issue is here to compute the
shortest path from s to t. The first point which we have to investigate is
that is that whether the shortest walk from s to t is always a path. This is
certainly the case if all weights are non-negative. Consider a walk from s
to t that is not a path. Then this walk contains a cycle C. If the weight of C
is non-negative, then we can remove this cycle and get a new walk whose
weight is equal to w(C) = 0 or shorter than if w(C)>0 the weight of the
original walk. If the weight of C is negative, then the walk gets shorter if
we go through C once more. In this case, there is no shortest walk from s
to t. Thus, if on every walk from s to t there is no negative cycle, then the
weight of shortest walk from s to t is well – defined and is always attained
by a path. If there is a walk with a negative cycle from s to t, then we set
weight to -∞.

Now we explore the general algorithm of determining the shortest path
from the given weighted diagraph. This algorithm is known as
WARSHALL algorithm. This algorithm is used to obtain a matrix which
gives the lengths of shortest paths between the nodes. The algorithm is
defined as follows:

Algorithm MINIMAL [Given the adjacency matrix, B, in which the zero
elements are replaced by infinity or some very large number, the matrix C
produced by this algorithm shows the minimum lengths of paths between
the nodes.]

1. [Initialize]

C = B;

2. [Perform a pass]

Repeat thru step 4 for k = 1, 2,,….,n

3. [process row]

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/208

4. For j = 1 to n do

),(kjikijij ccMIN cc +=

5. [Finished]

Exit.

Example

Let us consider the following adjacency matrix of any diagraph:

𝑃 =

⎣
⎢
⎢
⎢
⎡
0 0 0 1 0
1 0 1 0 0
0 0 0 0 1
0 1 1 0 1
0 0 0 1 0⎦

⎥
⎥
⎥
⎤

Now the matrix Q can be obtained by using the WARSHALL’S algorithm
as:

𝑄 =

⎣
⎢
⎢
⎢
⎡
1 1 1 1 1
1 1 1 1 1
0 0 0 0 1
1 1 1 1 1
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

Now we define another algorithm for determining the shortest path. This
algorithm is known as the Dijkstra Algorithm.

In this algorithm we begin by examining how to alter D (w). In solving the
un-weighted shortest-path problem, if D (w) = ∞, we set D (w) = D (v) +1
because we lower the value of D (w) if vertex offers a shorter path to w.
The algorithm ensures that we need to alter D (w) only once. We add 1 to
D (v) because the length of the path to w is 1 more than the length of the
path to v. If we apply this logic to the weighted case, we should set D (w)
= D (v) + C v, w if this new value of D (w) is better than the original value.
However, we are no longer guaranteed that D (w) is altered only once.
Consequently, D (w) should be altered if its current value is larger than D
(v) + C v, w. The algorithm decides whether v should be used on the path to
w. The original cost D (w) is the cost without using v; the cost D (v) + C v,

w is the cheapest path using v. Problem is to find a path from one vertex V
to another W such that the sum of the weights on the path is as small as
possible. We call such path a shortest path. It is important to note that
length of a path in a weighted graph is defined to be sum of costs or
weights of all edges in that path. In general there could be more than one
path between a pair of specified vertices. Thus the shortest path between
two vertices may not be unique.

This algorithm assumes that all weights of the digraph are non-negative.
This algorithm considers the input as the edge-weighted directed graph G

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/209

= (V, E, w), w (e) ≥ 0 for all e, source s Є V. The output of this algorithm
is the shortest path tree. The algorithm is defined as follows:

Algorithm Dijkstra

1. Initialize d [s] = 0, d [v] = ∞, for al v ≠ s and p [v] = NULL for
all v.

2. Let Q be a min-priority queue filled with all vertices from V using
d [v] as keys.

3. While Q is not-empty do

4. x = min (Q)

5. for each y with (x, y) Є E do

if d [y] > d[x] + w((x, y)) then

d [y] = d [x] + w ((x, y))

p [y] = x;

6. exit

Example

The following implementation is showing the stages of the Dijkstra’s
algorithm as follows for the given graph:

Step 1:
Mark Vertex 1 as the source vertex. Assign a cost zero to Vertex 1 and
(infinite to all other vertices). The state is as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/210

Step 2:
For each of the unvisited neighbors (Vertex 2, Vertex 3 and Vertex 4)
calculate the minimum cost as min (current cost of vertex under
consideration, sum of cost of vertex 1 and connecting edge). Mark Vertex
1 as visited, in the diagram we border it black. The new state would be as
follows:

Step 3:
Choose the unvisited vertex with minimum cost (vertex 4) and consider all
its unvisited neighbors (Vertex 5 and Vertex 6) and calculate the minimum
cost for both of them. The state is as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/211

Step 4:
Choose the unvisited vertex with minimum cost (vertex 2 or vertex 5, here
we choose vertex 2) and consider all its unvisited neighbors (Vertex 3 and
Vertex 5) and calculate the minimum cost for both of them. Now, the
current cost of Vertex 3 is [4] and the sum of (cost of Vertex 2 + cost of
edge (2,3)) is 3 + 4 = [7]. Minimum of 4, 7 is 4. Hence the cost of vertex
3 won’t change. By the same argument the cost of vertex 5 will not
change. We just mark the vertex 2 as visited, all the costs remain same.
The state is as follows:

Step 5:
Choose the unvisited vertex with minimum cost (vertex 5) and consider all
its unvisited neighbors (Vertex 3 and Vertex 6) and calculate the minimum
cost for both of them. Now, the current cost of Vertex 3 is [4] and the sum
of (cost of Vertex 5 + cost of edge (5,3)) is 3 + 6 = [9]. Minimum of 4, 9

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/212

is 4. Hence the cost of vertex 3 won’t change. Now, the current cost of
Vertex 6 is [6] and the sum of (cost of Vertex 5 + cost of edge (3,6)) is 3
+ 2 = [5]. Minimum of 6, 5 is 45. Hence the cost of vertex 6 changes to 5.
The state is as follows:

Step 6:
Choose the unvisited vertex with minimum cost (vertex 3) and consider all
its unvisited neighbors (none). So mark it visited. The state is as follows:

Step 7:
Choose the unvisited vertex with minimum cost (vertex 6) and consider all
its unvisited neighbors (none). So mark it visited. The state is as follows:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/213

Now there is no unvisited vertex left and the execution ends. At the end
we know the shortest paths for all the vertices from the source vertex 1.
Even if we know the shortest path length, we do not know the exact list of
vertices which contributes to the shortest path until we maintain them
separately or the data structure supports it.

9.10 BELLMAN-FORD ALGORITHM

Dijkstra’s algorithm requires that edge costs be non-negative. This
requirement is reasonable for most graph applications, but sometimes it is
too restrictive. Hence, here we consider the most general case i.e. the
negative-weighted, shortest-path algorithm. Therefore our objective is to
find the shortest path (measured by total cost) from a designated vertex S
to every vertex, edge costs may be negative. Let us consider a graph as
shown below:

In this graph the path from V3 to v4 has a cost of 2. However, a shorter
path exists by following the loop V3, V4, V1, V3, V4. This has a cost of -3.
This path is still not the shortest because we could stay in the loop
arbitrarily long. Thus, the shortest path between these two points is
undefined. This problem is not restricted to nodes in the cycle. The
shortest path from V2 to V5 is also undefined because there is a way to get
into and out of the loop. This loop is called a negative-cost cycle, which
when present in a graph makes most, if not all, the shortest paths
undefined. Negative-cost edges by themselves are not necessarily bad; it is
the cycles that are. The general algorithm either finds the shortest paths or

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/214

reports the existence of a negative-cost cycle is known as the Bellman –
Ford algorithm.

Now we formally define the Bellman-Ford algorithm, this algorithm
accept the edge-weighted directed graph G = (V, E, w) and source s Є V as
the input and return a shortest path tree.

Algorithm Bellman-Ford algorithm

1. Initialize d and p.

2. For I = 1,….., |V|-1 do

3. For each e = (u, v) Є E do

if d [v] > d[u] + w((u, v)) then

d [v] = d [u] + w ((u, v))

p [v] = u;

4. For each (u, v) Є E do

5. If d [v] > d [u] + w ((u, v)) then

6. Error “negative cycle”

7. Exit.

Example
The following implementation is showing the stages of the Bellman-Ford
algorithm as follows for the given graph:

Step 1 :

Considering A as the source, assign it the cost zero. Add all the vertices
(A, B, C, D, E, F, G, H) to a list. For all vertices except A assign a cost
infinity. Also, it is advisable to maintain a list of edges handy. Here is the
graph to start with:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/215

Step 2 :

Take one vertex at a time say A, and relax all the edges in the graph. Point
worth noticing is that we can only relax the edges which are outgoing
from the vertex A. Rest of the edges will not make much of a difference.
So, the following are the sub steps for step 2.

Relax (A, E) : cost of E = MIN(current cost of E[∞] , cost of A[0] +
W{A,E}[6]).Cost(E) becomes 6.
Relax (A, B) : cost of B = MIN(current cost of B[∞] , cost of A[0] +
W{A,B}[8]).Cost(B) becomes 8.
Relax (B, C) : cost of C = MIN(current cost of C[∞] , cost of B[8] +
W{B,C}[6]).Cost(C) becomes 14.
Relax (C, H) : cost of H = MIN(current cost of H[∞] , cost of C[14] +
W{C,H}[4]).Cost(H) becomes 18.
Relax (H, G) : cost of G = MIN(current cost of G[∞] , cost of H[18] +
W{H,G}[-2]).Cost(G) becomes 16.
Relax (G, C) : cost of C = MIN(current cost of C[14] , cost of G[16] +
W{G,C}[-1]).Cost(C) remains 14.
Relax (G, D) : cost of D = MIN(current cost of D[∞] , cost of G[16] +
W{G,D}[1]).Cost(D) becomes 17.
Relax (D, B) : cost of B = MIN(current cost of B[8] , cost of D[17] +
W{D,B}[2]).Cost(B) remains 8.
Relax (E, F) : cost of F = MIN(current cost of F[∞] , cost of E[6] +
W{E,F}[3]).Cost(F) becomes 9.
Relax (E, G): cost of G = MIN(current cost of G[16] , cost of E[6] +
W{E,G}[2]).Cost(G) becomes 8.
Relax (F, G) : cost of G = MIN(current cost of G[8] , cost of F[9] +
W{F,G}[6]).Cost(G) remains 8.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/216

Step 3:

Start from any one vertex, say A again and relax all the edges as below:

Relax (A, E) : cost of E = MIN(current cost of E[6] , cost of A[0] +
W{A,E}[6]).Cost(E) remains 6.
Relax (A, B) : cost of B = MIN(current cost of B[8] , cost of A[0] +
W{A,B}[8]).Cost(B) remains 8.
Relax (B, C) : cost of C = MIN(current cost of C[14] , cost of B[8] +
W{B,C}[6]).Cost(C) remains 14.
Relax (C, H) : cost of H = MIN(current cost of H[18] , cost of C[14] +
W{C,H}[4]).Cost(H) remains 18.
Relax (H, G) : cost of G = MIN(current cost of G[8] , cost of H[18] +
W{H,G}[-2]).Cost(G) remains 8.
Relax (G, C) : cost of C = MIN(current cost of C[14] , cost of G[8] +
W{G,C}[-1]).Cost(C) becomes 7.
Relax (G, D) : cost of D = MIN(current cost of D[17] , cost of G[8] +
W{G,D}[1]).Cost(D) becomes 9.
Relax (D, B) : cost of B = MIN(current cost of B[8] , cost of D[9] +
W{D,B}[2]).Cost(B) remains 8.
Relax (E, F) : cost of F = MIN(current cost of F[9] , cost of E[6] +
W{E,F}[3]).Cost(F) remains 9.
Relax (E, G) : cost of G = MIN(current cost of G[8] , cost of E[6] +
W{E,G}[2]).Cost(G) remains 8.
Relax (F, G) : cost of G = MIN(current cost of G[8] , cost of F[9] +
W{F,G}[6]).Cost(G) remains 8.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/217

Step 4:

Start from any one vertex, say A again and relax all the edges as below:

Relax (A, E) : cost of E = MIN(current cost of E[6] , cost of A[0] +
W{A,E}[6]).Cost(E) remains 6.
Relax (A, B) : cost of B = MIN(current cost of B[8] , cost of A[0] +
W{A,B}[8]).Cost(B) remains 8.
Relax (B, C) : cost of C = MIN(current cost of C[7] , cost of B[8] +
W{B,C}[6]).Cost(C) becomes 7.
Relax (C, H) : cost of H = MIN(current cost of H[18] , cost of C[7] +
W{C,H}[4]).Cost(H) becomes 11.
Relax (H, G) : cost of G = MIN(current cost of G[8] , cost of H[11] +
W{H,G}[-2]).Cost(G) remains 8.
Relax (G, C) : cost of C = MIN(current cost of C[7] , cost of G[8] +
W{G,C}[-1]).Cost(C) remains 7.
Relax (G, D) : cost of D = MIN(current cost of D[9] , cost of G[8] +
W{G,D}[1]).Cost(D) remains 9.
Relax (D, B) : cost of B = MIN(current cost of B[8] , cost of D[9] +
W{D,B}[2]).Cost(B) remains 8.
Relax (E, F) : cost of F = MIN(current cost of F[9] , cost of E[6] +
W{E,F}[3]).Cost(F) remains 9.
Relax (E, G) : cost of G = MIN(current cost of G[8] , cost of E[6] +
W{E,G}[2]).Cost(G) remains 8.
Relax (F, G) : cost of G = MIN(current cost of G[8] , cost of F[9] +
W{F,G}[6]).Cost(G) remains 8.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/218

9.11 TOPOLOGICAL SORT

A Topological sort orders vertices in a directed acyclic graph such
that if there is a path from u to v, then v appears after u in the ordering. For
instance, a graph is typically used to represent the prerequisite requirement
for courses at universities. An edge (v, w) indicates that course v must be
completed before course w may be attempted. A topological order of the
courses is any sequence that does not violate the prerequisite
requirements. Thus, a Topological sort orders vertices in a directed acyclic
graph such that if there is a path from u to v, then v appears after u in the
ordering. A graph that has a cycle cannot have a topological order.

In this method we first find any vertex v that has no incoming edges. Then
we print the vertex and logically move it, along with its edges, from the
graph. Finally, we apply the same strategy to the rest of the graph. More
formally, we say that the in–degree of vertex v is the number of incoming
edges (u, v). We compute the in-degree of all vertices in the graph.

