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BLOCK 1: ESTIMATION THEORY 

UNIT 1: POINT AND INTERVAL ESTIMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 



 

 

 

 

 



 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 

 

 

 

UNIT 2: SUFFICIENCY  
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UNIT 3: COMPLETENESS 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 



 

 

 



 

 



 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 



 

 



 



 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 

 



 

 

 



 

 

 



 

 

 

 



 

 



 

 

 



 

 

 



 

 

 



 

 



 

 

 

 

 

 

 

UNIT 4: EXPONENTIAL FAMILY 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 



 

 

 

 

BLOCK 2: ESTIMATION THEORY 

UNIT 1: METHODS OF ESTIMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 METHOD OF MOMENTS 

The method of moments is, perhaps, the oldest method of finding point estimators, 

dating back at least to Karl Pearson in the late 1800s. The method of moments 

essentially amounts to equating the sample moments and corresponding population 

moments and solving the resulting equations for the parameters to be determined. 

Let  𝑓( ∙ ; 𝜃ଵ, 𝜃ଶ, … , 𝜃௞)  be a density of a random variable  𝑋  having  𝑘 

parameters 𝜃ଵ, 𝜃ଶ, … , 𝜃௞ . Further, let 𝜇௥
ᇱ  be the 𝑟௧௛  moment about origin, where 𝜇௥

ᇱ  is a 

known function of the 𝑘 parameters 𝜃ଵ, 𝜃ଶ, … , 𝜃௞, i.e. 

𝜇௥
ᇱ = 𝜇௥

ᇱ ( 𝜃ଵ, 𝜃ଶ, … , 𝜃௞) = 𝐸[𝑋௥] 

Let 𝑋ଵ, 𝑋ଶ , … , 𝑋௡ be a random sample from the density 𝑓( ∙ ; 𝜃ଵ, 𝜃ଶ, … , 𝜃௞) and let 𝑀௝
ᇱ be 

the jth sample moment, i.e. 

                                                          𝑀௝
ᇱ =

1

𝑛
෍ 𝑋௜

௝
      

௡

௜ୀଵ

                ; 𝑖 = 1, 2, … , 𝑛 

Form the 𝑘 equations, 

                                               𝑀௝
ᇱ = 𝜇௝

ᇱ (𝜃ଵ, 𝜃ଶ, … , 𝜃௞)                   ; 𝑗 = 1, 2, … , 𝑘                                    (1) 

in the  𝑘  variables  𝜃ଵ, 𝜃ଶ, … , 𝜃௞ , and let  𝛩෠ଵ,  𝛩෠ଶ, … ,  𝛩෠௞  be their unique solution, i.e.   𝛩෠௝ 

estimates 𝜃௝; ∀ 𝑗 = 1, 2, … , 𝑘. Eq. (1) is obtained by using the first 𝑘 raw moments. 

The estimator ൫𝛩෠ଵ,  𝛩෠ଶ, … ,  𝛩෠௞൯ is the estimator of (𝜃ଵ, 𝜃ଶ, … , 𝜃௞) obtained by the method-

of-moments. The estimators  ൫𝛩෠ଵ,  𝛩෠ଶ, … ,  𝛩෠௞൯  were obtained by replacing population 

moments by sample moments. 

The method-of-moments estimators are not uniquely defined. 



 
 

If instead of estimating  (θଵ, θଶ, … , θ୩) , method-of-moments estimators of, say 

τଵ(θଵ, θଶ, … , θ୏), τଶ(θଵ, θଶ, … , θ୏), … , τ୰(θଵ, θଶ, … , θ୏)  are desired, they can be 

obtained in several ways. One way would be to first find method-of-moments 

estimates, say θ෠ଵ, θ෠ଶ, … , θ෠୩ , of  θଵ, θଶ, … , θ୩  and then use  τ୨(θ෠ଵ, θ෠ଶ, … , θ෠୩)  as an 

estimate of 

τ୨(θଵ, θଶ, … , θ୩) for j = 1, 2, … , r. Another way would be to form the equations 

                                                                    M୨
ᇱ = μ୨

ᇱ(τଵ, τଶ, … , τ୰)                           ; j = 1, 2, … , r 

and solve them for τଵ, τଶ, … , τ୰. Estimators obtained using either way are called 

method-of-moments estimators and may not be the same in both cases. 

Example 2.1.1   Let 𝑋ଵ, 𝑋ଶ , … , 𝑋௡ be a random sample from a normal distribution with 

mean 𝜇 and variance 𝜎ଶ. Let (𝜃ଵ, 𝜃ଶ) = (𝜇, 𝜎). Estimate the parameters 𝜇 and 𝜎 by the 

method of moments. 

Since we know that, 

                                           𝜇 = 𝐸[𝑋] = 𝜇ଵ
ᇱ  

and                                            𝜎ଶ = 𝐸[𝑋ଶ] − {𝐸[𝑋]}ଶ = 𝜇ଶ
ᇱ − (𝜇ଵ

ᇱ )ଶ 

⇒                                      𝜇ଶ
ᇱ = 𝜎ଶ + 𝜇ଶ.                                              

Using method-of-moments, we have the following equations 

𝑀ଵ
ᇱ = 𝜇ଵ

ᇱ = 𝜇ଵ
ᇱ (𝜇, 𝜎) = 𝜇 

and                                               𝑀ଶ
ᇱ = 𝜇ଶ

ᇱ = 𝜇ଶ
ᇱ (𝜇, 𝜎) = 𝜎ଶ + 𝜇ଶ. 

 

Thus, the method-of-moments estimator of 𝜇 is 

𝛩෠ଵ = 𝑀ଵ
ᇱ = 𝑋ത 

and the method-of-moments estimator of 𝜎ଶ is 



 
 

𝛩෠ଶ = ට𝑀ଶ
ᇱ − 𝜃෠ଵ

ଶ
 =  ඩ

1

𝑛
෍ 𝑋௜

ଶ − 𝑋തଶ

௡

௜ୀଵ

 = ඩ
1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

=  ඨ
𝑛 − 1

𝑛
𝑆. 

 

Example 2.1.2   Let 𝑋ଵ, 𝑋ଶ , … , 𝑋௡ be a random sample from uniform distribution on     

(𝜇 − √3𝜎, 𝜇 + √3𝜎) . Here, the unknown parameters are  𝜇  and  𝜎 , which are the 

population mean and standard deviation. 

Let (𝜃ଵ, 𝜃ଶ) = (𝜇, 𝜎) and since we know that, 

𝜇ଵ
ᇱ = 𝜇 

and                                                           𝜇ଶ
ᇱ = 𝜎ଶ + 𝜇ଶ. 

It follows that the method-of-moments equations are 

𝑀ଵ
ᇱ = 𝜇ଵ

ᇱ = 𝜇ଵ
ᇱ (𝜇, 𝜎) = 𝜇 

and                                              𝑀ଶ
ᇱ = 𝜇ଶ

ᇱ = 𝜇ଶ
ᇱ (𝜇, 𝜎) = 𝜎ଶ + 𝜇ଶ. 

Hence, the method-of-moments estimators are  

𝛩෠ଵ = 𝑋ത 

and                                                                          𝛩෠ଶ = ට
௡ିଵ

௡
𝑆. 

 

 

 

1.2 METHOD OF MAXIMUM LIKELIHOOD 

Consider an estimation problem where we suppose that an urn contains a number of 

blue balls and number of red balls. Suppose that it is known that the ratio of the 



 
 

numbers is 3:1 but that it is not known whether the blue or the red balls are more 

numerous. 

Let 𝑋 be a random variable which denotes the event of drawing a blue ball. If 𝑛 balls 

are drawn with replacement from the urn, the distribution of 𝑋 is given by the binomial 

distribution 

                                                                 𝑓(𝑥;  𝑝) = ቀ
𝑛

𝑥
ቁ 𝑝௫𝑞௡ି௫                      ; 𝑥 = 0, 1, 2, … , 𝑛, 

where 𝑞 = 1 − 𝑝 and 0 ≤ 𝑝 ≤ 1 is the probability of drawing a blue ball, 

i.e.                                                             𝑝 = 𝑃[𝑋] =  
ଵ

ସ
 𝑜𝑟 

ଷ

ସ
 

We shall draw a sample of three balls, i.e. 𝑛 = 3, with replacement and attempt to 

estimate the unknown parameter 𝑝 of the distribution. Let us anticipate the results of 

drawing the sample. The possible outcomes and their probabilities are given below: 

 

 

Here, if 𝑥 = 0 in a sample of  3, the estimate 0.25 for 𝑝  would be preferred over 0.75 

since, 

𝑓 ൬0; 
1

4
൰ > 𝑓 ൬0; 

3

4
൰. 

Outcome : 𝒙 0 1 2 3 

𝒇 ൬𝒙; 
𝟏

𝟒
൰ 

27

64
 

27

64
 

9

64
 

1

64
 

𝒇 ൬𝒙; 
𝟑

𝟒
൰ 

1

64
 

9

64
 

27

64
 

27

64
 



 
 

In other words, a sample with 𝑥 = 0 is more likely to arise in a population with 𝑝 = 0.25 

than from one with 𝑝 = 0.75. In general, we should estimate 𝑝 by 0.25 when 𝑥 = 0 or 1 

and by 0.75 when 𝑥 = 2 or 3. So, the estimator may be defined as 

𝑝̂ = 𝑝̂(𝑥) = ൜
0.25, 𝑥 = 0, 1
0.75, 𝑥 = 2, 3.

 

The estimator thus selects for every possible 𝑥, the value of 𝑝, say 𝑝̂, such that 

𝑓(𝑥; 𝑝̂) > 𝑓(𝑥; 𝑝ᇱ), 

where 𝑝ᇱ is the complement value of 𝑝. 

Now, if we found  𝑥 = 6  in a sample of  25  from a binomial population, we should 

substitute all possible values of 𝑝 in the expression 

                                           𝑓(6 ; 𝑝) = ൬
25

6
൰ 𝑝଺(1 − 𝑝)ଶହି଺                 ; 0 ≤ 𝑝 ≤ 1                               (2) 

and choose that value of 𝑝 as our estimate which maximizes 𝑓(6 ; 𝑝). For the given 

possible values of 𝑝, we should find our estimate to be 
଺

ଶହ
. The position of its maximum 

value can be found by putting the derivative of the function defined in Eq. (2) with 

respect to 𝑝 equal to zero and solving the resulting equation for 𝑝. Thus, 

𝑑

𝑑𝑝
𝑓(6; 𝑝) = ൬

25

6
൰ 𝑝ହ(1 − 𝑝)ଵ଼ [6(1 − 𝑝) − 19𝑝], 

and on substituting this equal to zero and solving for 𝑝, we obtain 

𝑑

𝑑𝑝
𝑓(6; 𝑝) = 0 ⇒ 𝑝 = 0, 1,

6

25
. 

The possible probabilities for the outcome 𝑥 = 6 are given below: 

Probability : 𝒑 0 𝟎. 𝟐𝟒 1 



 
 

 

 

 

Therefore, our estimate is 

                                                                       𝑝̂ =
6

25
= 0.24.                                                                (3) 

Note that the point where the maximum value of 𝑓(6;  𝑝) takes place for 0 ≤ 𝑝 ≤ 1 in 

Fig. 1 is the same as that given in Eq. (3) when 𝑛 = 25.

This estimate has the property that 

𝑓(6; 𝑝̂) > 𝑓(6; 𝑝ᇱ), 

where 𝑝ᇱ is any other value of 𝑝 in the interval 0 ≤ 𝑝 ≤ 1. 

 

Figure 1. Maximum Likelihood Estimate of p for Bin(25, p) given x = 6 

 

 

Definition.   Likelihood function 

𝒇(𝟔 ;  𝒑) 
0 0.18 0 



 
 

The likelihood function of 𝑛 random variables 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ is defined to be the joint 

density of the 𝑛 random variables, say 𝑓௑భ,௑మ,…,௑೙
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡), which is considered 

to be a function of 𝜃 . In particular, if 𝑋ଵ, 𝑋ଶ, … , 𝑋௡  is a random sample from the 

density 𝑓(𝑥;  𝜃), then the likelihood function is 𝑓(𝑥ଵ;  𝜃) 𝑓(𝑥ଶ;  𝜃) ∙∙∙∙∙ 𝑓(𝑥௡;  𝜃). 

The likelihood function  L(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  gives the likelihood that the random 

variables assume a particular value of a density function. The likelihood is the value of a 

density function; so for discrete random variables, it is a probability. Let us suppose 

that 𝜃 is known and denote this known value of 𝜃 by 𝜃଴ . The particular value of the 

random variables which is “most likely to occur” is that value  𝑥ଵ
ᇱ , 𝑥ଶ

ᇱ , … , 𝑥௡
ᇱ  such 

that 𝑓௑భ,௑మ,…,௑೙
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡;  𝜃଴) is a maximum. For example, let us assume that 𝑛 = 1 

and 𝑋ଵ~𝑁(6,1). Then, the value of the random variable which is most likely to occur 

is 𝑋ଵ = 6. By “most likely to occur”, we mean the value 𝑥ଵ
ᇱ  of 𝑋ଵ such that 

𝛷଺,ଵ(𝑥ଵ
ᇱ ) > 𝛷଺,ଵ(𝑥ଵ). 

Further, suppose that the joint density of  𝑛  random variables 

is 𝑓௑భ,௑మ,…,௑೙
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡;  𝜃), where 𝜃  is unknown. Let the particular values which are 

observed be represented by 𝑥ଵ
ᇱ , 𝑥ଶ

ᇱ , … , 𝑥௡
ᇱ . We want to find the value of 𝜃 in the parameter 

space 𝜣, denoted by 𝜃෠, which maximizes the likelihood function L(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡). The 

value 𝜃෠ which maximizes the likelihood is, in general, a function of 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, say 𝜃෠ =

𝜗መ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡). When this is the case, the random variable 𝛩෠ = 𝜗መ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is called 

the maximum-likelihood estimator of 𝜃. 