Example
Let us consider the following acyclic graph and represent the stages of
topological sorting in this graph.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/219

We apply the topological sorting method on the acyclic graph by
computing the in-degree for each vertex. Vertex V2 has in-degree 0, so it
is first in the topological order. If there were several vertices of in-degree
0, we could choose any one of them. When V2 and its edges are removed
from the graph, the in-degrees of V0, V3 and V4 are all decremented by 1.
Now V0 has in-degree 0, so it is next in the topological order, and V1 and
V3 have their in-degrees lowered. The algorithm continues, and the
remaining vertices are examined in the order V1, V3, V4, V6 and V5.

3.12 SUMMARY
In this unit we have discussed about the graph and its related

terminology. The graph provides an excellent way to model the essential
features of many applications, thereby facilitating specification of the
underlying problems and formulation of algorithms for their solutions are
discussed. The following contents were discussed:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/220

• A Graph is a nonlinear data structure that is used to represent a
relational data

• Each node of the graph is called as a vertex and link or line drawn
between them is called and edge

• The implementation of graph and its representations way were
discussed. It has been seen that the graph is implemented in many
ways by the use of different kinds of data structures.

• In many applications, edges are to be assigned costs or weights.
Such graphs are known as weighted graphs.

• The directed graph and acyclic graphs were also described.

• There are various ways of representing a graph.

• Adjacency matrix of a graph is a matrix representation.

• Adjacency list of a graph is a linked list representation.

• The reach matrix and path matrix can also be constructed from the
adjacency matrix representation of the graph.

• The method of obtaining the path matrix of a simple diagraph can
easily be computed by using the WARSHALL algorithm

• There are two popular techniques for graph traversal i.e. breadth
first search and Depth first search.

• A spanning tree of a graph is an undirected tree consisting of only
those edges necessary to connect all the nodes in the original graph

• The two famous algorithms to complete a minimal spanning tree of
a weighted graph are Kruskal’s and prim’s algorithm.

• The shortest path determination is important for any directed and
weighted graph.

• For positive – weighted graphs the Dijkstr’a algorithm is used but
for the negative weighted graphs the problem becomes more
difficult.

• The general algorithm either finds the shortest paths or reports the
existence of a negative-cost cycle is known as the Bellman – Ford
algorithm.

• Finally, for acyclic graphs, the running time reverts to linear time
the aid of topological sort.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/221

Bibliography

Horowitz, E., S. Sahni: “Fundamental of computer Algorithms”,
Computer Science Press, 1978

J. P. Tremblay, P. G. Sorenson “An Introduction to Data Structures with
Applications”, Tata McGraw-Hill, 1984

M. Allen Weiss: “Data structures and Problem solving using C++”,
Pearson Addison Wesley, 2003

Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

Niklaus Wirth, “Algorithm +Data Structures = Programs”, PHI
Publications

Seymour Lipschutz, “Data Structure”, Schaum’s outline Series

B. Flaming, “Practical Data Structures in C++”, John Wiley & Sons, New
York, 1994

R. Sedgewick, “Algorithms in C++, Addision-Wesley, 1992.

R. E. Bellman, “On a routing Problem”, Quarterly of Applied
Mathematics, 16 (1958) 87-90

D. E. Knuth, “The Stanford GraphBase”, Addison-Wesley, Reading,
Mass. 1993.

R. E. Tarjan, “Data Structures and network Algorithms”, Society for
Industrial and Applied Mathematics, Philadelphia, 1985.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/222

SELF EVALUATION
1. A vertex with degree one is a graph is called

a. A leaf

b. Pendant Vertex

c. Adjacency list

d. None of the above

2. In an adjacency matrix parallel edges are given by:

a. Similar Columns

b. Similar rows

c. Not represent-able

d. None of the above

3. Which of the following representation of graph is more adequate?

a. Stack representation of graphs.

b. Adjacency matrix representation of graphs

c. Linked representation of graphs.

d. None of the above.

4. Prim’s algorithm is a method available for finding out the
minimum cost of a spanning tree.

a. O(n*n)

b. O(n log n)

c. O (n)

d. O (1)

5. What is a Path matrix?

6. Kruskal’s algorithm for building minimal cost spanning tree of a
graph considers edges for inclusion in the tree in the
……………… order of the cost.

7. Write Prim’s algorithm for finding minimal spanning tree of any
graph.

8. By considering the complete graph with n vertices, show that the
number of spanning trees is at least 12 1 −−n

9. Find the shortest un-weighted path from V3 to all others in the
graph show in figure (A) below.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/223

10. Find the shortest weighted path from V2 to all others in the graph
shown in figure (B)

Figure (A)

11. Write depth first search algorithm for the traversal of any graph.
Write a ‘C’ program for the same.

12. Define spanning tree and minimal spanning tree.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/224

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/225

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/226

BLOCK

4
Searching and Sorting, Hashing and File
Organization
UNIT-10

Searching and Sorting

UNIT-11

Hashing

UNIT-12

File Organization

Bachelor in Computer Application

Uttar Pradesh Rajarshi Tandon
Open University

 BCA-1.2Vol-2/B.Sc.
(UGCS-04 /UGCS-103)

(''C'' Programming and Data Structure)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/227

231-288

289-304

305-320

Curriculum Design Committee
Dr.P.P.Dubey Coordinator
Director, School of Agri. Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Mr. Prateek Kesrwani Member Secretary
Academic Consultant-Computer Science
School of Science, UPRTOU, Prayagraj

Course Design Committee
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav, Member
Dept. of Computer Science and Engg.,
MNNIT, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science,
Baranas Hindu University, Varanasi
Faculty Members, School of Sciences
Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj
Dr. Shruti, Asst. Prof., (Statistics), School of Science, UPRTOU,
Prayagraj
Ms. Marisha Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Mr. Manoj K Balwant Asst. Prof., (Computer Science), School of Science,
UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), Scool of Science,
UPRTOU, Prayagraj

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/228

Dr. Academic Consultant (Maths), School of Science, UPRTOU,
Prayagraj
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. R. P. Singh, Academic Consultant (Bio-Chemistry), School of
Science, UPRTOU, Prayagraj
Dr. Susma Chuhan, Academic Consultant (Botany), School of Science,
UPRTOU, Prayagraj
Dr. Deepa pathak, Academic Consultant (Chemistry), School of Science,
UPRTOU, Prayagraj
Dr. A. K. Singh, Academic Consultant (Physics), School of Science,
UPRTOU, Prayagraj
Dr. S. S. Tripathi, Academic Consultant (Maths), School of Science,
UPRTOU, Prayagraj

Course Preparation Committee
Prof. Manu Pratap Singh, Author
Dept. of Computer Science
Dr. B. R. Ambedkar University, Agra-282002
Dr. Ashutosh Gupta Editor
Director, School of Sciences,
UPRTOU, Prayagraj
Prof. U. N. Tiwari Member
Dept. of Computer Science and Engg.,
Indian Inst. Of Information Science and Tech.,
Prayagraj
Prof. R.S. Yadav Member
Dept. of Computer Science and Engg.,
MNNIT, Allahabad, Prayagraj
Prof. P. K. Mishra Member
Dept. of Computer Science
Baranas Hindu University, Varanasi
Dr. Dinesh K Gupta, SLM Coordinator
Academic Consultant- Chemistry School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-15-4
All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2018.
Printed By: Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu Road,
Prayagraj.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/229

BLOCK INTRODUCTION

This block will cover the various searching & sorting techniques, hashing
techniques and file organization in the system. We will concentrate on
some techniques to search a particular data or piece of information from a
large amount of data in Unit 10. There are basically two types of searching
techniques, linear or sequential search and binary search. We will also
discuss various sorting algorithms like Selection sort, Bubble sort,
Insertion sort, Heap sort, Quick Sort, Merge sort, Shell sort and Radix
sort. Enough number of examples is discussed to show the operations in
searching & sorting.

Hashing technique is also discussed in Unit 11. Hashing is the process of
mapping large amount of data item to smaller table with the help of
hashing function. Hashing is also known as Hashing Algorithm. It is a
technique to convert a range of key values into a range of indexes of an
array. It is used to facilitate the next level searching method when
compared with the linear or binary

In common terminology, a file is a block of important data which is
available to any computer software and is usually stored on any storage
device. Storing a file on any storage medium like pen drive, hard disk or
floppy disk ensures the availability of the file in future. Now days all file
are stored in computers to reduce paper work and easy availability in any
office, bank or library. The file organization is also covered in Unit 12
with examples.

This block will help you to realize the concept of searching, sorting,
hashing and file organization in detail with suitable examples and with the
help of codes.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/230

UNIT-10 SEARCHING AND SORTING
Structure

10.0 Introduction

10.1 Objectives

10.2 Sequential Search

10.3 Binary Search

10.4 Sorting

10.5 Selection Sort

10.6 Bubble Sort

10.7 Insertion Sort

10.8 Heap Sort

10.9 Quick Sort

10.10 Merge Sort

10.11 Shell Sort

10.12 Radix Sort

10.13 Summary

10.0 INTRODUCTION

Searching is the process of looking for something: Finding one
piece of data that has been stored within a whole group of data. However,
if the value is not present in the array, the searching process displays an
appropriate message and in this case searching is said to be unsuccessful.
It is often the most time-consuming part of many computer programs.
There are a variety of methods, or algorithms, used to search for a data
item, depending on how much data there is to look through, what kind of
data it is, what type of structure the data is stored in, and even where the
data is stored - inside computer memory or on some external medium.

Sorting means arranging the elements of an array in smallest to largest
(ascending) or largest to smallest (descending) order. A sorting algorithm
is defined as an algorithm that puts the elements of a list in a certain order.
Sorting algorithms are widely used to optimize the use of other algorithms
like search and merge algorithms which require sorted lists to work
correctly. There are two types of sorting:

• Internal sorting which deals with sorting the data stored in the
computer’s main memory (RAM)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/231

• External sorting which deals with sorting the data stored in files
(Secondary Storage)

In this unit, we will concentrate on some techniques to search a particular
data or piece of information from a large amount of data. There are
basically two types of searching techniques, Linear or Sequential Search
and Binary Search. We will also discuss various sorting algorithms like
Selection sort, Bubble sort, Insertion sort, Heap sort, Quick Sort, Merge
sort, Shell sort and Radix sort.

10.1 OBJECTIVES

After going through this unit, you should be able to:

• Understand the concept of searching and its types.

• Implementation of sequential and binary with example.

• Understand the concept of sorting and its types.

• Understand the concept of Selection sort with example.

• Understand the concept of Bubble sort with example.

• Understand the concept of Insertion sort with example.

• Understand the concept of Heap sort with example.

• Understand the concept of Quick sort with example.

• Understand the concept of Merge sort with example.

• Understand the concept of Shell sort with example.

• Understand the concept of Radix sort with example.

10.2 SEQUENTIAL SEARCH

Sequential search is very simple to implement for searching an
item in a collection. It is also known as Linear search. It is not the most
efficient way to search for an item in a collection. It works by comparing
the value to be searched with every element of the array one by one in a
sequential manner until an item is found. Moreover, if the array elements
are arranged in random order, it is the only reasonable way to search an
item. Thus, for many situations, Sequential search is a valid approach.

For example, if an array A [] is initialized as under,

int A[] = {25, 18, 22, 67, 33, 54, 69, 10, 87,78};

and the value to be searched is 67. So we have to search whether the value
VAL=67 is present in the array or not. If yes, then it returns the position of
its occurrence. Here, POS = 3 (index starting from 0).

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/232

Algorithm for Linear Search
Linear_Search (A, N, VAL)

Step 1: [initialize] SET pos = -1

Step 2: [initialize] SET idx = 1

Step 3:

Repeat Step 4 WHILE idx<=N

Step 4:

IF A[idx]= VAL

SET pos=idx

PRINT pos

Go to Step 6

[END OF IF]

[END OF LOOP]

Step 6: EXIT

SET idx=idx+1

Step 5: IF pos =–1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

In Steps 1 and 2 of the algorithm, we shall initialize the value of pos and
idx. In next Step 3, a while loop is starting which will execute till idx is
less than N (total number of elements). In Step 4, condition is checked to
see if the VAL is found at A [idx]. If VAL is found, then the position of
the array element is printed, else the value of idx is incremented to match
the next element with VAL. However, if all the array elements have been

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/233

compared with VAL and no match is found, then it means that VAL is not
present in the array.

Complexity of Linear Search Algorithm

Linear search executes in O(n) time where n is the number of items in the
array. Definitely, the best case of linear search is when VAL is available at
first location or zero index of the array. In this case, only one comparison
will be made. In the same way, the worst case will happen when VAL is
present in the last location of the array or it is not present in the array. In
these both the cases, all N comparisons will have to be made.

Example:Write a program in ‘C’ language to search an element in an
array using the sequential search technique

include<stdio.h>

include<conio.h>

int main()

{ intarr[20],n,i,item;

clrscr();

printf("How many elements you want to enter in the array : ");

scanf("%d",&n);

for(i=0; i<n;i++)

{ printf("Enter element %d : ",i+1);

scanf("%d", &arr[i]);

}

printf("Enter the element to be searched : ");

scanf("%d",&item);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/234

for(i=0;i <n;i++)

{ if(item == arr[i])

{ printf("%d found at position %d\n",item,i+1);

break;

}

}/*End of for*/

if(i == n)

printf("Item %d not found in array\n",item);

return 0;

}

Efficiency of Linear Search:
In sequential search, we have seen that the number of comparisons
depends upon the size of the array. If the required item is at the first place,
then number of comparison is only ‘1’. If required item is at last position,
‘n’ comparisons have to make.

If item is at any position in the array, then, a successful search will take
(n+1)/2 comparisons and an unsuccessful search will take ‘n’
comparisons. In any case, the order of the above algorithm is O(n).

10.3 BINARY SEARCH

Binary search is a searching algorithm that works efficiently with a
sorted list of items. The sequential search situation will be in worst case if
the element is at the end of the list. For eliminating this problem, we have
one efficient searching technique called binary search. The condition for
binary search is that all the data should be in sorted array. We compare the
element with middle element of the array. If it is less than the middle
element then we search it in the left portion of the array and if it is greater
than the middle element then search will be in the right portion of the
array. Now we will take that portion (either left or right) only for search
and compare with middle element of that portion. This process will be
repeated until we find required element or middle element has no left or
right element.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/235

For understanding this searching method, let us take 3 variables Beg, End
and Mid. The Beg variable will indicate to first item’s index of array (zero
index of array), End variable will indicate to the last index of array. Mid
will take care of average of both Beg and End as under:

Mid = (Beg + End) / 2

To understand the concept of binary search, let us take an array of 10
elements which is as under in ascending order.

Now we are searching the item 85 in the above array.

Step 1: Beg = 0 End = 9 Mid = (Beg + End) / 2 = 4

Now at index 4, middle item is 67 which is smaller than required item 85.
So we will search in right side from middle point. Now, Beg = Mid + 1
= 5, and End will be the same.

Step 2: Beg = 5 End = 9 Mid = (Beg + End) / 2 = 7

Array [10] 0 1 2 3 4 5 6 7 8 9

Values 12 34 39 45 67 73 85 93 102 110

12 34 39 45 67 73 85 93 102 110

0 1 2 3 4 5 6 7 8 9

12 34 39 45 67 73 85 93 102 110

0 1 2 3 4 5 6 7 8 9

12 34 39 45 67 73 85 93 102 110

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/236

Now at index 7, middle item is 93 which is greater than required item 85.
So we will search in left side from middle point. Now, End = Mid - 1 =
6, and Beg will be the same.

Step 3: Beg = 5 End = 6 Mid = (Beg + End) / 2 = 5

Now at index 5, middle item is 73 which is less than required item 85. So
we will search in right side from middle point. Now, Beg = Mid+ 1 = 6,
and End will be the same.

Step 4: Beg = 6 End = 6 Mid = (Beg + End) / 2 = 6

Now at index 6, middle item is 85 which is equal to required item 85.

Let see the algorithm of binary search.

BINARY_SEARCH(A, LB, UB, VAL)

Step 1: [INITIALIZE]

SET BEG= LB

END= UB,

POS= -1

Step 2: Repeat Step 3 and 4 while BEG <= END

Step 3: SET MID= (BEG+ END)/2

Step 4: IF A[MID]= VAL

0 1 2 3 4 5 6 7 8 9

12 34 39 45 67 73 85 93 102 110

0 1 2 3 4 5 6 7 8 9

12 34 39 45 67 73 85 93 102 110

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/237

SET POS= MID

PRINT POS

Go to Step 6

ELSE IF A[MID]> VAL

SET END= MID-1

ELSE

SET BEG= MID+1

[END OF IF]

[END OF LOOP]

Step 5: IF POS=-1

PRINT “SEARCHED ITEM NOT FOUND IN THE ARRAY”

[END OF IF]

Step 6: EXIT

Example:

Write a program in ‘C’ language to search an element in an array using the
binary search technique

#include <stdio.h>

include<conio.h>

int main()

{ intarr[20],start,end,middle,n,i,item;

printf("How many elements you want to enter in the array : ");

scanf("%d",&n);

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/238

for(i=0; i< n; i++)

{ printf("Enter element %d : ",i+1);

scanf("%d",&arr[i]);

}

printf("Enter the element to be searched : ");

scanf("%d",&item);

start=0;

end=n-1;

middle=(start+end)/2;

while(item != arr[middle] && start <= end)

{ if(item >arr[middle])

start=middle+1;

else

end=middle-1;

middle=(start+end)/2;

}

if(item==arr[middle])

printf("%d found at position %d\n",item,middle+1);

if(start>end)

printf("%d not found in array\n",item);

return 0;

}

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/239

Efficiency of Binary Search:

In the binary search algorithm, we see that with each comparison, the size
of the array where search has to be made is reduced to half. Thus, the
maximum number of key comparisons are approximately log2n. So, the
order of binary search is O (log2n).

Comparison of Linear Search and Binary Search:

Binary search is faster than linear search. Here are some comparisons. We
are taking average case for both the search methods to be compare.

Array

size

Sequential

search

Binary

search

8 4 4

128 64 8

256 128 9

1000 500 11

100000 50000 18

10.4 SORTING

Suppose you have to retrieve any information which is stored in
some predefined order than it is very easy task. If information is not in any
order than you have to search that from beginning to till end. So, Sorting is
a very important computer application activity. Sorting is a technique for
rearranging the elements of a list in ascending or descending order.

There are lot of sorting algorithms available. But depend on the different
environments, different sorting methods are used. Broadly Sorting can be
classified in two types i.e. Internal and External Sorting.

Internal Sorting : This method uses only the primary memory during
sorting process. All data items are held in main memory and no secondary
memory is required this sorting process. If all the data that is to be sorted
can be accommodated at a time in memory is called internal sorting.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/240

There is a limitation for internal sorts; they can only process relatively
small lists due to memory constraints. There are 3 types of internal sorts.

1. EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort
algorithm

2. INSERTION SORT :- Ex:- Insertion sort algorithm, Shell Sort
algorithm

3. SELECTION SORT :- Ex:- Selection sort algorithm, Heap
Sort algorithm

External Sorting : Sorting large amount of data requires external or
secondary memory. This process uses external memory such as HDD, to
store the data which is not fit into the main memory. So, primary memory
holds the currently being sorted data only. All external sorts are based on
process of merging. Different parts of data are sorted separately and then
merged together. Ex: Merge Sort

10.5 SELECTION SORT

Selection sort is the process to select the smallest element from the
array and put it at first place (zero index) in the array. Suppose A is an
array of size n stored in memory. The selection sort algorithm first selects
the smallest element in the array A and place it in array at index 0; then it
selects the next smallest element in the array A and place it in array at
index 1 and so on. It simply continues this procedure until it places the
biggest element in the last position of the array.

The array is passed through (n-1) times and the smallest element is placed
in its respective position in the array as detailed below:

Pass 1: Find the location j of the smallest element in the array x [0], A
[1],....A [n-1], and then interchange x[j] with A [0]. Then A [0] is sorted.

Pass 2: Leave the first element and find the location j of the smallest
element in the sub-array A [1], A [2],....A[n-1], and then interchange A[1]
with A[j]. Then A[0], A[1] are sorted.

Pass 3: Leave the first two elements and find the location j of the smallest
element in the sub-array A [2], A [3],....A[n-1], and then interchange A [2]
with A [j]. Then A [0], A [1], A[2] are sorted.

Pass (n-1): Find the location j of the smaller of the elements A[n-2] and
A[n-1], and then interchange A[j] and A[n-2]. Then A[0], A[1], A[n-
2] are sorted. Of course, during this pass A[n-1] will be the biggest
element and so the entire array is sorted.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/241

0 1 2 3 4 5 6 7 8 Remarks

65 70 75 80 50 60 55 85 45 find the smallest element

i j swap a[i] & a[j]

45 70 75 80 50 60 55 85 65 find the second smallest

 i j swap a[i] & a[j]

45 50 75 80 70 60 55 85 65 Find the third smallest

i j swap a[i] & a[j]

45 50 55 80 70 60 75 85 65 Find the fourth smallest

i j swap a[i] & a[j]

45 50 55 60 70 80 75 85 65 Find the fifth smallest

i j swap a[i] & a[j]

45 50 55 60 65 80 75 85 70 Find the sixth smallest

i j swap a[i] & a[j]

45 50 55 60 65 70 75 85 80 Find the seventh smallest

i j swap a[i] & a[j]

45 50 55 60 65 70 75 85 80 Find the eighth smallest

i j swap a[i] & a[j]

45 50 55 60 65 70 75 80 85 The outer loop ends.

Complexity of Selection Sort
In general we prefer selection sort in case where the insertion sort or the
bubble sort requires exclusive swapping. In spite of superiority of the
selection sort over bubble sort and the insertion sort (there is significant
decrease in run time), its efficiency is also O(n2) for n data items.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/242

Programming Example of Selection Sort
/*Program of sorting using selection sort*/
#include <stdio.h>
#include <conio.h>
int main()
{ inti,j,k,n=9;

intarr[9]={65,70,75,80,50,60,55,85,45};
clrscr();
printf("Given Unsorted list is :\n");
for (i = 0; i< n; i++)

printf("%3d ", arr[i]);
/*Selection sort*/

for(i = 0; i< n - 1 ; i++)
{ /*Find the index of smallest element*/

smallest = i;
for(k = i + 1; k < n ; k++)
{ if(arr[smallest] >arr[k])

smallest = k ;
}
if(i != smallest)
{ temp = arr [i];

arr[i] = arr[smallest];
arr[smallest] = temp ;

}
printf("\n After Pass %d elements are : ",i+1);
for (j = 0; j < n; j++)

printf("%d ", arr[j]);
}
printf("\n Sorted list is : \n");
for (i = 0; i< n; i++)

printf("%d ", arr[i]);
return 0;

}

10.6 BUBBLE SORT

The bubble sort is easy to understand and program. The basic idea
of bubble sort is to pass through the file sequentially several times. In this
sorting algorithm, multiple swapping take place in one pass. In each pass,
we compare each element in the file with its successor i.e., A [i] with A
[i+1] and interchange two element when they are not in proper order. We
will illustrate this sorting technique by taking a specific example. Bubble
sort is also called as exchange sort.

Example: Let us take an array A [n] which is stored in memory as shown
below:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/243

Array [5] 0 1 2 3 4 5

Values 34 45 24 12 67 56

Suppose our objective is to store our array in ascending order. Then we
follow steps through the array 5 times as below:

Pass 1: We will compare A[i] and A[i+1] for i = 0, 1, 2, 3, and 4, and
swap A[i] with A[i+1], only if A[i] > A[i+1] otherwise move to next one.
The process is shown below:

A[0] A[1] A[2] A[3] A[4] A[5]

34 45 23 12 67 56

23 45

 12 45

 45 67

56 67

34 23 12 45 56 67

In this first pass, the biggest number of the array 67 is moved to the right
most position in the array.

Pass 2: Now once again, we repeat the same process. But be careful, this
time we will not include A[5] in our comparisons as it is already moved to
its proper location.

It means, we compare A[i] with A [i+1] for i=0, 1, 2, and 3 and
interchange A[i] and A[i+1]

if A[i] > A[i+1]. The process is shown below:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/244

A[0] A[1] A[2] A[3] A[4] A[5]

34 23 12 45 56 67

23 34

 12 34

 34 45

45 56

 23 12 34 45 56 67

Pass 3: We repeat the same process, but this time we leave both A[4] and
A [5] as these both are on correct position. By doing this, we move the
third biggest number 45 to A [3].

A[0] A[1] A[2] A[3] A[4] A[5]

23 12 34 45 56 67

12 23

 23 34

34 45

 12 23 34 45 56 67

Pass 4: We repeat the process by leaving elements at A[3], A[4] and
A[5]. By doing this, we move the fourth biggest number 34 to A[2].

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/245

A[0] A[1] A[2] A[3] A[4] A[5]

12 23 34 45 56 67

12 23

23 33

 12 23 34 45 56 67

Pass 5: We repeat the process by leaving elements at A[2], A[3], A[4]
and A[5]. By doing this, we move the fifth biggest number 23 to A[1]. At
this time, we will have the smallest number 12 in A[0]. Thus, we see that
we can sort the array of size 6 in 5 passes.

A[0] A[1] A[2] A[3] A[4] A[5]

12 23 34 45 56 67

12 23

 12 23 34 45 56 67

For an array of size n, we required (n-1) passes using bubble sort.

Algorithm for bubble sort:

BUBBLE_SORT(A, N)

Step 1: Repeat Step2 For I=0 to N-1

Step 2: Repeat For J= 0 to N-I

Step 3: IF A[J]> A[J+1]

SWAP A[J] and A[J+1]

[END OF INNER LOOP]

[END OF OUTER LOOP]

Step 4: EXIT

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/246

Complexity of Bubble Sort:
The complexity of any sorting algorithm depends on how many
comparisons are there in it. In bubble sort, there are total N–1 passes. In
the 1st pass, N–1 comparisons, then in 2nd Pass, there are N–2 comparisons
and so on. Therefore complexity can be given as:

f(n) = (n – 1) + (n – 2) + (n – 3) + + 3 + 2 + 1

f(n) = n (n – 1)/2

f(n) = n2/2 + O(n) = O(n2)

Therefore, we can see that, it is in the form of arithmetic progression
which is of O(n2). Therefore bubble sort is very inefficient when there are
more elements to sorting.

Programming Example of Bubble Sort :
#include<stdio.h>
#include<conio.h>
int main()
{ intarr[5]={34,45,23,12,67,56};

inti,j,k,tmp,n,xchanges;
clrscr();
printf("The given list is :\n");
for (i = 0; i< n; i++)

printf("%3d ", arr[i]);
printf("\n");
/* Bubble sort procedure*/
for (i = 0; i< n-1 ; i++)
{ xchanges=0;

for (j = 0; j <n-1-i; j++)
{ if (arr[j] >arr[j+1])

{ tmp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = tmp;
xchanges++;

}
}

printf("After Pass %d elements are : ",i+1);
for (k = 0; k < n; k++)

printf("%3d ", arr[k]);
printf("\n");

 }
printf("Sorted list is :\n");
for (i = 0; i< n; i++)

printf("%3d ", arr[i]);
printf("\n");

retun 0;
}

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/247

10.7 INSERTION SORT

Insertion sort is a very simple sorting algorithm in which the sorted
array is built by one element at a time. In insertion sort the element is
inserted at an appropriate place similar to card insertion, as we see in
playing card. Both the selection and bubble sorts exchange the elements to
make all in order. But insertion sort does not exchange elements. Here the
list is divided into two parts sorted and unsorted. In each pass, the first
element of unsorted sub list is picked up and moved into the sorted sub list
by inserting it in suitable position just like we arrange the playing cards.

Let us take an example to show how Insertion sort works to sort an array
Arr of size 10 as below:

41 11 47 65 20 83 110 56 74 38
Now Arr[0] is first element and

sorted.

11 41 47 65 20 83 110 56 74 38 Pass 1, first two items are sorted.

11 41 47 65 20 83 110 56 74 38 Pass 2, first three items are sorted.

11 41 47 65 20 83 110 56 74 38 Pass 3, first four items are sorted.

11 20 41 47 65 83 110 56 74 38 Pass 4, first five items are sorted.

11 20 41 47 65 83 110 56 74 38 Pass 5, first six items are sorted.

11 20 41 47 65 83 110 56 74 38
Pass 6, first seven items are

sorted.

11 20 41 47 56 65 83 110 74 38 Pass 7, first eight items are sorted.

11 20 41 47 56 65 74 83 110 38 Pass 8, first nine items are sorted.

11 20 38 41 47 56 65 74 83 110 Pass 9, All 10 items are sorted.

Arr[10] 0 1 2 3 4 5 6 7 8 9

Values 41 11 47 65 20 83 110 56 74 38

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/248

In starting, Arr[0] is the only element which is sorted. In Pass 1, Arr[1]
will be placed before or after Arr[0], so that the two item of array Arr will
be sorted. In Pass 2, Arr[2] will be placed either before Arr[0], in between
Arr [0] and Arr [1], or after Arr [1] and first three item will be sorted. In
the same way, in Pass N–1, Arr [N–1] will be placed in its proper place to
keep the array sorted.