Definition.   Maximum-likelihood estimator 

Let  L(𝜃) = L(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  be the likelihood function for the random 

variables 𝑋ଵ, 𝑋ଶ, … , 𝑋௡. If 𝜃෠, a function of 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , is the value of 𝜃 in 𝜣 which 



 
 

maximizes L(𝜃), then 𝛩෠ = 𝜗መ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is the maximum-likelihood estimator of 𝜃 

and 𝜃෠ = 𝜗መ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  is the maximum-likelihood estimate of  𝜃  for the given 

sample. 

Many likelihood functions satisfy regularity conditions. So, the maximum-likelihood 

estimator is the solution of the equation 

𝑑𝐿(𝜃)

𝑑𝜃
= 0. 

Since  𝐿(𝜃) and  log 𝐿(𝜃)  have their maxima at the same value of  𝜃 , it is sometimes 

easier to find the maximum of the logarithm of the likelihood. 

If the likelihood function contains 𝑘 parameters, i.e. if 

𝐿(𝜃ଵ, 𝜃ଶ, … , 𝜃௞) = ෑ 𝑓(𝑥௜;  𝜃ଵ, 𝜃ଶ, … , 𝜃௞),

௡

௜ୀଵ

 

then the maximum-likelihood estimators of the parameters 𝜃ଵ, 𝜃ଶ, … , 𝜃௞ are the random 

variables  𝛩෠ଵ = 𝜗መଵ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡), 𝛩෠ଶ = 𝜗መଶ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡), … . . , 𝛩෠௞ = 𝜗መ௞(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) , 

where 𝜃෠ଵ, 𝜃෠ଶ, … , 𝜃෠௞ are the values in 𝜣 which maximize 𝐿(𝜃ଵ, 𝜃ଶ, … , 𝜃௞). 

If certain regularity conditions are satisfied, the point where the likelihood is 

maximum is a solution of the 𝑘 equations 

𝜕𝐿(𝜃ଵ, 𝜃ଶ, … , 𝜃௞)

𝜕𝜃ଵ
= 0 

𝜕𝐿(𝜃ଵ, 𝜃ଶ, … , 𝜃௞)

𝜕𝜃ଶ
= 0 

                                                           ⋮ 

𝜕𝐿(𝜃ଵ, 𝜃ଶ, … , 𝜃௞)

𝜕𝜃௞
= 0 



 
 

Example 2.2.1   Suppose that a random sample of size 𝑛 is drawn from the Bernoulli 

distribution 

𝑓(𝑥; 𝑝) = 𝑝௫𝑞ଵି௫𝐼(଴,ଵ)(𝑥)              ; 0 ≤ 𝑝 ≤ 1 𝑎𝑛𝑑 𝑞 = 1 − 𝑝. 

Since the random sample is drawn from 𝐵(1, 𝑝), the sample values 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ will be a 

sequence of 0’s and 1’s, and the likelihood function is 

                                                    𝐿(𝑝) = ෑ 𝑝௫೔𝑞ଵି௫೔ =

௡

௜ୀଵ

𝑝 ௬ (1 − 𝑝) ௡ି௬                  ; 𝑦 = ෍ 𝑥௜

௡

௜ୀଵ

. 

We obtain 

log 𝐿(𝑝) = 𝑦 log 𝑝 − (𝑛 − 𝑦) log(1 − 𝑝). 

And on differentiating above with respect to the parameter 𝑝, we get 

𝑑 log 𝐿(𝑝)

𝑑𝑝
=

𝑦

𝑝
−

𝑛 − 𝑦

1 − 𝑝
 . 

On substituting the last expression equal to zero and solving for 𝑝, we find the estimate 

                                                                    𝑝̂ =
𝑦

𝑛
=

1

𝑛
 ෍ 𝑥௜

௡

௜ୀଵ

= 𝑥̅                                                              (4) 

which is intuitively what the estimate for this parameter should be. It is also a method-of-

moments estimate. 

For 𝑛 = 3, let us sketch the likelihood function. 

Since the likelihood function depends on the 𝑥௜ ’s only through ∑ 𝑥௜, thus the likelihood 

function can be represented by the following four curves: 

 𝐿଴ = 𝐿 ൭𝑝; ෍ 𝑥௜ = 0

ଷ

௜ୀଵ

൱ = (1 − 𝑝)ଷ 

                                                        𝐿ଵ = 𝐿 ൭𝑝; ෍ 𝑥௜ = 1

ଷ

௜ୀଵ

൱ = 𝑝 (1 − 𝑝)ଶ 



 
 

                                                        𝐿ଶ = 𝐿 ൭𝑝; ෍ 𝑥௜ = 2

ଷ

௜ୀଵ

൱ = 𝑝ଶ (1 − 𝑝) 

                                                        𝐿ଷ = 𝐿 ൭𝑝; ෍ 𝑥௜ = 2

ଷ

௜ୀଵ

൱ = 𝑝, 

which are sketched in Fig. 2: 

 

Figure 2. Likelihood Function Plot 

Note that the point where the maximum of each of the curves takes place for 0 ≤ 𝑝 ≤ 1 

is the same as that given in Eq. (4) when 𝑛 = 3.

Example 2.2.2   Let the random variable 𝑋 have a uniform density given by 

𝑓(𝑥;  𝜃) = 𝑓(𝑥;  𝜇, 𝜎) =
1

2√3 𝜎
𝐼ൣఓି√ଷ ఙ,   ఓା√ଷ ఙ൧ (𝑥) 

where −∞ < 𝜇 < ∞ and 𝜎 > 0. 



 
 

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a random sample of size 𝑛. Then, the likelihood function is given by 

𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = ෑ 𝑓(𝑥௜;  𝜇, 𝜎)

௡

௜ୀଵ

 

                                   = ൬
1

2√3 𝜎
൰

௡

ෑ 𝐼ൣఓି√ଷ ఙ,   ఓା√ଷ ఙ൧ (𝑥௜)

௡

௜ୀଵ

 

= ൬
1

2√3 𝜎
൰

௡

𝐼ൣఓି√ଷ ఙ,   ௬భ൧(𝑦௡) 𝐼ൣ௬భ,   ఓା√ଷ ఙ൧(𝑦௡) 

= ൬
1

2√3 𝜎
൰

௡

𝐼
ቂ 

ఓି௬భ
ଷ

 ,   ஶቁ
(𝜎) 𝐼

ቂ 
௬೙ିఓ

ଷ
 ,   ஶቁ

(𝜎)  𝐼[௬భ,   ஶ)(𝑦௡), 

where 𝑦ଵ is the smallest of the observations and 𝑦௡ is the largest. 

 

Figure 3 

 

The likelihood function is  ൫2√3 𝜎൯
ି௡

 in the shaded area of Fig. 3 and  0  elsewhere. 

൫2√3 𝜎൯
ି௡

 within the shaded area is clearly a maximum when 𝜎 is smallest, which is the 

intersection of the lines  𝜇 − √3 𝜎 = 𝑦ଵ  and  𝜇 + √3 𝜎 = 𝑦௡ . Hence, the maximum-

likelihood estimates of 𝜇 and 𝜎 are 



 
 

μො =
ଵ

୬
 ∑ x୧ = xത୬

୧ୀଵ                                                                   (5) 

and                                                              σෝଶ =
1

n
 ෍(x୧ − xത)ଶ

୬

୧ୀଵ

,                                                            (6) 

which are quite different from the method-of-moments estimates given in Example 

2.1.2. 

Example 2.2.2 shows that one must not always rely on the differentiation process to 

locate the maximum. 

The function 𝐿(𝜃) may, for example, be represented by the curve in Fig. 4, where 

the actual maximum is at 𝜃෠, but the derivative set equal to 0 would locate 𝜃ᇱ  as the 

maximum. 

 

 

Figure 4 

 

We know that the equation 

𝜕𝐿

𝜕𝜃
= 0 

locates minima as well as maxima, and hence we must avoid using a root of the 

equation which actually locates a minimum.  



 
 

Theorem 2.2.1   Invariance property of maximum-likelihood estimators 

Let 𝛩෠ = 𝜗መ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) be the maximum-likelihood estimator of 𝜃 in the density 𝑓(𝑥;  𝜃), 

where 𝜃 is assumed unidimensional. If 𝜏(∙) is a function with a single-valued inverse, 

then the maximum-likelihood estimator of 𝜏(𝜃) is 𝜏(𝛩෠). 

For example, in the normal density with mean 𝜇଴ known, the maximum-likelihood 

estimator of 𝜎ଶ is 

𝛩෠ =
1

𝑛
෍(𝑋௜ − 𝜇଴)ଶ

௡

௜ୀଵ

. 

By the invariance property of maximum-likelihood estimators, the maximum-likelihood 

estimator of 𝜎 is 

                                                           𝜏ଵ൫𝛩෠൯ = ඩ 
1

𝑛
෍(𝑋௜ − 𝜇଴)ଶ

௡

௜ୀଵ

.                      ቂ ∵ 𝜏ଵ(𝜃) = 𝜎 = ඥ𝜎ଶ ቃ 

Similarly, the maximum-likelihood estimator of log 𝜎ଶ is 

                                                          𝜏ଶ൫𝛩෠൯ = log ൥
1

𝑛
෍(𝑋௜ − 𝜇଴)ଶ

௡

௜ୀଵ

൩ .                      [ ∵ 𝜏ଶ(𝜃) = log 𝜎ଶ ] 

The invariance property of maximum-likelihood estimators can be extended in two 

directions: First,  𝜃  can be taken as  𝑘 -dimensional rather than unidimensional, and, 

second, the assumption that 𝜏(∙) has a single-valued inverse can be removed. It can be 

noted that such an extension is necessary by considering an example. Suppose an 

estimate of the variance, namely 𝜃(1 − 𝜃), of a Bernoulli distribution is desired. Example 

2.2.1 gives the maximum-likelihood estimate of 𝜃 to be 𝑥̅, but since 𝜃(1 − 𝜃) is not a 

one-to-one function of 𝜃, Theorem 2.2.1 does not give the maximum-likelihood estimator 

of 𝜃(1 − 𝜃). Theorem 2.2.2 below will give such an estimate, and it will be 𝑥̅(1 − 𝑥̅). 



 
 

Let  𝜃 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௞)  be a  𝑘 -dimensional parameter, and let 𝜣 denote the 

parameter space. Suppose that the maximum-likelihood estimate of  𝜏(𝜃) =

(𝜏ଵ(𝜃), 𝜏ଶ(𝜃), … , 𝜏௥(𝜃)) , where  1 ≤ 𝑟 ≤ 𝑘 , is desired. Let  𝑇  denote an  𝑟 -dimensional 

range space of the transformation 𝜏(∙). Define 

𝑀(𝜏; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = sup
{ఏ ∶ ఛ(ఏ) ୀ ఛ} 

𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡). 

The function 𝑀(∙ ; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) is called the likelihood function induced by 𝜏(∙). When 

estimating 𝜃, we maximized the likelihood function 𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) as a function of 𝜃 

for fixed  𝑥ଵ, 𝑥ଶ, … , 𝑥௡ . So, in order to estimate  𝜏 = 𝜏(𝜃) , we will 

maximize 𝑀(𝜏 ; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) as a function of 𝜏 for fixed 𝑥ଵ, 𝑥ଶ, … , 𝑥௡. Thus, the maximum-

likelihood estimate of                𝜏 = 𝜏(𝜃), denoted by 𝜏̂, is any value that maximizes the 

induced likelihood function for fixed 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, i.e. 

{𝜏̂ ∶ 𝑀(𝜏̂; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ≥ 𝑀(𝜏; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡), ∀ 𝜏 ∈ 𝑇}. 

The extended form of the invariance property of maximum-likelihood estimation is 

given in the following theorem. 

Theorem 2.2.2   Let  𝛩෠ = ൫𝛩෠ଵ, 𝛩෠ଶ, … , 𝛩෠௞൯ , where  𝛩෠௝ = 𝜗መ௝(∙ ; 𝑋ଵ, 𝑋ଶ, … , 𝑋௞) , be a 

maximum-likelihood estimator of  𝜃 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௞)  in the density function  𝑓(∙

 ;  𝜃ଵ, 𝜃ଶ, … , 𝜃௞). If 𝜏(𝜃) = ൫𝜏ଵ(𝜃), 𝜏ଶ(𝜃), … , 𝜏௥(𝜃)൯ for 1 ≤ 𝑟 ≤ 𝑘 is a transformation of the 

parameter space 𝜣, then a maximum-likelihood estimator of  𝜏(𝜃) =

൫𝜏ଵ(𝜃), 𝜏ଶ(𝜃), … , 𝜏௥(𝜃)൯ is 𝜏൫𝛩෠൯, where 𝜏(𝛩෠) = (𝜏ଵ൫𝛩෠൯, 𝜏ଶ൫𝛩෠൯, … , 𝜏௥൫𝛩෠൯). 

PROOF.   Let 𝜃෠ = ൫𝜃෠ଵ, 𝜃෠ଶ, … , 𝜃෠௞൯ be a maximum-likelihood estimate of 𝜃 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௞). 