Algorithm for insertion sort:
INSERTION-SORT (ARR, N)

Step 1: Repeat Steps 2 to 5 for K = 1 to N–1

Step 2: SET TEMP = ARR[K]

Step 3: SET J = K - 1

Step 4: Repeat while TEMP <= ARR[J]

 SET ARR[J+1]= ARR[J]

 SET J = J - 1

 [END OF INNER LOOP]

Step 5: SET ARR[J+1] = TEMP

 [END OF LOOP]

Step 6: EXIT

Complexity of insertion sort:
In insertion sort, we insert the element before or after and we start
comparison from the first element. So First element has no previous
element means no comparison. Second element needs 1 comparison, third
element needs 2 comparison and so on last element needs n-1 comparison.
It means total comparison will be

1+2+3+4+……………. + n-2 + n-1.

which is again O(n2). It is the worst case when all elements are in reverse
order. It is O(n) when elements are in sorted order .

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/249

Programming Example of Insertion Sort:
/* Program of sorting using insertion sort */
#include <stdio.h>
#include <conio.h>
int main()
{ inti,j,k,n=10;

intarr[10]={41,11,47,65,20,83,110,56,74,38};
printf("Given Unsorted list is :\n");
for (i = 0; i< n; i++)

printf("%3d ", arr[i]);
/*Procedure for Insertion sort*/
for(j=1;j<n;j++)
{ k=arr[j];

for(i=j-1;i>=0 && k<arr[i];i--)
arr[i+1]=arr[i];

arr[i+1]=k;
printf("\nPass %d,Element placed in proper place:%d",j,k);
for (i = 0; i< n; i++)

printf("%d ", arr[i]);
printf("\n");

}
printf("Sorted list is :\n");
for (i = 0; i< n; i++)

printf("%d ", arr[i]);
printf("\n");

return 0;
}

10.8 HEAP SORT

Heap is a data structure, which permits one to insert elements into
a set and also to find the largest element efficiently. A binary heap is a
complete binary tree in which every node satisfies the heap property
which states that:

If B is a child of A, then key(A) ≥ key(B)

This implies that elements at every node will be either greater than or
equal to the element at its left and right child. Thus, the root node has the
highest key value in the heap. Such a heap is commonly known as a max-
heap.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/250

Alternatively, elements at every node will be either less than or equal to
the element at its left and right child. Thus, the root has the lowest key
value. Such a heap is called a min-heap.

Heap sort is an improvement over the binary tree sort. It does not create
nodes in case of Binary tree sort. Instead it builds a heap by adjusting the
position of elements within the array itself.

The heap sort is sorting algorithm the efficiency of which is roughly
equivalent to that of the quick sort. The three phases involved in sorting
the elements using heap sort algorithm are as follows.

1. Construct a heap by adjusting the array elements.

2. Replace the root with the last node of heap tree.

3. Keep the last node (new root) at the proper position, means do not
delete operation in heap tree but here deleted node is root.

The root element of a max heap is always the largest element. The sorting
ends when all the root elements of each successive heap has been moved
to the end of the array (i.e. when the tree is exhausted). The resulting array
now contains a sorted list.

Let's take an example of heap sort using an array Arr of size 9.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/251

Arr 0 1 2 3 4 5 6 7 8

Values 70 62 63 54 30 44 52 27 46

Figure A: Array with its equivalent Heap tree.

Step 1:

Figure B: Heap after eliminating root element 70.

In the same way, one by one the root element of the heap is eliminated, the
following figure show the heap and array after each elimination.

In figure B root is at the position of the last node and the last node is at the
position of root. Here left and right child of 46 is 62 and 63. Both are
greater than 46, but right child 63 is greater than left child 62, hence
replace it with the right child 63.

Arr 0 1 2 3 4 5 6 7 8

Values 46 62 63 54 30 44 52 27 70

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/252

Here right child of 46 is 52, which is greater than 46, hence replace it with
52.

Now the elements of heap tree in array are as

Arr 0 1 2 3 4 5 6 7 8

Values 63 62 52 54 30 44 46 27 70

Now 27 is the last node. So replace it with root node 63 and do the same
operation.

Step 2:

Arr 0 1 2 3 4 5 6 7 8

Values 63 54 52 27 30 44 46 63 70

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/253

Step 3:

Step 4:

Step 5:

Arr 0 1 2 3 4 5 6 7 8

Values 54 46 52 27 30 44 62 63 70

Arr 0 1 2 3 4 5 6 7 8

Values 52 46 44 27 30 54 62 63 70

Arr 0 1 2 3 4 5 6 7 8

Values 46 30 44 27 52 54 62 63 70

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/254

Step 6:

Arr 0 1 2 3 4 5 6 7 8

Values 44 30 27 46 52 54 62 63 70

Step 7:

Step 8:

Arr 0 1 2 3 4 5 6 7 8

Values 30 27 44 46 52 54 62 63 70

Arr 0 1 2 3 4 5 6 7 8

Values 27 30 44 46 52 54 62 63 70

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/255

Algorithm for heap sort:

HEAPSORT(ARR, N)

Step 1: [Build Heap H]

Repeat for I=0 to N-1

CALL Insert_Heap(ARR, N, ARR[I])

[END OF LOOP]

Step 2: (Repeatedly delete the root element)

Repeat while N>

CALL Delete_Heap(ARR, N, VAL)

SET N = N + 1

[END OF LOOP]

Step 3: END

Complexity of Heap Sort:
Let us consider the Timing Analysis of this heapsort. Since heap is an
almost complete binary tree, the worst case analysis is easier than the
average case. In order to sort a given array elements, we need to create a
heap and then adjust it. This require number of comparisons in the worst
case is O (n log n). The worst case behavior of heap sort is far superior to
quick sort.

Programming Example:
/* Program of sorting through heapsort*/
include <stdio.h>
intarr[20]={32,22,65,14,52,87,54,38,42,11};
int n=10;
main()
{ clrscr();

printf("Entered list is :\n");

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/256

display();
create_heap();
printf("Heap is :\n");
display();
heap_sort();
printf("Sorted list is :\n");
display();

}/*End of main()*/

display()
{ inti;

for(i=0;i<n;i++)
printf("%d ",arr[i]);

printf("\n");
}/*End of display()*/

create_heap()
{ inti;

for(i=0;i<n;i++)
insert(arr[i],i);

}/*End of create_heap()*/

insert(intnum,intloc)
{ int par;

while(loc>0)
{ par=(loc-1)/2;

if(num<=arr[par])
{ arr[loc]=num;

return;
}
arr[loc]=arr[par];
loc=par;

}/*End of while*/
arr[0]=num;

}/*End of insert()*/

heap_sort()
{ int last;

for(last=n-1; last>0; last--)
del_root(last);

}

del_root(int last)
{ intleft,right,i,temp;

i=0; /*Since every time we have to replace root with last*/
/*Exchange last element with the root */
temp=arr[i];
arr[i]=arr[last];
arr[last]=temp;
left=2*i+1; /*left child of root*/

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/257

right=2*i+2;/*right child of root*/
while(right < last)
{ if(arr[i]>=arr[left] &&arr[i]>=arr[right])

return;
if(arr[right]<=arr[left])
{ temp=arr[i];

arr[i]=arr[left];
arr[left]=temp;
i=left;

}
else
{ temp=arr[i];

arr[i]=arr[right];
arr[right]=temp;
i=right;

}
left=2*i+1;
right=2*i+2;

}/*End of while*/
if(left==last-1 &&arr[i]<arr[left])/*right==last*/
{ temp=arr[i];

arr[i]=arr[left];
arr[left]=temp;

}
}/*End of del_root*/

10.9 QUICK SORT

The quick sort was invented by Prof. C. A. R. Hoare in the early
1960’s. It was one of the first most efficient sorting algorithms. It is an
example of algorithms that works on “divide and conquer” technique.

Quick sort is based on partition. It is also known as partition exchange
sorting. The basic concept of quick sort process is pick one element from
an array and rearranges the remaining elements around it. This element
divides the main list into two sub lists. This chosen element is called pivot.
Once pivot is chosen, then it shifts all the elements less than pivot to left
of value pivot and all the elements equal or greater than pivot are shifted
to the right side. When all the subsets have been partitioned and
rearranged recursively, the original array is sorted.

How to choose pivot: So now the main task is to find the pivot element,
which will divide the list into two partitions. Just assume first element as
pivot and arrange the list accordingly into two halves.

The quick sort algorithm works as follows:

1. Select any random element pivot from the array elements.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/258

2. Now rearrange the elements in such a way that all elements less
than pivot appear in left of the pivot and all equal and greater
elements should be in right side of the pivot. After such a
partitioning, the pivot is placed in its final position.

3. Now recursively apply same procedure to both the sub list i.e. left
to pivot and right to pivot. (One with sub-list of values smaller
than that of the pivot element and the other having higher value
elements.)

Example:
Let us take an array of 6 element and sort it using quick sort

algorithm.

A[6] 0 1 2 3 4 5

Original Array 29 12 38 20 27 47

We choose the first element A[0] as the pivot ie 29. Set Loc=0, Left=0 and
Right =5.

29 12 38 20 27 47

Loc, Left Right

Now look from right to left. Since A[Loc] < A[Right], decrease value of
Right.

29 12 38 20 27 47

Loc, Left Right

Since A[Loc] > A[Right], swap both values and set Loc=Right.

27 12 38 20 29 47

Left Loc, Right

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/259

Now look from left to right. Since A[Loc] > A[Left], increment the value
of left 2 times.

27 12 38 20 29 47

Left Loc, Right

Since A[Loc] < A[Left], swap both values and set Loc=Left.

27 12 29 20 38 47

Left, Loc Right

Now look from right to left. Since A[Loc] < A[Right], decrease the value
of right.

27 12 29 20 38 47

Left, Loc Right

Since A[Loc] > A[Right], swap the values and set Loc=Right

27 12 20 29 38 47

Left Loc, Right

Now look from left to right. Since A[Loc] > A[Left], increase the value of
left.

27 12 20 29 38 47

Loc, Right, Left

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/260

Now see the above last step in which Left = Loc. So terminates this
process here. Now you can see that the pivot element 29 is at right place.
All the smaller items are in left side and big items are in right side of
pivot. Now same procedure will applied to both left and right list of pivot.

Algorithm of Quick sort :
The quick sort algorithm makes use of a function Quick to divide the array
into two sub-arrays and fix the pivot at its suitable location.

PARTITION (ARR, BEG, END, LOC)

Step 1: [Initialize] Set Left= BEG, Right= END, LOC= BEG, Flag =0

Step 2: Repeat Step 3 To 6 While Flag =0

Step 3: Repeat While ARR[LOC] <= ARR[Right] And LOC != Right

 Set Right= Right-1

 [End Loop]

Step 4: If LOC= Right

 Set Flag=1

 Else If ARR[LOC]> ARR[Right]

Swap ARR[LOC] With ARR[Right]

Set LOC= Right

 [End If]

Step 5: If Flag =0

 Repeat While ARR[LOC] >= ARR[Left] And LOC != Left

 Set Left= Left+1

 [End Loop]

Step 6: If LOC= Left

 Set Flag=1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/261

 Else If ARR[LOC]< ARR[Left]

 Swap ARR[LOC] With ARR[Left]

 Set LOC= Left

 [End If]

 [End If]

Step 7: [End Loop]

Step 8: End

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG< END)

CALL PARTITION (ARR, BEG, END, LOC)

CALL QUICKSORT(ARR, BEG, LOC-1)

CALL QUICKSORT(ARR, LOC+1, END)

[END OF IF]

Step 2: END

Complexity of Quick sort :

The average runtime efficiency of the Quicksort is O(nlog2 n), which is the
best that has been achieved for a large array of size n. in the worst case
situation; when the array is already sorted, the efficiency of the Quicksort
may drop down to O(n2) due to the continuous right-to-left scan all the
way to the last left boundary.

Practically, the efficiency of quick sort depends on the element which
ischosen as the pivot. Itsworst-case efficiency is given as O(n2). The
worst case occurs when the array is already sorted (either in ascending or
descending order) and the left-most element is chosen as the pivot.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/262

Programming Example Quick sort:

#include <stdio.h>
#include <conio.h>
int partition(int a[], int beg, int end);
void quick_sort(int a[], int beg, int end);
void main()
{
inti, n=6;
intarr[6]={29,12,38,20,27,47};
 // clrscr();
quick_sort(arr, 0, n-1);
printf("\n The sorted array is: \n");
 for(i=0;i<n;i++)
printf(" %d\t", arr[i]);
getch();
}
int partition(int a[], int beg, int end)
{
int left, right, temp, loc, flag;
loc = left = beg;
 right = end;
 flag = 0;
 while(flag != 1)
 {
 while((a[loc] <= a[right]) && (loc!=right))
 right--;
 if(loc==right)

flag =1;
 else if(a[loc]>a[right])
 {

temp = a[loc];
a[loc] = a[right];
a[right] = temp;

loc = right;
 }

 if(flag!=1)
 {
 while((a[loc] >= a[left]) && (loc!=left))

 left++;
if(loc==left)
 flag =1;
 else if(a[loc] <a[left])
 {

 temp = a[loc];
 a[loc] = a[left];
 a[left] = temp;
loc = left;

 }

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/263

 }
 }
return loc;
}
void quick_sort(int a[], int beg, int end)
{ intloc;
 if(beg<end)
 {
loc = partition(a, beg, end);
quick_sort(a, beg, loc-1);
quick_sort(a, loc+1, end);
 }
}

Programming Example of Quick sort with recursive algorithm:

/*Program of sorting using quick sort through recursion*/
#include<stdio.h>
#include<conio.h>
void display(int[],int,int);
int quick(int[],int,int);
enum bool {FALSE,TRUE};

int main()
{ int array[6]={29,12,38,20,27,47};

int n=6,i;
clrscr();
printf("The given Unsorted list is :\n");
display(array,0,n-1);
printf("\n");
quick(array,0,n-1); //Calling Quick sort function
printf("Sorted list is :\n");
display(array,0,n-1);
printf("\n");

return 0;
}
int quick(intarr[],intlow,int up)
{ intpiv,temp,left,right;

enum bool pivot_placed=FALSE;
left=low;
right=up;
piv=low; /*Taking pivot as first element */
if(low>=up)

return 0;
printf("Sublist : ");
display(arr,low,up);
/*Loop to set pivot on its proper place */
while(pivot_placed==FALSE)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/264

{
/*Compare from Right to Left */

while(arr[piv]<=arr[right] &&piv!=right)
right=right-1;

if(piv==right)
pivot_placed=TRUE;
if(arr[piv] >arr[right])
{

temp=arr[piv];
arr[piv]=arr[right];
arr[right]=temp;
piv=right;

}
/*Compare from Left to Right */

while(arr[piv]>=arr[left] && left!=piv)
left=left+1;

if(piv==left)
pivot_placed=TRUE;

if(arr[piv] <arr[left])
{ temp=arr[piv];

arr[piv]=arr[left];
arr[left]=temp;
piv=left;

}
}
printf("-> Pivot Placed is %d -> ",arr[piv]);
display(arr,low,up);
printf("\n");
quick(arr,low,piv-1);
quick(arr,piv+1,up);

return 0;
}
void display(intarr[],intlow,int up)
{ inti;

for(i=low;i<=up;i++)
printf("%d ",arr[i]);

}

10.10 MERGE SORT

The basic concept of merge sort is divides the list into two smaller
sub-lists of approximately equal size. Recursively repeat this procedure till
only one element is left in the sub-list. After this, various sorted sub-lists
are merged to form sorted parent list. This process goes on recursively till
the original sorted list arrived.

Merge sort algorithm focuses on two main concepts to improve its
performance (running time):

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/265

• A smaller list takes fewer steps and thus less time to sort than a
large list.

• As number of steps is relatively less, thus less time is needed to
create a sorted list from two sorted lists rather than creating it using
two unsorted lists.

The basic steps of a merge sort algorithm are as follows:

• If the array is of length 0 or 1, then it is already sorted.

• Otherwise, divide the unsorted array into two sub-arrays of about
half the size.

• Use merge sort algorithm recursively to sort each sub-array.

• Merge the two sub-arrays to form a single sorted list.

Example: Let us take a list of unsorted elements which are as under

38 27 43 3 9 82 10

Resultant Sorted array is:

3 9 10 27 38 42 82

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/266

This merge sort algorithm will use a function MERGE which combines
the sub-arrays to form a sorted array. While the merge sort algorithm
recursively divides the list into smaller lists, the merge algorithm conquers
the list to sort the elements in individual lists. Finally, the smaller lists are
merged to form one original list which will be sorted list.

Algorithm for Merge Sort:
MERGE (Array, Beg, Mid, End)

Step 1: [Initialize] Set I= Beg, J= Mid+1, idx = 0

Step 2: Repeat While (I <= Mid) AND (J<=End)

If Array[I]< Array[J]

Set Temp[idx]= Array[I]

Set I = I + 1

Else

Set Temp[idx] = Array[J]

Set J = J + 1

[End of If]

Set idx = idx + 1

 [End of Loop]

Step 3: [Copy the remaining elements of right sub-Array, If any]

If I > Mid

Repeat While J<= End

 Set Temp[idx] = Array[J]

 Set idx = idx + 1, Set J = J + 1

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/267

[End of Loop]

 [Copy the remaining elements of left sub-Array, If any]

Else

 Repeat WhileI<= Mid

Set Temp[idx] = Array[I]

Set idx= idx + 1, Set I = I + 1

[End of Loop]

 [End of If]

Step 4: [Copy the contents of Temp back to Array] Set K=

Step 5: Repeat WhileK<idx

Set Array [K] = Temp[K]

SetK = K + 1

[End of Loop]

Step 6: End

Merge_Sort(Array, Beg, End)

Step 1: IF Beg< End

SET Mid= (Beg+ End)/2

CALL Merge_Sort (Array, Beg, Mid)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/268

CALL Merge_Sort (Array, Mid+1, End)

Merge (Array, Beg, Mid, End)

[End of If]

Step 2: End

The running time of merge sort in the average case and the worst case can
be given as O(n log n). Although merge sort has an optimal time
complexity, it needs an additional space of O(n) for the temporary array
TEMP.

Programming Example:

/* Program of sorting using merge sort */
#include<stdio.h>
#include<conio.h>
void mergesort(int a[],inti,int j);
void merge(int a[],int i1,int j1,int i2,int j2);
int main()
{ int a[10]={38, 27, 43, 3, 9, 82, 10, 28, 89,74};

inti,n=10;
clrscr();
printf("The given unsorted list is as under:\n");
for(i=0;i<n;i++)

printf("%d ",a[i]);
mergesort(a,0,n-1);
printf("\nSorted array is :");
for(i=0;i<n;i++)

printf("%d ",a[i]);
return 0;

}
void mergesort(int a[],inti,int j)
{ int mid;

if(i<j)
{ mid=(i+j)/2;

mergesort(a,i,mid); //left recursion
mergesort(a,mid+1,j); //right recursion
merge(a,i,mid,mid+1,j); //merging of two sorted sub-

arrays
}

}
void merge(int a[],int i1,int j1,int i2,int j2)
{ int temp[50]; //array used for merging

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/269

inti,j,k;
i=i1; //beginning of the first list
j=i2; //beginning of the second list
k=0;
while(i<=j1 && j<=j2) //while elements in both lists
{ if(a[i]<a[j])

temp[k++]=a[i++];
else

temp[k++]=a[j++];
}
while(i<=j1) //copy remaining elements of the first list

temp[k++]=a[i++];

while(j<=j2) //copy remaining elements of the second list
temp[k++]=a[j++];

//Transfer elements from temp[] back to a[]
for(i=i1,j=0;i<=j2;i++,j++)

a[i]=temp[j];
}

10.11 SHELL SORT

D. L. Shell proposed an improvement on insertion sort in 1959
named after him as Shell Sort. It is a generalization of insertion sort. Shell
sort is considered an improvement over insertion sort as it compares
elements separated by a gap of several positions while in Insertion sort
compares with adjacent item. This Shell sort enables the element to take a
big gap. In Shell sort, elements are sorted in multiple passes and in each
pass, data are taken from big gap to smaller gap sizes. And finally in last
step, it will work like plain insertion sort. As we reach towards last step,
the items are mostly sorted which results in good performance.

Let us take an example to understand the concept of Shell Sort. Suppose
we have an array with following elements.

Step 1.Make arrangement of elements in two rows in the form of a table
and sort each columns as under.

60 16 4 87 78 33 51 42 69 24 19 6 38 56 30

Row 1 60 16 4 87 78 33 51 42
→

60 16 4 6 38 33 30 42

Row 2 69 24 19 6 38 56 30 69 24 19 87 78 56 51

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/270

Now the elements of the array will be as under after merging both sorted
rows.

Step 2. Now repeat step 1 again with small column gap size as under in
three rows.

Now the elements of the array will be as under after merging sorted
column

19 16 4 6 24 33 30 42 56 38 60 87 78 69 51

Step 3. Now repeat previous step again with small column gap size as
under in five rows.

Row 1 19 16 4 6 16 4

Row 2 6 24 33
→

19 24 33

Row 3 30 42 56 30 42 51

Row 4 38 60 87 38 60 56

Row 5 78 69 51 78 69 87

Now the elements of the array will be as under after merging sorted
column.

60 16 4 6 38 33 30 42 69 24 19 87 78 56 51

Row 1 60 16 4 6 38 19 16 4 6 24

Row 2 33 30 42 69 24 → 33 30 42 56 38

Row 3 19 87 78 56 51 60 87 78 69 51

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/271

Step 4. Now repeat previous step again with single column and sort it.

6 4

16 6

4 16

19 19

24 24

33 30

30
→

33

42 38

51 42

38 51

60 56

56 60

78 69

69 78

87 87

Finally, the elements of the array can be given as:

6 16 4 19 24 33 30 42 51 38 60 56 78 69 87

4 6 16 19 24 30 33 38 42 51 56 60 69 78 87

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/272

Algorithm for shell sort:
The algorithm to sort an array of elements using shell sort is as under in
various steps. We shall use multiple passes to sort the array Arr. After
every pass, reduce the gap(See the number of columns) by a factor of half
as shown in Step 4. For each iteration in for loop in Step 5, we swap the
array values accordingly with smaller one if required.

SHELL_SORT(Arr, n)

Step 1: SET FLAG=1, GAP =N

Step 2: Repeat Steps 3 to 6 while FLAG=1 OR GAP > 1

Step 3: SET FLAG = 0

Step 4: SET GAP = (GAP + 1) / 2

Step 5: Repeat Step 6 for I = to I < (N- GAP)

Step 6: IF Arr[I+ GAP]>Arr[I]

SWAP Arr[I+ GAP], Arr[I]

SET FLAG =0

Step 7: END

Programming Example:
/* Program of sorting using shell sort */
#include <stdio.h>
void main()
{ inti,j,k,n=15,incr;

intarr[15]={60,16,4,87,78,33,51,42,69,24,19,6,38,56,30};
printf("The goven Unsorted list is :\n");
for (i = 0; i< n; i++)

printf("%d ", arr[i]);
printf("\nEnter maximum increment (odd value) : ");
scanf("%d",&incr);
/*Shell sort*/
while(incr>=1)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/273

{ for(j=incr;j<n;j++)
{ k=arr[j];

for(i = j-incr; i>= 0 && k <arr[i]; i = i-incr)
arr[i+incr]=arr[i];

arr[i+incr]=k;
}
printf("Increment=%d \n",incr);
for (i = 0; i< n; i++)

printf("%d ", arr[i]);
printf("\n");
incr=incr-2; /*Decrease the increment*/

}/*End of while*/
printf("Sorted list is :\n");

for (i = 0; i< n; i++)
printf("%d ", arr[i]);

printf("\n");
getch();
}

1.12 RADIX SORT

Radix sort is a linear sorting algorithm for integers and uses the
concept of sorting names in alphabetical order. When we have a list of
sorted names, the radix is 26 (or 26 buckets) because there are 26 letters in
the English alphabet. So radix sort is also known as bucket sort. Observe
that words are first sorted according to the first letter of the name. That is,
26 classes are used to arrange the names, where the first class stores the
names that begin with A, the second class contains the names with B, and
so on.

When radix sort is used on integers, sorting is done on each of the digits in
the number. The sorting procedure proceeds by sorting the least significant
to the most significant digit. While sorting the numbers, we have ten
buckets, each for one digit (0, 1, 2,…, 9) and the number of passes will
depend on the length of the number having maximum number of digits. If
numbers are of two digit, then 2 passes will be there and if the numbers
are of three digits then 3 passes will be there.

Example 1: Let us take an array of 12 numbers in unsorted order and
sort them using radix sort.

42 20 64 51 34 70 31 16 15 12 19 33

In first element 42, unit digit is 2. So in first pass, the unit digit (first from
last) will be sorted.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/274

Pass 1 for unit digit

Numbers 0 1 2 3 4 5 6 7 8 9

42 42

20 20

64 64

51 51

34 34

70 70

31 31

16 16

15 15

12 12

19 19

33 33

After Pass 1, the numbers are as follow

20 70 51 31 42 12 33 64 34 15 16 19

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/275

Pass 2 for ten’s digit :

Numbers 0 1 2 3 4 5 6 7 8 9

20 20

70 70

51 51

31 31

42 42

12 12

33 33

64 64

34 34

15 15

16 16

19 19

After Pass 2, the numbers are as follow which are sorted.

12 15 16 19 20 31 33 34 42 51 64 70

Example 2: Let us take another example of three digit numbers to
sort using Radix sort. We have an array of 11 numbers as under.

342 651 921 120 564 469 552 805 908 526 443

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/276

Pass 1 for Unit Digit

Number 0 1 2 3 4 5 6 7 8 9

342 342

651 651

928 928

120 120

564 564

469 469

552 552

805 805

907 907

526 526

443 443

After Pass 1 the array values will be like this

120 651 343 552 443 564 805 526 907 928 469

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/277

Pass 2 for ten's Digit

Number 0 1 2 3 4 5 6 7 8 9

120 120

651 651

343 343

552 552

443 443

564 564

805 805

526 526

907 907

928 928

469 469

After Pass 2 the array values will be like this

805 907 120 526 928 343 443 651 552 564 469

Pass 3 for Hundred Digit

Number 0 1 2 3 4 5 6 7 8 9

805 808

907 907

120 120

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/278

526 526

 928

928

343 343

 443 443

 651

651

552 552

564

564

469 469

After Pass 3 the array values will sorted as below

120 343 443 469 526 552 564 651 808 907 928

Algorithm for Radix Sort
Radix Sort (ARR, N)

Step 1: Find the largest number in ARR as LARGE

Step 2: [INITIALIZE] SET NOP= Number of digits in LARGE

Step 3: SET PASS = 0

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I= 0 and INITIALIZE buckets

Step 6: Repeat Steps7to9 while I<N-1

Step 7: SET DIGIT = digit at PASSth place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/279

Step 9: INCEREMENT bucket count for bucket numbered DIGIT

[END OF LOOP]

Step 10: Collect the numbers in the bucket

[END OF LOOP]

Step 11: END

Programming Example:

/*Program of sorting using Radix sort */
#include <stdio.h>
#include <conio.h>
#define size 10
int largest(intarr[], int n);
void radix_sort(intarr[], int n);
int main()
{ intarr[12]={42,20,64,51,34,70,31,16,15,12,19,33};
inti, n=12;
clrscr();
printf("\n The given unsorted list is as under \n");
 for(i=0;i<n;i++)
printf("%d ",arr[i]);
printf("\n");
radix_sort(arr, n);
printf("\n The sorted array is: \n");
 for(i=0;i<n;i++)
printf("%d ",arr[i]);
return 0;
}
int largest(intarr[], int n)
{
int large=arr[0], i;
 for(i=1;i<n;i++)

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/280

 {
 if(arr[i]>large)
 large = arr[i];
 }
 return large;
}
void radix_sort(intarr[], int n)
{
int bucket[size][size], bucket_count[size];
inti, j, k, remainder, NOP=0, divisor=1, large, pass;
 large = largest(arr, n);
 while(large>0)
 { NOP++;
 large/=size;
 }
 for(pass=0;pass<NOP;pass++) // Initialize the buckets
 { for(i=0;i<size;i++)
bucket_count[i]=0;
 for(i=0;i<n;i++)
 {
 // sort the numbers according to the digit at passth place

remainder = (arr[i]/divisor)%size;
bucket[remainder][bucket_count[remainder]] = arr[i];

bucket_count[remainder] += 1;
 }
 // collect the numbers after PASS pass
i=0;
 for(k=0;k<size;k++)
 {
 for(j=0;j<bucket_count[k];j++)
 { arr[i] = bucket[k][j];
i++;
 }
 }
 divisor *= size;
 }

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/281

}

1.13 SUMMARY

Now we have understand all the sorting algorithms with their
worst, average and best cases. But one thing should be very clear that, no
sorting technique is best. It should depend on the situation of the data.
Choice of algorithm should depends on the order of the data and storage
location of it. Now let us summarize all the sorting algorithms with respect
to their best, average and best case behavior in term of O notation.