Now, it will be sufficient to show that 

𝑀൫𝜏൫𝜃෠൯; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡൯ ≥ 𝑀(𝜏(𝜃); 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) 



 
 

for any 𝜏 ∈ 𝑇. We have 

𝑀(𝜏(𝜃); 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = sup
{ఏ ∶ ఛ(ఏ) ୀ ఛ}

𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) 

                                          ≤ sup
{ఏ∈௵}

𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) 

                                          = 𝐿൫𝜃෠; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡൯ 

                                          = sup
൛ఏ ∶ ఛ(ఏ) ୀ ఛ൫ఏ෡൯ൟ

𝐿(𝜃; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡) 

                                          = 𝑀൫𝜏(𝜃෠); 𝑥ଵ, 𝑥ଶ, … , 𝑥௡൯ 

⇒                               𝑀൫𝜏൫𝜃෠൯; 𝑥ଵ, 𝑥ଶ, … , 𝑥௡൯ ≥ 𝑀(𝜏(𝜃); 𝑥ଵ, 𝑥ଶ, … , 𝑥௡)                                                  ∎ 

Example 2.2.3   Let Xଵ, Xଶ, … , X୬ be a random sample of size n from the normal 

distribution having density 

f(x;  μ, σଶ) =
1

σ√2π
 exp ൤−

1

2σଶ
(x୧ − μ)ଶ൨, 

where −∞ ≤ μ ≤ ∞ and σ > 0. Then, the likelihood function is given by 

L(μ, σଶ;  xଵ, xଶ, … , x୬) = ෑ f(x୧; μ, σ)

୬

୧ୀଵ

  

                                          = ෑ
1

σ√2π
 exp ൤−

1

2σଶ
(x୧ − μ)ଶ൨

୬

୧ୀଵ

 

                                          = ൬
1

2πσଶ
൰

୬
ଶ

exp ൥−
1

2σଶ
෍(x୧ − μ)ଶ

୬

୧ୀଵ

൩. 

The logarithm of the likelihood function is 

L∗ = log L = −
n

2
log 2π −

n

2
log σଶ −

1

2σଶ
෍(x୧ − μ)ଶ

୬

୧ୀଵ

. 

To find the location of its maximum, we compute 



 
 

∂L∗

∂μ
=

1

σଶ
෍(x୧ − μ)

୬

୧ୀଵ

 

and                                                       
∂L∗

∂σଶ
= −

n

2σଶ
+

1

2σସ
෍(x୧ − μ)ଶ

୬

୧ୀଵ

, 

and on putting these derivatives equal to zero and solving the resulting 

equations for μ and σଶ, we find the estimates 

                                                                        μො =
1

n
 ෍ x୧ = xത

୬

୧ୀଵ

                                                                  (7) 

σෝଶ =
1

n
 ෍(x୧ − xത)ଶ

୬

୧ୀଵ

                                                             (8) 

which turns out to be the sample moments corresponding to μ and σଶ. 

Suppose 𝜏(𝜃) = 𝜇 + 𝑧௤𝜎, where 𝜙൫𝑧௤൯ = 𝑞, is the 𝑞௧௛ quantile. Here, 𝜃 = (𝜇, 𝜎ଶ) and 

𝛩෠ଵ = 𝑋ത  and  𝛩෠ଶ = ඩ 
1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

= ඨ 
𝑛 − 1

𝑛
𝑆 

are the maximum-likelihood estimators of 

𝜃෠ଵ = 𝜇  and  𝜃෠ଶ = 𝜎, 

respectively. According to Theorem 2.2.2, the maximum-likelihood estimator of 𝜏(𝜃) is 

given by 

                                                             𝜏൫𝛩෠൯ = 𝜏൫𝛩෠ଵ൯ + 𝑧௤𝜏൫𝛩෠ଶ൯                            ൣ ∵  𝜏(𝜃) = 𝜇 + 𝑧௤𝜎 ൧ 

                                                                        = 𝑋ത + 𝑧௤ඩ 
1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

 

 



 
 

1.3 MINIMUM CHI-SQUARE METHOD 

Let  𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be a random sample from a density given by  𝑓௑(𝑥;  𝜃) , and let 

℘ଵ, ℘ଶ, … , ℘௞ be a partition of the range of 𝑋.The probability that an observation falls in 

cell ℘௝ , 𝑗 = 1, 2, … , 𝑘 , denoted by 𝑝௝(𝜃), can be found. For instance, if 𝑓௑(𝑥;  𝜃) is the 

density function of a continuous random variable, then 

𝑝௝(𝜃) = 𝑃ൣ𝑋 𝑓𝑎𝑙𝑙𝑠 𝑖𝑛 𝑐𝑒𝑙𝑙 ℘௝൧ 

                                                         = න 𝑓௑(𝑥;  𝜃) 𝑑𝑥

℘ೕ

                          ;    ෍ 𝑝௝(𝜃) = 1

௞

௝ୀଵ

. 

Let the random variable 𝑁௝ denote the number of 𝑋௜ ’s in the sample which falls in cell 

℘௝ , 𝑗 = 1, 2, … , 𝑘. Then, the sample size 𝑛 is given by 

𝑛 = ෍ 𝑛௝

௞

௝ୀଵ

 . 

Form the following summation: 

𝜒ଶ = ෍  
ൣ𝑛௝ − 𝑛 𝑝௝(𝜃)൧

ଶ

𝑛 𝑝௝(𝜃)

௞

௝ୀଵ

, 

where 𝑛௝ is the value of 𝑁௝.The numerator of the 𝑗௧௛ term in the sum is the square of the 

difference between the observed and the expected number of observations falling in 

cell ℘௝. 

The minimum chi-square estimate of 𝜃 is that 𝜃෠ which minimizes 𝜒ଶ. It is that 𝜃 among 

all possible 𝜃’s which makes the expected number of observations in cell ℘௝ “nearest” 

the observed number. The minimum chi-square estimator depends on the partition 

℘ଵ, ℘ଶ, … , ℘௞ selected. 



 
 

Example 2.3.1   Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a random sample from a Bernoulli distribution, i.e. 

                                𝑓௑(𝑥;  𝜃) = 𝜃௫(1 − 𝜃)ଵି௫                  ;  𝑥 = 0, 1. 

Further, let 𝑁௝ be the number of observations equal to 𝑗 for 𝑗 = 0, 1. Here, the range of 

the observation 𝑋  is partitioned into the two sets consisting of the numbers 0 and  1 

respectively. We have 

𝜒ଶ = ෍  
ൣ𝑛௝ − 𝑛 𝑝௝(𝜃)൧

ଶ

𝑛 𝑝௝(𝜃)

ଵ

௝ୀ଴

 

      =
[𝑛଴ − 𝑛(1 − 𝜃)]ଶ

𝑛(1 − 𝜃)
+

(𝑛ଵ − 𝑛𝜃)ଶ

𝑛𝜃
 

      =
[(𝑛 − 𝑛ଵ) − 𝑛(1 − 𝜃)]ଶ

𝑛(1 − 𝜃)
+

(𝑛ଵ − 𝑛𝜃)ଶ

𝑛𝜃
                                                 ቎∵  ෍ 𝑛௝ = 𝑛

ଵ

௝ୀ଴

 ቏ 

      =
(𝑛ଵ − 𝑛𝜃)ଶ

𝑛
 

1

𝜃(1 − 𝜃)
 . 

The minimum of 𝜒ଶ as a function of 𝜃 can be found by inspection by noting that 𝜒ଶ = 0 

for 

𝜃 =
௡భ

௡
. Hence, 

𝜃෠ =
𝑛ଵ

𝑛
 . 