Sorting

Technique

Best Case Average case Worst case

Selection Sort O(n2) O(n2) O(n2)

Bubble Sort O(n) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Heap Sort O(n log n) O(n log n) O(n log n)

Quick Sort O(n2) O(n log n) O(n log n)

Merge Sort O(n log n) O(n log n) O(n log n)

Shell Sort - - -

Radix Sort O(n2) O(n log n) O(n log n)

Bibliography
• J. P. Tremblay, P. G. Sorenson “An Introduction to Data

Structures with Applications”, Tata McGraw-Hill, 1984

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• Seymour Lipschutz, “Data Structure”, Schaum ‟s outline Series

• ReemaThareja, “Data Structure using C” Oxford University Press,
Jai Singh Road, New Delhi, 2011

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/282

• S. K. Shrivastav, DeepaliShrivastav, “Data Structure using C in
Depth” BPB Publication, New Delhi, 2008

• G. S. Baluja, “Data Structure through C” (A Practical Approach),
Dhanpat Rai & Co. (Pvt) Ltd. NaiSarak, Delhi, 2007

• Dr. Madhulika Jain, Satish Jain, Shashi Singh, “Data Structure
though C Language” BPB Publication, New Delhi, 2008

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/283

SELF-EVALUATION

1. Write a recursive “C” function to implement binary search and
compute its time complexity.

2. Sort the sequence 3, 1, 4, 5, 9, 2, 6, 5 using insertion sort.

3. Explain sequential search with suitable example.

4. What do you mean by sorting? Explain bubble sort with example.

5. Sort the sequence 33, 11, 64, 58, 94, 62, 76, 15 using quick sort

6. Sort the sequence 43, 18, 94, 28, 64, 92, 36, 75, 82, 99using heap
sort

7. Sort the sequence 93, 48, 74, 29, 34, 97, 39, 25, 42, 19 using
selection sort

8. Sort the sequence 63, 98, 14, 28, 54, 72, 16, 17, 22, 79using merge
sort

9. Sort the sequence using Radix sort

103, 108, 924, 248, 664, 912, 736, 375, 182, 399

10. Show how heap sort processes the input values as under.

142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 102.

Multiple Choice Questions
1. What is the worst-case time for serial search finding a single item

in an array?

A. Constant time B. Quadratic time

C. Logarithmic time D. Linear time

2. What is the worst-case time for binary search finding a single item
in an array?

A. Constant time B. Quadratic time

C. Logarithmic D. Linear time

3. Which searching can be performed recursively?

A. Linear B. both

C. Binary search D. none

4. Which searching can be performed iteratively? [B]

A. linear search B. Both

C. Binary search D. none

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/284

5. In a selection sort of n elements, how many times is the swap
function called in the complete execution of the algorithm?

A. 1 B. n2

C. n – 1 D. n log n

6. Selection sort and quick sort both fall into the same category of
sorting algorithms. What is this category?

A. O(n log n) sorts

B. Interchange sorts

C. Divide-and-conquer sorts

D. Average time is quadratic

7. When is insertion sort a good choice for sorting an array?

A. Each component of the array requires a large amount of
memory

B. The array has only a few items out of place

C. Each component of the array requires a small amount of
memory

D. The processor speed is fast

8. What is the worst-case time for quick sort to sort an array of n
elements?

A. O(log n) B. O(n)

C. O(n log n D. O(n²)

9. What is the worst-case time for heap sort to sort an array of n
elements?

A. O(log n B. O(n)

C. O(n log n) D. O(n²)

10. A min heap is the tree structure where smallest element is available
at the

A. leaf B. root

C. intermediate parent D. Any where

11. Which design algorithm technique is used for quick sort?

A. Divide and conqueror B. greedy

C. backtrack D. dynamic programming

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/285

12. Which among the following is fastest sorting technique (for
unordered data)

A. Heap sort B. Selection Sort

C. Quick Sort D. Bubble sort

13. In which searching technique elements are eliminated by half in
each pass.

A. Linear search B. Binary search

C. Both D. none

14. Binary search algorithm performs efficiently on a

A. linked list B. both

C. Array D. None

14. Heap is a good data structure to implement
A. priority Queue B. Deque
C. linear queue D. None

True or False

1. Binary search is also called sequential search.

2. Linear search is performed on a sorted array.

3. For insertion sort, the best case occurs when the array is already
sorted.

4. Selection sort has a linear running time complexity.

5. The running time of merge sort in the average case and the worst
case is O(n log n).

6. The worst case running time complexity of quick sort is O(n log
n).

7. Heap sort is an efficient and a stable sorting algorithm.

8. External sorting deals with sorting the data stored in the
computer’s memory.

9. Insertion sort is less efficient than quick sort, heap sort, and merge
sort.

10. The average case of insertion sort has a quadratic running time.

11. The partitioning of the array in quick sort is done in O(n) time.

12. In internal sorting methods, it is necessary for all data should
reside in main memory.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/286

Answer
1. False 2. False 3. False 4. False 5. True 6.
False

7.True 8. False 9. True 10. True 11. True 12.
True

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/287

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/288

UNIT-11 HASHING

Structure:

11.0 Introduction:

11.1 Objective:

11.2 Hashing:

11.3 Hash Table:

11.4 Hash Function

11.5 Resolving Collision:

11.6 Some Applications of Hash Tables:

11.7 Summary

11.0 INTRODUCTION

The searching techniques that we have discussed in the previous
unit 10 are based on comparison of values with each other. In sequential
search, we have to search from the beginning and move up to last element,
so all items are compared with the searched items depend on its location in
the array. In binary search, less comparison are there with respect to
sequential search as on each step list is divided in two halves. So there is
less comparison. So there is a need where we have to do minimum
comparisons so that complexity could be reduced. So now our need is to
search the element in constant times and less key comparison should be
involved. Finally, the main objective is that, how to reduce the number of
comparisons in order to find the appropriate record within minimum time
and minimum comparison.

11.1 OBJECTIVE

After reading this unit the learner is able to do the following task.

• Understand the concept of hashing and its need.

• Understand hash function and its methods

• Understand Collision and its resolution strategies

• Understand hash table and its implementation

11.2 Hashing

Hashing is a technique that is used to uniquely identify a specific
object from a group of similar objects. Some examples of how hashing is
used in our lives include:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/289

• In universities, each student is assigned a unique roll number that
can be used to retrieve information about them.

• In libraries, each book is assigned a unique number that can be
used to determine information about the book, such as its exact
position in the library or the users it has been issued to etc.

In both these examples the students and books were hashed to a unique
number.Assume that you have an object and you want to assign a key to it
to make searching easy. To store the key/value pair, you can use a simple
array like a data structure where keys (integers) can be used directly as an
index to store values. However, in cases where the keys are large and
cannot be used directly as an index, you should use hashing.

In hashing, large keys are converted into small keys by using hash
functions. The values are then stored in a data structure called hash table.
The idea of hashing is to distribute entries (key/value pairs) uniformly
across an array. Each element is assigned a key (converted key). By using
that key you can access the element in O(1) time. Using the key, the
algorithm (hash function) computes an index that suggests where an entry
can be found or inserted.

Hashing is implemented in two steps: In first step, the element is
converted into an integer by using a hash function. This element can be
used as an index to store the original element, which falls into the hash
table. In second step, the element is stored in the hash table where it can
be quickly retrieved using hashed key.

hash = hashfunc(key)

index = hash % array_size

In this method, the hash is independent of the array size and it is then
reduced to an index (a number between 0 and N – 1(N is size of array) by
using the modulo operator (%).

Let us take an example to explain. In a university, there are 100 faculties,
and each faculty has assigned aTeacher_ID in the range 0–99. To store the
records in an array, each faculty Teacher_ID acts as an index into the array
where the faculty’s record will be stored as shown in Figure 1 below. In
this case, we can directly access the record of any faculty, once we know
his Teacher_ID, because the array index is the same as the Teacher_ID
number. But practically, this implementation is hardly feasible.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/290

Key Array of Faculty's Records

Key 0 → [0] Faculty record with Teacher_ID 0

Key 1 → [1] Faculty record with Teacher_ID 1

Key 2 → [2] Faculty record with Teacher_ID 2

----------------- ---

----------------- ---

Key 98 → [98] Faculty record with Teacher_ID 98

Key 99 → [99] Faculty record with Teacher_ID 99

Figure 1 : Faculties records with two digit Teacher_id.

Let us take a similar case of university which has fivedigitTeacher_ID as
the primary key. In this case,key values will range from 00000 to 99999. If
we want to use the same technique as above, we need an array of size
100,000, of which only 100 elements will be used. This is illustrated in
Figure 2.

Key Array of Faculty's Records

Key 00000 → [0] Faculty record with Teacher_ID 0

Key 00001 → [1] Faculty record with Teacher_ID 1

Key 00002 → [2] Faculty record with Teacher_ID 2

----------------- --------------------------------------

Key n → [n] Faculty record with Teacher_ID n

----------------- --------------------------------------

Key 99998 → [99998] Faculty record with Teacher_ID 99998

Key 99999 → [99999] Faculty record with Teacher_ID 99999

Figure 2 : Faculties records with five digitTeacher_id.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/291

It is obvious to waste a lot of memory storage space just to ensure that
each employee’s record is unique and it is on predictable location.

So if we use a two-digit primary key (Teacher_ID) or a five-digit key, we
have only 100 faculties in the university. For this we will be using only
100 locations in the array. Therefore, in order to keep the array size down
to the size that we will actually be using (100 elements), another good
option is to use just the last two digits of the key to identify each
employee. For example, the faculty with Teacher_ID79439 will be stored
in the element of the array with index 39. Similarly, the faculty with
Teacher_ID12345 will have his record stored in the array at the 45th
location.

11.3 HASH TABLE

Hash table is a data structure in which keys are mapped to array
positions by a hash function which is arranged in the form of an array that
is addressed via a hash function. The hash table is divided into a number
of buckets and each bucket is in turn capable of storing a number of
records. Thus we can say that a bucket has number of slots and each slot is
capable of holding one record.

The time required to locate any element in the hash table is 0 (1). It is
constant and it is not depend on the number of data elements stored in the
table. Now question is how we map the number of keys to a particular
location in the hash table i.e., h (k). It is computed using the hash function.

11.4 HASH FUNCTION

Hash function is just a mathematical calculation to calculate the
key used as an index. The basic idea in hashing is the transformation of a
key into the corresponding location in the hash table. This is done by a
hash function. To achieve a good hashing mechanism, it is important to
have a good hash function with the following basic requirements:

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/292

• Easy to compute: It should be easy to compute and must not
become an algorithm in itself.

• Uniform distribution: It should provide a uniform distribution
across the hash table and should not result in clustering.

• Less collision: Collisions occur when pairs of elements are
mapped to the same hash value. These should be avoided.

Sometimes, this hash function may not yield distinct values; it is possible
that two different keys K1 and K2 will yield the same hash address. This
situation is called Hash collision.

Note: Irrespective of how good a hash function is, collisions are bound to
occur. Therefore, to maintain the performance of a hash table, it is
important to manage collisions through various collision resolution
techniques.

There are three different types of Hash functions. There are two points to
be in mind while choosing a function H : K → M . The first one is that, it
should be easy and fast to calculate. Another one is that, it should always
give different location (un occupied) locations in the hash table to avoid
collisions.

These hash functions are as under:

(i) Truncate Method

(ii) Division reminder method

(iii) Mid square method –

(iv) Folding method.

(v) For Floating point number

(vi) For Strings

11.4.1 Truncate Method

This is one of the easiest method for calculating the key value for
hash function. In this method, we take only a part of the key as address. It
could be from leftmost digits or rightmost digits.

EXAMPLE 1. Calculate the hash values or keys of following 8 digit
numbers for hash table of size 100.

76895534 78933524 93592415 18935445

SOLUTION.

Now as the table size is 100, so take 2 rightmost digit for getting the hash
table address as under.

34 24 15 45

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/293

Key Rightmost 2 digits

76895534 34

78933524 24

93592415 15

18935445 45

Now we have taken right two digit as address, but there are a lot of
chances that collision can occur because last two digits can be same in
many numbers.

11.4.2 DIVISION REMINDER METHOD

In this division reminder method of hash function, key k is divided
by a number m larger than the number n of keys in k and the reminder of
this division is taken as index into the hash table, i.e.,

h (k) = kMod m

The number m should be usually a prime number or a number without
small divisors, so that it minimizes the number of collision possibilities.

The above hash function will map the keys in the range 0 to m —1 and is
acceptable in C/C++. But if we want the hash addresses to range from 1 to
m rather than from 0 to m —1 we use the formula

h(k)=k Mod m+1

EXAMPLE 2. Calculate the hash values of keys 1234 and 5462.

Solution: Setting M = 97, hash values can be calculated as:

h (1234) = 1234 % 97 = 70

h (5642) = 5642 % 97 = 16

Consider a hash table with 7 slots i.e.,m = 7, then hash function h (k) = k
mod in will map the key 169 to slot 1 since

h (169) = 169 mod 7 =1

similarly,

h (130) = 130 mod 7 = 4

is mapped to slot 4.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/294

11.4.3 MID SQUARE METHOD

In the mid square method the key is first squared. Therefore the
hash function is defined by

h(k)=p

where p is obtained by deleting digits from both sides of k2. To properly
implement this the same position of k2 must be used for all the keys.

EXAMPLE 3. Consider a hash table with 50 slots i.e., m =50 and key
values k= 1632, 1739,3123.

SOLUTION.

k 1632 1739 3123

k2 2663424 3024121 9753129

h(k) 34 41 31

The hash values are obtained by taking the fourth and fifth digits counting
from right.

11.4.4 FOLDING METHOD

In folding method the key, k is partitioned into a number of parts
k1, k2….kr where each part, except possibly the last, has the same number
of digits as the required address: Then the parts are added together,
ignoring the last carry i.e.,

H(k)=k1+k2+……….. +kr

wherethe leading-digits carries, if any are ignored.

EXAMPLE 4. Consider a hash table with 100 slots i.e., m = 100 and key
values k = 7325, 76321, 1623, 7613.

SOLUTION.

k Parts Sum of parts h (k)

7325 73, 25 98 98

76321 76, 32, 1 109 09

1623 16, 23 39 39

7613 76, 13 89 89

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/295

11.4.5 FOR FLOATING POINT NUMBER

The approach for hash address for floating point numbers is
something different but also needs modulus operation within the range of
hash table. There are following steps for calculating the hash values for
such floating point numbers.

1. Take fractional part of the key.

2. Multiply this part with size of hash table array.

3. Now take integer part from it as the result of hash address of that
key.

Example 5 : Calculate the hash values of keys 123.6721, 970.663,
123.0558 and 679.99156 with table size 99.

Solution :

Let us take the fractional part of the keys and multiply with table size 99.

0.6721 × 99 = 66.5379

0.663 × 99 = 65.637

0.0558 × 99 = 5.5242

0.99156 × 99 = 98.16444

Now the hash address will be integer part of these numbers.

H (66.5379) = 66

H (65.637) = 65

H (5.5242) = 5

H (98.16444) = 98

11.4.6 FOR STRINGS

In many cases strings are used as the key which could be
alphabetic or alphanumeric. We can see it in English dictionary very
frequently. We can take ASCII value of each character and sum all values
then take modulus by the table size to calculate the key for hash table.

Let us take an example.

Suppose we have a hash table of size 99 and the key is “Manisha”. Now
we have to calculate the hash value for it.