Often it is difficult to locate that  𝜃෠  which minimizes  𝜒ଶ . Hence, the 

denominator 𝑛𝑝௝(𝜃) is sometimes changed to 𝑛௝ and if 𝑛௝ = 0, unity is used. Thus, 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝜒ଶ = ෍  
ൣ𝑛௝ − 𝑛 𝑝௝(𝜃)൧

ଶ

𝑛௝

௞

௝ୀଵ

 . 

The modified minimum chi-square estimate of  𝜃  is then that  𝜃෠  which minimizes the 

modified 𝜒ଶ. 



 
 

1.4 MINIMUM DISTANCE METHOD 

Let  𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be a random sample from the distribution given by the cumulative 

distribution function  𝐹௫(𝑥;  𝜃) = 𝐹(𝑥;  𝜃) , and let  𝑑(𝐹, 𝐺)  be a distance function that 

measures how “far apart” two cumulative distribution functions 𝐹 and 𝐺 are. An example 

of a distance function is 

𝑑(𝐹, 𝐺) = sup
௫

 |𝐹(𝑥) − 𝐺(𝑥)|, 

which is the largest vertical distance between 𝐹 and 𝐺. This can be easily seen in Fig. 5. 

The minimum-distance estimate of  𝜃  is that  𝜃෠  among all possible  𝜃  for which 

𝑑(𝐹(𝑥;  𝜃), 𝐹௡(𝑥))  is minimized, where  𝐹௡(𝑥)  is the sample cumulative distribution 

function. Thus, 𝜃෠ is chosen so that 𝐹(𝑥; 𝜃෠) will be “closest” to 𝐹௡(𝑥), which is desirable 

since the Theorem 7.1 of Chap. I states that for a fixed argument  𝑥 , the sample 

cumulative distribution function has the same distribution as the mean of the binomial 

distribution. Hence, by the law of large numbers, 𝐹௡(𝑥) converges to 𝐹(𝑥). 

Example 2.4.1   Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a random sample from a Bernoulli distribution; 

then 

𝐹(𝑥;  𝜃) = (1 − 𝜃଴)𝐼[଴,ଵ)(𝑥) + 𝐼[ଵ,ஶ)(𝑥), 

where 0 ≤ 𝜃 ≤ 1. 

 



 
 

Figure 5 

 

Further, let 𝑛௝ be the number the observations equal to 𝑗 ; 𝑗 = 0, 1. Then 

𝐹௡(𝑥) =
𝑛଴

𝑛
 𝐼[଴,ଵ)(𝑥) + 𝐼[ଵ,ஶ)(𝑥). 

Now, if the distance function 

𝑑(𝐹, 𝐺) = sup
௫

 |𝐹(𝑥) − 𝐺(𝑥)| 

is used, then 𝑑൫𝐹(𝑥;  𝜃), 𝐹௡(𝑥)൯ is minimized if 

                                                      1 − 𝜃 =  
𝑛଴

𝑛
 

⇒                                                         𝜃 =  
𝑛ଵ

𝑛
 =  

1

𝑛
෍ 𝑥௜

௡

௜ୀଵ

  = 𝑥̅                                       ቎ ∵  ෍ 𝑛௝ = 𝑛

ଵ

௝ୀ଴

 ቏ 

Hence, 𝜃෠ = 𝑥̅. 

2. PROPERTIES OF POINT ESTIMATORS 

In this section, we will define certain properties, which an estimator may or may not 

possess, that will help in deciding whether one estimator is better than another. 

2.1 CLOSENESS 

Let  𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be a random sample from a density, say  𝑓௫(𝑥;  𝜃) , which is known 

except for 𝜃. Then, a point estimator of 𝜏(𝜃) is a statistic, say 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡), whose 

value is used as an estimate of  𝜏(𝜃) , where  𝜏(𝜃)  is a real-valued function of the 

unknown parameter 𝜃. Ideally, we would like the value of 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) to be the value 



 
 

of the unknown  𝜏(𝜃), but this is not possible except in trivial cases. For example, 

assume that one can sample from a density given by 

𝑓(𝑥;  𝜃) = 𝐼
ቀఏ ି 

ଵ
ଶ

 ,   ఏ ା 
ଵ
ଶ

ቁ
(𝑥), 

where 𝜃 is known to be an integer, i.e. 𝜣 consists of all integers. Consider estimating 𝜃 

on the basis of a single observation 𝑥ଵ. If 𝓉(𝑥ଵ) is assigned as its value the nearest 

integer 𝑥ଵ, then the estimator 𝓉(𝑋ଵ) will always correctly estimate 𝜃 . In a sense, this 

problem is really not statistical since one knows the value of  𝜃  after taking one 

observation. 

 Not being able to achieve the ultimate of always estimating the unknown 𝜏(𝜃), we 

look for an estimator that is “close” to 𝜏(𝜃). There are several ways of defining “close”. 

𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is a statistic and hence has a distribution, or rather a family of 

distributions, depending on what 𝜃 is. The distribution of 𝑇 tells us how the values 𝑡 of 𝑇 

are distributed, and we would like to select  𝓉  so that the values of  𝑇  distributed 

near 𝜏(𝜃). 

Rather than resorting to characteristics of a distribution, such as its mean and 

variance, one can define what “concentration” might mean in terms of the distribution 

itself. Two such definitions follow. 

Definition.   More concentrated and most concentrated 

Let  𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  and  𝑇ᇱ = 𝓉ᇱ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  be two estimators of  𝜏(𝜃) . 𝑇ᇱ  is 

called a more concentrated estimator of  𝜏(𝜃)  than  𝑇  if and only if 

𝑃ఏ[𝜏(𝜃) − 𝜆 < 𝑇ᇱ ≤ 𝜏(𝜃) + 𝜆] ≥ 𝑃ఏ[𝜏(𝜃) − 𝜆 < 𝑇 ≤ 𝜏(𝜃) + 𝜆] 

for all 𝜆 > 0 and for each 𝜃 ∈ 𝜣. An estimator 𝑇∗ = 𝓉∗(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is called most 

concentrated if it is more concentrated than any other estimator. 



 
 

The property of most concentrated is highly desirable. Unfortunately, most 

concentrated estimators seldom exist. 

Another criterion for comparing estimators is the following one. 

Definition.   Pitman-closer and Pitman-closest 

Let  𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  and  𝑇ᇱ = 𝓉ᇱ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  be two estimators of  𝜏(𝜃) . 𝑇ᇱ  is 

called a Pitman-closer estimator of  𝜏(𝜃)  than  𝑇  if and only if 

𝑃ఏ[𝜏(𝜃) − 𝜆 < 𝑇ᇱ ≤ 𝜏(𝜃) + 𝜆] ≥ 𝑃ఏ[𝜏(𝜃) − 𝜆 < 𝑇 ≤ 𝜏(𝜃) + 𝜆] 

for each 𝜃 ∈ 𝜣. An estimator 𝑇∗ = 𝓉∗(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is called Pitman-closest if it is 

Pitman-closer than any other estimator. 

The property of Pitman-closest is, like the property of most concentrated, 

desirable, yet rarely there will exist a Pitman-closest estimator. Both Pitman-

closer and more concentrated are intuitively attractive properties to be used to compare 

estimators, yet they are not always useful. Given two estimators 𝑇 and 𝑇ᇱ, one does not 

have to be more concentrated or Pitman-closer than the other. What often happens is 

that one, say 𝑇, is Pitman-closer or more concentrated for some 𝜃 ∈ 𝜣; and since 𝜃 is 

unknown, we cannot say which estimator is preferred. 

Competing estimators can be compared by defining a measure of the closeness of 

an estimate to the unknown  𝜏(𝜃) . An estimator  𝑇ᇱ = 𝓉ᇱ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  of  𝜏(𝜃)  will be 

judged better than an estimator  𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) if the measure of the closeness 

of  𝑇ᇱ  to  𝜏(𝜃)  indicates that  𝑇ᇱ  is closer to  𝜏(𝜃) than  𝑇 . Here, we assume that  𝑛 , the 

sample size, is fixed. 

2.2 MEAN-SQUARED ERROR 



 
 

A useful, though perhaps crude, measure of goodness or closeness of an 

estimator  𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  of  𝜏(𝜃)  is what is called the mean-squared error of the 

estimator. 

Definition.   Mean-squared error 

Let 𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) be an estimator of 𝜏(𝜃). 𝐸ఏ[𝑇 − 𝜏(𝜃)]ଶ is defined to be the 

mean-squared error of the estimator 𝑇. 

Let  MSE𝓉(θ)  denote the mean-squared error of the estimator  T =

𝓉(Xଵ, Xଶ, … , X୬) of τ(θ).Then, 

𝐸ఏ[𝑇 − 𝜏(𝜃)]ଶ = 𝐸ఏ[𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) − 𝜏(𝜃)]ଶ 

= න ⋯ න[𝓉(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) − 𝜏(𝜃)]ଶ 𝑓(𝑥ଵ;  𝜃) ⋯ 𝑓(𝑥௡;  𝜃) 𝑑𝑥ଵ ⋯ 𝑑𝑥௡, 

where 𝑓(𝑥;  𝜃) is the probability density function from which the random sample was 

selected. 

 

Figure 6 

 

The name “mean-squared error” can be justified if one thinks of the difference           

𝑡 − 𝜏(𝜃) ,  where  𝑡  is a value of  𝑇  used to estimate  𝜏(𝜃) ,  as the error made in 

estimating 𝜏(𝜃), and then interprets the “mean” in “mean-squared error” as expected or 

average. 𝐸ఏ[𝑇 − 𝜏(𝜃)]ଶ is a measure of the spread of 𝑇 values about 𝜏(𝜃) so that the 

mean-squared error of an estimator is taken as our standard in assessing the goodness 

of an estimator. If we were to compare estimators by looking at their respective mean-



 
 

squared errors, we could define as best that estimator with small or smallest mean-

squared error, but such estimators rarely exist. 

For any two estimators 𝑇ଵ = 𝓉ଵ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) and 𝑇ଶ = 𝓉ଶ(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) of 𝜏(𝜃), their 

respective men-squared errors  𝑀𝑆𝐸𝓉భ
(𝜃)  and  𝑀𝑆𝐸𝓉మ

(𝜃)  are likely to cross. So for 

some 𝜃, 𝓉ଵ has smaller 𝑀𝑆𝐸, and for others 𝓉ଶ has smaller 𝑀𝑆𝐸.We would then have no 

basis for preferring one of the estimators over the other. This can be easily seen in Fig. 

6. 

Example 3.2.1   Let  𝑋ଵ, 𝑋ଶ, … , 𝑋௡  be a random sample from the density  𝑓(𝑥;  𝜃) , 

where 𝜃 is a real number, and consider estimating 𝜏(𝜃) = 𝜃. We seek an estimator, say                    

𝑇∗ = 𝓉∗(𝑋ଵ, 𝑋ଶ, … , 𝑋௡), such that 

𝑀𝑆𝐸𝓉∗(𝜃) ≤ 𝑀𝑆𝐸𝓉(𝜃) 

for every 𝜃 and for any other estimator 𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) of 𝜃. 

Consider the family of estimators 𝑇ఏబ
= 𝓉ఏబ

(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) ≡ 𝜃଴ indexed by 𝜃଴ for 𝜃଴ ∈ 𝜣. 

For each 𝜃଴ ∈ 𝜣, the estimator 𝑇ఏబ
 ignores the observations and estimates𝜃 to be 𝜃଴. 

Note that 

𝑀𝑆𝐸௧ഇబ
(𝜃) = 𝐸ఏൣ𝓉ఏబ

(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) − 𝜃൧
ଶ

 

= 𝐸ఏబ
[𝜃଴ − 𝜃]ଶ 

So,                                         𝑀𝑆𝐸𝓉ഇబ
(𝜃଴) = 0.                                                                                          (9) 

Hence, if ∃  an estimator  𝑇∗ = 𝓉∗(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  satisfying  𝑀𝑆𝐸𝓉∗(𝜃) ≤ 𝑀𝑆𝐸𝓉(𝜃), ∀ 𝜃  and 

for any estimator 𝓉, 

                                                   𝑀𝑆𝐸𝓉∗(𝜃଴) ≤ 𝑀𝑆𝐸𝓉ഇబ
(𝜃଴) = 0                            [𝑈𝑠𝑖𝑛𝑔 (9)] 

≡ 0. 



 
 

In order for an estimator 𝓉∗ to have its mean-squared error identically 0, it must always 

estimate 𝜃 correctly. 

 Example 3.2.1 shows that except in very rare cases, an estimator with smallest 

mean-squared error will not exist. One reason for being unable to find an estimator with 

uniformly smallest mean-squared error is that the class of all possible estimators is too 

large − it includes some estimators that are extremely prejudiced in favor of particular 𝜃. 

For instance, in the example above,  𝓉ఏబ
(𝑋ଵ, 𝑋ଶ, … , 𝑋௡)  is highly partial to  𝜃଴  since it 

always estimates 𝜃 to be 𝜃଴. We could restrict the totality of estimators by considering 

only estimators that satisfy some other property. One such property is that of 

unbiasedness. 

 

Definition.   Unbiased 

An estimator 𝑇 = 𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is defined to be an unbiased estimator of 𝜏(𝜃) if 

and only if 

𝐸ఏ[𝑇] = 𝐸ఏ[𝓉(𝑋ଵ, 𝑋ଶ, … , 𝑋௡] = 𝜏(𝜃), ∀ 𝜃 ∈ 𝜣. 

An estimator is unbiased if the mean of its distribution equals 𝜏(𝜃), the function of 

the parameter being estimated. Consider again the estimator 𝓉ఏబ
(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) ≡ 𝜃଴ of 

Example 3.2.1. Since 

𝐸ఏ[𝓉ఏబ
(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) = 𝐸ఏ[𝜃଴] = 𝜃଴ ≠ 𝜃, 

so 𝓉ఏబ
(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) is not an unbiased estimator of 𝜃 . If we restricted the totality of 

estimators under consideration by considering only unbiased estimators, we could hope 

to find an estimator with uniformly smallest mean-squared error within the restricted 

class, i.e. within the class of unbiased estimators. 