First sum up all the ASCII values respected to each character in the key as
under

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/296

So

H(Manisha) = 707%99=12

Now key “Manisha” can be mapped to 12th location in the hash table.

11.5 RESOLVING COLLISION

Hash collision is the process in which more than one key is
mapped to the same memory location in the table. For example, if we are
using the division reminder hashing with following hash-function

h (k) = k % 7 then key = 8 and key =15 both mapped to the same location
of the table i.e., one

h (k) = 8 % 7 = 1

h (k) = 15 % 7 = 1

Both key will store at same location in the hash table and collision will
occur.

11.5.1 COLLISION RESOLUTION BY SEPARATE
CHAINING (OPEN HASHING)

This method maintains a chain of all elements which have same
address. In this method all the elements where keys hash to the same hash-
table slot are put in a one array of pointers or a linked list. Therefore, the
slot i in the hash table contains a pointer to the head of the linked list of all
the elements that hash to value i. If there is no such elements that hash to
value i, the slot contains NULL value.

Manisha M a n i s h a Total

77 97 110 105 115 104 97 705

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/297

11.5.2 Collision Resolution by Open Addressing (Closed
Hashing)

In open addressing the keys to be hashed is to put in the separate
location of the hash table. Eachlocation contains some key or the some
other character to indicate that the particular location is free. In this
method to insert key into the table we simply hash the key using the hash
function. If the space is available, then insert the key into the hash table
location otherwise; search the location in the forward direction of the
table, to find the slot in a systematic manner. The process of finding the
slot in the hash table is called probing

11.5.2.1 LINEAR PROBING

This hashing technique finds the hash key value through hash
function and maps the key on particular position in hash table. In case if
key has same hash address then it will find the next empty position in the
hash table. We take the hash table as circular array. So if table size is N
then after N-1 position it will search from 0th position in the array.

The linear probing uses the following hash function

h (k, i) = [h' (k) + i] mod n for i = 0, 1, 2,..... n-1

wheren is the size of the hash table and h' (k) = kmod n the basic hash
function and i is the probe number.

Let us take some elements and the table size is 11.

 30, 19, 44, 11, 37, 24, 47

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/298

H(30) = 30%11 = 8

H(19) = 19%11 = 8

H(44) = 44%11 = 0

H(11) = 11%11 = 0

H(37) = 37%11 = 4

H(26) = 26%11 = 4

H(47) = 47%11 = 3

Now the first 30 will be inserted at the 8th position in the array. Next 19
will also on same hash, address 8th, but it is already occupied, so it will
search for the next free place which is 9th position. Similarly 44 and 11
also has same hash address i.e. 0th position, so after insertion of 44 at 0th
position, 11 will be on next position i.e. 1st position. Similarly key value
37 and 26 has same, so that will store at 4th and 5th position. In last key 47
will be at 3rd position.

The main disadvantage of the linear probing technique is clustering
problem. When half of the table is full then it is difficult to find empty
position in hash table in case of collision. Searching will also become slow
because it will go for linear searching.

11.5.2.2 QUADRATIC PROBING

The main disadvantage of linear probing is clustering problem.
Suppose hash address is k then in the case of collision linear probing
search the location k, k+1, k+2 (% SIZE). Here in quadratic probing it
search the location (k+i2)%SIZE (for i=1,2,3,4…….). So it will search the
locations k+1, k+4, k+9…… So it will decrease the problem of clustering
but this technique cannot search all the locations. If hash table size is
prime then it will search at least half of the locations of the hash table. Let
us take table size 11 and apply this technique with following elements-

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/299

H(29) = 29%11 = 7

H(18) = 18%11 = 7

H(43) = 43%11 = 10

H(10) = 10%11 = 10

H(46) = 46%11 = 2

H(54) = 54%11 = 10

As well as we insert the element 43 at 10th position in table, the element
10 will search the empty position at (k +1) %11 = 0th position which is
empty. When we insert 54 then after getting collision first it will search
the next position (k+1) %11 = 0th position which is already occupied, so it
will again search the next position (k+4) % 11 = 3 position which is empty
so 54 will be inserted at that position

11.5.2.3 DOUBLE HASHING

Double hashing is similar to linear probing and the only difference
is the interval between successive probes. Here, the interval between
probes is computed by using two hash functions.

Let us say that the hashed index for an entry record is an index that is
computed by one hashing function and the slot at that index is already
occupied. You must start traversing in a specific probing sequence to look
for an unoccupied slot. The probing sequence will be:

index = (index + 1 * indexH) % hashTableSize;
index = (index + 2 * indexH) % hashTableSize;

and so on…

Here, indexH is the hash value that is computed by another hash function.

11.6 SOME APPLICATIONS OF HASH TABLES

Database systems: Specifically, those that require efficient random
access. Generally, database systems try to optimize between two types of
access methods: sequential and random. Hash tables are an important part

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/300

of efficient random access because they provide a way to locate data in a
constant amount of time.

Symbol tables: The tables used by compilers to maintain information
about symbols from a program. Compilers access information about
symbols frequently. Therefore, it is important that symbol tables be
implemented very efficiently.

Data dictionaries: Data structures that support adding, deleting, and
searching for data. Although the operations of a hash table and a data
dictionary are similar, other data structures may be used to implement data
dictionaries. Using a hash table is particularly efficient.

Network processing algorithms: Hash tables are fundamental
components of several network processing algorithms and applications,
including route lookup, packet classification, and network monitoring.

Associative arrays: Hash tables are commonly used to implement many
types of in-memory tables. They are used to implement associative arrays
(arrays whose indices are arbitrary strings or other complicated objects).

Caches: Hash tables can be used to implement caches i.e. auxiliary data
tables that are used to speed up the access to data, which is primarily
stored in slower media.

Object representation: Several dynamic languages, such as Perl, Python,
JavaScript, and Ruby use hash tables to implement objects.

Browser Cashes: Hash tables are used to implement browser cashes.

11.7 SUMMARY

Hashing is the process of mapping large amount of data item to
smaller table with the help of hashing function. Hashing is also known as
Hashing Algorithm.It is a technique to convert a range of key values into
a range of indexes of an array. It is used to facilitate the next level
searching method when compared with the linear or binary search.

Hash table or hash map is a data structure used to store key-value pairs.It
is a collection of items stored to make it easy to find them later.It uses a
hash function to compute an index into an array of buckets or slots from
which the desired value can be found.It contains value based on the key.

Hash Function is a fixed process which converts a key to a hash key to
store in array.This function takes a key and maps it to a value of a certain
length which is called a Hash value or Hash using various methods like
Truncate, Division Reminder, Mid Square Method and Folding Method
etc. Using these functions we calculate a Hash value which represents the
original value, but it is normally smaller than the original.

In some cases, there are chances of same hash values is calculated for
same memory location. It means collisions occur when the hash function
maps two different keys to the same location. Obviously, two records

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/301

cannot be stored in the same location. Therefore, a method used to solve
the problem of collision, also called collision resolution technique, is
applied. The two most popular methods of resolving collisions are
Collision Resolution by Separate Chaining (Open Hashing) and Collision
Resolution by Open Addressing (Closed Hashing)

Bibliography :
• J. P. Tremblay, P. G. Sorenson “An Introduction to Data

Structures with Applications”, Tata McGraw-Hill, 1984

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• Seymour Lipschutz, “Data Structure”, Schaum ‟s outline Series

• ReemaThareja, “Data Structure using C” Oxford University Press,
Jai Singh Road, New Delhi, 2011

• S. K. Shrivastav, DeepaliShrivastav, “Data Structure using C in
Depth” BPB Publication, New Delhi, 2008

• G. S. Baluja, “Data Structure through C” (A Practical Approach),
DhanpatRai& Co. (Pvt) Ltd. NaiSarak, Delhi, 2007

• Dr. Madhulika Jain, Satish Jain, Shashi Singh, “Data Structure
though C Language” BPB Publication, New Delhi, 2008

Self - Evaluation
1. What do you mean by hash table?

2. What is hash function? What are the qualities of a good hash
function?

3. Write a short note on the different hash functions. Give suitable
examples to justify your answers.

4. Calculate hash values of keys: 8922, 9241, 3807, 5643 and 4522
using different methods of hashing.

5. What is collision? How to resolve a collision. Which technique do
you think is better and why?

6. Consider a hash table with size = 10. Using linear probing, insert
the keys 72, 27, 33, 54, 26, 68, 59,and 101 into the table.

7. What is hashing? Give its applications. Also, discuss the pros and
cons of hashing.

8. Explain chaining with examples.

9. Write short notes on:

• Mid square Method

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/302

• Folding Method

• Modular Method

• Linear probing

• Quadratic probing

• Double hashing

10. What are applications of hashing?

MCQ :
1. What is a hash table?

a) A structure that maps values to keys

b) A structure that maps keys to values

c) A structure used for storage

d) A structure used to implement stack and queue

2. If several elements are competing for the same memory location in
the hash table, what is it called?

a) Diffusion

b) Replication

c) Collision

d) None of the mentioned

3. What is direct addressing?

a) Distinct array position for every possible key

b) Fewer array positions than keys

c) Fewer keys than array positions

d) None of the mentioned

4. What can be the techniques to avoid collision?

a) Make the hash function appear random

b) Use the chaining method

c) Use uniform hashing

d) All of the mentioned

5. What is a hash function?

a) A function has allocated memory to keys

b) A function that computes the location of the key in the
array

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/303

c) A function that creates an array

d) None of the mentioned

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/304

UNIT-12 FILE STRUCTURE

Structure

12.0 Introduction

12.1 Objectives

12.2 File Terminology

12.3 File Organization

12.4 Basic File Operations

12.5 Sequential Files

12.6 Direct File

12.7 Indexed Sequential Files

12.8 Summary

12.0 INTRODUCTION

File organization refers to the way data is stored in a file. File
organization is very important because it determines the methods of
access, efficiency, flexibility and storage devices to use in efficient way.

Nowadays, almost all organizations use data collection software to collect
large amounts of data. For example, when we approach any college for
admission, our all data like name, address, phone number, the requested
course, aggregate of marks obtained in the last examination etc. is
collected.

A university might like to store data related to all students—the courses
they sign up for etc., all this implies the following:

• Data will be stored on external storage devices like magnetic tapes,
disk, floppy etc.

• Data will be accessed by many people and software programs

• Users of the data will expect that

o It is always reliably available for processing

o It is secure

o It is stored in a manner flexible enough to allow the users to
add new data as per changing needs

In common terminology, a file is a block of important data which is
available to any computer software and is usually stored on any storage
device. Storing a file on any storage medium like pen drive, hard disk or
floppy disk ensures the availability of the file in future.Now a days all file

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/305

are stored in computers to reduce paper work and easy availability in any
office, bank or library.

12.1 OBJECTIVES

After reading this unit the learner is able to do the following task.

• Understand the concept of File and its terminology.

• File Organization and its uses

• Operations that could be performed of file

• Sequential File organization and its features

• Direct File organization and its features

• Index Sequential File organization and its features

12.2 FILE TERMINOLOGY

Every file contains records which could be of a customer (in
Business), students (in university or college), patient (in hospital),
passenger (in train/flight reservation) which can be organized in a
hierarchy to present a systematic way so that it could be utilized in future
as requested.

Now we will define the terms of the hierarchical structure of data which
we are storing in computer in the form of file.

Field : It is an elementary data item that stores a single fact and
characterized by its length and types.

For example :

Name : Size= 25 Type= Character

Age : Size=2 Type= Integer/Numeric

Address: Size=100 Type=Character

Record : It is a collection of related fields that can be treated as a unit
from an applications point of view.

For example : The student’s record may contain data fields such
as name, address, phone number, roll number, marks obtained, and
so on.

File : Data is organized for storage in files. A file is a collection of
similar, related records. It has an identifying name.

For example : There are 100 students in a class, then there are 100
records, one for each student. All these related records are stored in
a file with the respective class name.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/306

Directory : A directory stores information of files belongs to one group
or related in any manner. A directory is used to store files so that users can
access all files easily.

For example :

Teachers : This directory will stores all files of teachers.

BSc_Part1 : This directory will stores all first year students.

Courses : This directory will stores all information of
available courses.

12.3 FILE ORGANIZATION

File organization tell that what is the way to store data and how to
retrieve that data. Basically File Organization is a way of arranging the
records in a file when the file is stored on the disk. The factors involved in
selecting a particular file organization for uses are:

• Easily storing and retrieval of information

• Easily modify or updates

• Less storage space

• Reliability of data for future

• Security

• Integrity

Different file organizations assures the above factors with different
weightages. The choice of particular file organization depends on the type
of application and need of the user.

Now we will discuss some of the file organization in brief.

Sequential Files : Data records are stored in some specific sequence
e.g., order of arrival, value of key field etc. Records of a sequential file
cannot be accessed at random i.e., to access the nth record, one must
traverse the preceding (n - 1) records. Sequential files will be dealt with at
length in the next section.

Relative Files : Each data record has a fixed place in a relative file. Each
record must have associated with it an integer key value that will help
identify this slot. This key, therefore, will be used for insertion and
retrieval of the records. Random as well as sequential access is possible.
Relative files can exist only on random access devices like disks.

Direct Files : These are similar to relative files, except that the key value
need not be an integer. The user can specify keys which make sense to his
application.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/307

Indexed Sequential Files : An index is added to the sequence file to
provide random access. An overflow area needs to be maintained to permit
insertion in sequence.

12.4 BASIC FILE OPERATIONS

Before moving to a particular organization, let usunderstand basic
file operations that can be performed on any kind of file.

A. Creation of file

B. Updation of file

I. Insert a new record

II. Modify an existing record

III. Delete a particular record

C. Retrieval of Information

I. Inquiry of record

II. Generate a report

D. Maintenance

I. Restructuring the file records

II. Reorganizing the records

A. Creation of File:

Before creating a file we have to collect the data, validate the data
and process the data to give it a record like structure. Then we
choose the name for the file and open the file on secondary storage
device and store the collected data on it.

B. Updating File:

It means to change/delete/modify the contents of the file. A file can
be updated in the following ways:

• Inserting a new record: For example, if a new student
comes later and joins the course, we have to add his record in
the STUDENT file.

• Modifyingan existing record: For example, if the name of a
student was spelt incorrectly, then correcting the name will
be a modification of the existing record.

• Deletingan existing record. For example, if a student switch
or quits a particular course in the initial/middle of the session,
his/her record has to be deleted from the STUDENT file.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/308

C. Retrieving from a File :

It means, we are accessing only the useful data from a given file as
per the requirement. Information can be retrieved for an inquiry or
for report generation. For any inquiry less data is retrieved while to
generate a report needs large amount of data from the file.

D. Maintenance of File:

It involves restructuring or re-organizing the file to improve the
performance of the programs that access this file. Restructuring a
file keeps the file organization unchanged and changes only the
structural aspects of the file (for example, changing the field width
or adding/deleting fields). On the other hand, file reorganization
may involve changing the entire organization of the file. We will
discuss file organization in detail in the next section.

12.5 SEQUENTIAL FILE
Sequential files have data

records stored in a specific sequence.
A sequential organized file may be
stored on either a serial access or a
direct access storage medium.

A sequentially organized file
stores the records in the order in
which they were entered. That is, the
first record that was entered is written
as the first record in the file, the
second record entered is written as the
second record in the file, and so on.
As a result, new records are added
only at the end of the file. Sequential
files can be read only sequentially,
starting with the very first record in
the file to the last record of the file. It is the most basic and simple file
organization to organize a large collection of records in a file.

Once we store the records in a file, we cannot modify the records
means deletion or Updation in sequential file is not allowed. You have to
create a new file with existing file to do any such operation like delete or
modify.

All records have the same size and the same field format. The
records are sorted based on the value of one field or a combination of two
or more fields. Records can be sorted in either ascending or descending
order.

These files are used to generate reports or to perform sequential reading of
large amount of data which some programs need to do such as payroll

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/309

processing, or billing of all customers. Sequential files can be easily stored
on both disks and tapes.

The features, advantages, and disadvantages of sequential file organization
are as under.

Features
• Records are written in the order in which they are entered

• Records are read and written sequentially

• Deletion or Updation of one or more records calls for replacing the
original file with a new file that contains the desired changes

• Records have the same size and the same field format

• Records are sorted on a key value

• Generally used for report generation or sequential reading

Advantages :

• Simple and easy to handle

• No extra overheads involved

• Sequential files can be stored on magnetic disks as well as
magnetic tapes

• Well suited for batch oriented applications

Disadvantages :
• All records must be structurally identical. If a new field has to be

added, then every record must be rewritten to provide space for the
new field.

• Records can be read only sequentially. If ith record has to be read,
then all the i–1 records must be read

• Updates are not easily accommodated. Does not support update
operation? A new file has to be created and the original file has to
be replaced with the new file that contains the desired changes

• By definition, random access is not possible

• Continuous areas may not be possible because both the primary
data file and the transaction file must be looked during merging.

Areas of Use :
Sequential files are most frequently used in commercial batch oriented
data processing where there is the concept of a master file to which details
are added periodically. For example, Payroll applications.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/310

Example: Write a program to implement sequential file operation
(Write, Read) using C.

#include <stdio.h>
#include <conio.h>

typedefstruct {
intusn;
char name[25];
int m1,m2,m3;

 }Student;
Student s;
void display(FILE *);
int search(FILE *,int);
void main()
 { inti,n,usn_key,opn;

FILE *fp;
printf(" How many Records ? ");
scanf("%d",&n);
fp=fopen("stud.dat","w");
for (i=0;i<n;i++) {

printf("Read the Info for Student: %d
(usn,name,m1,m2,m3) \n",i+1);

scanf("%d%s%d%d%d",&s.usn,s.name,&s.m1,&s.m2,&s.m3);
fwrite(&s,sizeof(s),1,fp);

}
fclose(fp);
fp=fopen("stud.dat","r");

do {
printf("Press 1- Display\t 2- Search\t 3- Exit\t Your Option?");
scanf("%d",&opn);
switch(opn)
{
case 1: printf("\n Student Records in the File \n");

display(fp);
break;

case 2: printf(" Read the USN of the student to be searched ?");
scanf("%d",&usn_key);
if(search(fp,usn_key))
{printf("Success ! Record found in the file\n");

printf("%d\t%s\t%d\t%d\t%d\n",s.usn,s.name,s.m1,s.m2,s.m3);
}

 else
printf(" Failure!! Record with USN %d not

found\n",usn_key);
break;

case 3: printf(" Exit!! Press a key . . .");

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/311

getch();
break;

default: printf(" Invalid Option!!! Try again !!!\n");
break;

}
}while(opn != 3);
fclose(fp);

 }
 /* End of main() */
 void display(FILE *fp) {

rewind(fp);
while(fread(&s,sizeof(s),1,fp))
printf("%d\t%s\t%d\t%d\t%d\n",s.usn,s.name,s.m1,s.m2,s.m3);

 }
int search(FILE *fp, intusn_key)
{

rewind(fp);
while(fread(&s,sizeof(s),1,fp))
 if(s.usn == usn_key) return 1;
return 0;

}

3.6 DIRECT FILE

In direct file organization the key value is mapped directly or
indirectly to a storage location, avoiding the use of indices. The usual
method of direct mapping is by some arithmetical manipulation of the key
value, also known as hashing. It offers an effective way to organize data
when there is a need to access
individual records directly. A
calculation is performed on the key
value to get an address. This address
calculation technique is often termed as
hashing. The calculation applied is
called a hash function.

Direct file organization provides
random access by directly jumping to
the record which has to be accessed. If
the records are of fixed length and we
know the base address of the file and
the length of the record, then any record
i can be accessed using the following
formula:

Address of nth Record =
Starting_address_of_file + (n–1) * Record_Size

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/312

Therefore, in direct files, records are organized in ascending relative
record number. A direct file can be thought of as a single dimension table
stored on a disk, in which the relative record number is the index into the
table. Direct files can be used for both random as well as sequential
access. For sequential access, records are simply read one after another.

Features

• Provides an effective way to access individual records

• The record number represents the location of the record relative to
the beginning of the file

• Records in a relative file are of fixed length

• Relative files can be used for both random as well as sequential
access

• Every location in the table either stores a record or is marked as
FREE

Advantages of Direct File Organization
1. Records can be immediately accessed for Updation.

2. Several files can be simultaneously updated during transaction
processing.

3. Transaction need not be sorted.

4. Existing records can be amended or modified.

5. Most suitable for interactive online applications.

6. Very easy to handle random enquiries.

Disadvantages of Direct File Organization
1. Data may be accidentally erased or over written unless special

precautions are taken.

2. Risk of loss of accuracy and breach of Security.

3. Special backup and reconstruction procedures must be established.

4. Expensive hardware and Software are required.

5. High complexity in programming.

6. Use of relative files is restricted to disk devices

7. Records can be of fixed length only

8. For random access of records, the relative record number must be
known in advance

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/313

Example : Write a program to implement Directfile operation (Write,
Reading record randomly) using C.

/* Program to save alphabet A to Z in file and then print the letters
sequentially or randomly*/

#include <stdio.h>
int main(void)
{
inti;
 char ch;
 FILE *fptr;
clrscr();
fptr = fopen("char", "w");

 if (fptr != NULL)
printf("File created successfully!\n");

 else
 {
printf("Failed to create the file.\n");
 return -1;
 }
 // writing all characters in data file
 for (ch = 'A'; ch<= 'Z'; ch++)
putc(ch, fptr);
fclose(fptr);

printf("\nCounting of Characters :\n");
 for (i = 0; i< 26; i++)
printf(" %2d", (i+1));

printf("\n");

 for (i = 65; i<= 90; i++)
printf("%3c", i);

printf("\n\n");

 // Again open file for reading
fptr = fopen("char", "r");
printf("Currpos: %ld\n", ftell(fptr));

 // read 1st char in the file
fseek(fptr, 0, 0);
ch = getc(fptr);
printf("1st char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

 // read 5th char in the file

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/314

fseek(fptr, 4, 0);
ch = getc(fptr);
printf("5th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

fseek(fptr, 25, 0); // read 26th char in the file
ch = getc(fptr);
printf("26th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));
printf("Rewind : Moving to first location in the file\n");
 rewind(fptr);
printf("Currpos: %ld\n", ftell(fptr));
fseek(fptr, 9, 0); // read 10th char in the file
ch = getc(fptr);
printf("10th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

 // read 15th char in the file
fseek(fptr, 4, 1); // move 4 bytes forward from current position
ch = getc(fptr);
printf("15th char: %c\n", ch);
printf("Currpos: %ld\n", ftell(fptr));

 // read 20th char in the file
fseek(fptr, 4, 1); // move 4 bytes forward from current position
ch = getc(fptr);
printf("20th char: %c\n", ch);

printf("Currpos: %ld\n", ftell(fptr));

fclose(fptr);
 return 0;
}

3.7 Indexed Sequential Files

On an average, the retrieval of a record from a sequential file,
requires access to half the records in the file. It makes it not only
inefficient but very time consuming process for the large file. So to
improve the query response time from a sequential file, a type of indexing
technique can be added.When there is need to access records sequentially
by some key value and also to access records directly by the same key
value, the collection of records may be organizedin an effective manner
called Indexes Sequential Organization.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/315

Indexed sequential file
organization stores data for fast
retrieval. The records in an
indexed sequential file are of
fixed length and every record is
uniquely identified by a key
field. We maintain a table
known as the index table which
stores the record number and the
address of all the records. That
is for every file, we have an
index table. This type of file
organization is called as indexed
sequential file organization
because physically the records
may be stored anywhere, but the
index table stores the address of
those records.

A sequential (or sorted on primary keys) file that is indexed is called an
Index Sequential File. The index provides for random access to records,
while the sequential nature of the file provides easy access to the
subsequent records as well as sequential processing. An additional feature
of this file system is the overflow area. This feature provides additional
space for record addition without necessitating the creation of a new file.

For example, Let us take an example of a school where the details of
students are stored in an indexed sequential file. Now we can accessed the
records from this file in two different ways:

• Sequentially : To print the report card of each student in an

exam

• Randomly : To modify the marks of a particular student in

 any subject that are wrongly typed by typist.

Advantages of Indexed sequential access file organization

• In indexed sequential access file, sequential file and random file
access is possible.

• It accesses the records very fast if the index table is properly
organized.

• The records can be inserted in the middle of the file.

• It provides quick access for sequential and direct processing.

• It reduces the degree of the sequential search.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/316

Disadvantages of Indexed sequential access file organization
• Indexed sequential access file requires unique keys and periodic

reorganization.

• Indexed sequential access file takes longer time to search the index
for the data access or retrieval.

• It requires more storage space.

• It is expensive because it requires special software.

• It is less efficient in the use of storage space as compared to other
file organizations.

3.8 SUMMARY

A file is a collection or bag of records. Having stored the records in
a file, it is necessary to access these records using either a primary or
secondary key. The type and frequency of access required determines the
type of file organization to be used for a given set of records. In this
chapter we looked at some common file organizations: Sequential, Index
sequential, direct etc.

In a sequential file, records are maintained in the logical sequence of their
primary key value. The search for a given record requires, on average,
access to half the records in the file. Update operations, including the
appending of a new record, require creation of a new file. Updates could
be batched and a transaction file of updates used to create a new master
file from the existing one. This scheme automatically creates a backup
copy of the file.

Access to a sequential file can be enhance by creating an index. The index
provides random access to records and the sequential nature of the file
provides easy access to the next record. To avoid frequent reorganization,
an index sequential file uses overflow areas. This scheme provides space
for the addition of records without the need for the creation of a new file.
In index sequential organization, it is the usual practice to have a hierarchy
of indexes with the lowest level index pointing to the records while the
higher level ones point to the index below them.

In direct file organization the key value is mapped directly or indirectly to
a storage location, avoiding the use of indices. The usual method of direct
mapping is by some arithmetical manipulation of the key value, the
process is called hashing.

Bibliography :
• ReemaThareja, “Data Structure using C” Oxford University Press,

New Delhi, 2011

• S. K. Shrivastav, DeepaliShrivastav, “Data Structure using C in
Depth” BPB Publication, New Delhi, 2008

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/317

• G. S. Baluja, “Data Structure through C” (A Practical Approach),
Dhanpat Rai & Co. (Pvt) Ltd. NaiSarak, Delhi, 2007

• Dr. Madhulika Jain, Satish Jain, Shashi Singh, “Data Structure
though C Language” BPB Publication, New Delhi, 2008

• Markus Blaner: “Introduction to Algorithms and Data Structures”,
Saarland University, 2011

• Niklaus Wirth, “Algorithm +Data Structures = Programs”, PHI
Publications

• Seymour Lipschutz, “Data Structure”, Schaum ‟ s outline Series

• B. Flaming, “Practical Data Structures in C++”, John Wiley &
Sons, New York, 1994

• R. E. Bellman, “On a routing Problem”, Quarterly of Applied
Mathematics, 16 (1958) 87-90

• D. E. Knuth, “The Stanford GraphBase”, Addison-Wesley,
Reading, Mass. 1993.

• R. E. Tarjan, “Data Structures and network Algorithms”, Society
for Industrial and Applied

Mathematics, Philadelphia, 1985.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/318

SELF EVALUATION

Short Answer Questions

1. Why do you mean by file concept?

2. What is the need of file in computer system?

3. Explain the terms field, record, directory and index.

4. What are various operations that you can perform on file?

5. What do you understand by the File organization? Discuss in brief
with suitable example.

6. What is Sequential file organization and its advantage?

7. Differentiate between Sequential file organization and Direct file
organization.

8. What is Index Sequential file organization and its advantages?

Multiple Choice Questions
1. A ……………….. is the basic element of data where individual

field contains a single value, such as an employee’s last name or
DOB or Mob No.

A) Field B) record

C) file D) database

2. A ………is collection of related fields that can be treated as a
unit by some application program.

A) Field B) record

C) file D) database

3. In ………………file organization, a fixed format is used for
records where all records are of the same length, consisting of the
same number of fixed length fields in a particular order.

A) Flat File B) sequential

C) indexed sequential D) indexed

4. The ……………………… maintains the key characteristic of the
sequential file: Records are organized in sequence based on a key
field.

A) Flat File B) sequential file

C) indexed sequential file D) indexed file

5. The …………………. greatly reduced the time required to access
a single record, without sacrificing the sequential nature of the file.

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/319

A) Flat File B) sequential file

C) indexed sequential file D) indexed file

6. An alternative is to organize the sequential file physically is a
……………..

A) List B) Linked List

C) Queue D) Stack

7. …………… are typically used in batch applications and are
generally optimum for such applications if they involve the
processing of all the records.

A) Indexed files B) Direct files

C) Sequential files D) Indexed Sequential files

8. Which is the simplest file structure.

A) Indexed files B) Direct files

C) Sequential files D) Flat File

BCA-1.2 Vol-2/B.Sc.-UGCS-04/UGCS-103/320

	Structure data types or Non Primitive data types
	There is another class of data types which is considered as structure data types or non primitive data types. These data types are user defined data types. Structured data types hold a collection of data values. This collection will generally consist ...
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:
	Step 1 :
	Step 2 :
	Step 3:
	Step 4:

	Hash Function is a fixed process which converts a key to a hash key to store in array.This function takes a key and maps it to a value of a certain length which is called a Hash value or Hash using various methods like Truncate, Division Reminder, Mid...
	Untitled
	Blank Page
	Blank Page