 
 

Remark. 

𝑀𝑆𝐸𝓉(𝜃) = 𝑣𝑎𝑟[𝑇] + {𝜏(𝜃) − 𝐸ఏ[𝑇]}ଶ.                                          (10) 

So if 𝑇 is an unbiased estimator of 𝜏(𝜃), then 𝑀𝑆𝐸𝓉(𝜃) = 𝑣𝑎𝑟[𝑇]. 

PROOF.   By definition, we have 

𝑀𝑆𝐸𝓉[𝜃] = 𝐸ఏ[𝑇 − 𝜏(𝜃)]ଶ 

= 𝐸ఏ[(𝑇 − 𝐸ఏ[𝑇]) − {𝜏(𝜃) − 𝐸ఏ[𝑇]}]ଶ 

= 𝐸ఏൣ𝑇 − 𝐸ఏ[𝑇]൧
ଶ

− 2 {𝜏(𝜃) − 𝐸ఏ[𝑇]} 𝐸ఏൣ𝑇 − 𝐸ఏ[𝑇]൧ + 𝐸ఏൣ𝜏(𝜃) − 𝐸ఏ[𝑇]൧
ଶ

 

= 𝑣𝑎𝑟[𝑇] + {𝜏(𝜃) − 𝐸ఏ[𝑇]}ଶ. 

∎ 

The term  𝜏(𝜃) − 𝐸ఏ[𝑇]  is called the bias of the estimator  𝑇  and can be either 

positive, negative, or zero. 

Example 3.2.2   Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a random sample from density 𝑓(𝑥;  𝜃) = 𝜙ఓ,   ఙమ(𝑥). 

In Example 2.2.3, the maximum likelihood estimators of 𝜇 and 𝜎ଶ are, respectively, 𝑋ത 

and 

1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

. 

Now, 𝐸ఏ[𝑋ത] = 𝜇. So, 𝑋ത is an unbiased estimator of 𝜇, and hence 

𝑀𝑆𝐸௑ത(𝜇) = 𝐸ఏ[𝑋ത − 𝜇]ଶ = 𝑣𝑎𝑟[𝑋ത] =
𝜎ଶ

𝑛
 . 

We know that 𝐸ఏ[𝑆ଶ] = 𝜎ଶ. So, 

𝐸ఏ ൥ 
1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

൩ = ൬
𝑛 − 1

𝑛
൰  𝐸ఏ ൥ 

1

𝑛 − 1
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

൩ 

= ൬
𝑛 − 1

𝑛
൰ 𝐸ఏ[𝑆ଶ] 



 
 

= ൬
𝑛 − 1

𝑛
൰ 𝜎ଶ. 

Hence, the maximum-likelihood estimator of 𝜎ଶ  is not unbiased. Using Eq. (10), the 

mean-squared error of the maximum-likelihood estimator of 𝜎ଶ is given by 

𝑀𝑆𝐸
ቂ 

ଵ
௡

∑(௑೔ି௑ത)మቃ
(𝜎ଶ) = 𝑣𝑎𝑟 ൥ 

1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

൩ + ൝𝜎ଶ − 𝐸ఏ ൥ 
1

𝑛
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

൩ൡ

ଶ

 

= ൬
𝑛 − 1

𝑛
൰

ଶ

 𝑣𝑎𝑟[𝑆ଶ] + ൤𝜎ଶ − ൬
𝑛 − 1

𝑛
൰ 𝜎ଶ൨ 

= ൬
𝑛 − 1

𝑛
൰

ଶ

൜
1

𝑛
൤ 𝜇ସ − ൬

𝑛 − 3

𝑛 − 1
൰ 𝜎ସ൨ൠ +

𝜎ସ

𝑛ଶ
 , 

using Eq. (5) of Theorem 6.1 in Chap. I. 

2.3 CONSISTENCY AND BAN 

Properties of point estimators that are defined for a fixed sample size are sometimes 

referred to as small-sample properties, whereas properties that are defined for 

increasing sample size are sometimes referred to as large-sample properties. 

Consistency and asymptotic efficiency are two properties that are defined in terms of 

increasing sample size. 

When considering a sequence of estimators, it seems that a good sequence of 

estimators should be one for which the values of the estimators tend to get closer to the 

quantity being estimated as the sample size increases. 

Definition.   Mean-squared-error consistency 



 
 

Let 𝑇ଵ, 𝑇ଶ, … , 𝑇௡, … be a sequence of estimators of 𝜏(𝜃), where 𝑇௡ = 𝓉௡(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) 

is based on a sample of size 𝑛. This sequence of estimators is defined to be a 

mean-squared-error consistent sequence of estimators of 𝜏(𝜃), if and only if 

lim
௡→ஶ

𝐸ఏ[𝑇௡ − 𝜏(𝜃)]ଶ = 0, ∀ 𝜃 ∈ 𝜣. 

Example 3.3.1   In sampling from any density having mean 𝜇 and variance 𝜎ଶ, let 

𝑋ത௡ =
1

𝑛
෍ 𝑋௜

௡

௜ୀଵ

 and  𝑆௡
ଶ =

1

𝑛 − 1
෍(𝑋௜ − 𝑋ത)ଶ

௡

௜ୀଵ

 

be a sequence of estimators of 𝜇 and 𝜎ଶ, respectively. Since 

𝐸ఏ[𝑋ത௡ − 𝜇]ଶ = 𝑣𝑎𝑟[𝑋ത௡] → 0  as  𝑛 → ∞. 

Hence, the sequence {𝑋ത௡} is a mean-squared-error consistent sequence of estimators 

of 𝜇. Again, since 

𝐸ఏ[𝑆௡
ଶ − 𝜎ଶ]ଶ = 𝑣𝑎𝑟[𝑆௡

ଶ] =
1

𝑛
൤ 𝜇ସ − ൬

𝑛 − 3

𝑛 − 1
൰ 𝜎ସ൨ → 0  as  𝑛 → ∞. 

Hence, the sequence {𝑆௡
ଶ} is a mean-squared-error consistent sequence of estimators 

of 𝜎ଶ. 

Definition.   Simple consistency 

Let  𝑇ଵ, 𝑇ଶ, … , 𝑇௡, …  be a countable sequence of estimators of  𝜏(𝜃) , where                     

𝑇௡ = 𝓉௡(𝑋ଵ, 𝑋ଶ, … , 𝑋௡) .The sequence  {𝑇௡}  is defined to be a simple (or weakly) 

consistent sequence of estimators of  𝜏(𝜃)  if for every  𝜖 > 0 , the following is 

satisfied: 

lim
௡→ஶ

𝑃ఏ[𝜏(𝜃) − 𝜖 < 𝑇௡ < 𝜏(𝜃) + 𝜖] = 1, ∀ 𝜃 ∈ 𝜣. 

Remark.   If an estimator is a mean-squared-error consistent estimator, it is 

also a simple consistent estimator, but not necessarily vice-versa. 



 
 

PROOF.   We have 

𝑃஘[τ(θ) − ϵ < T୬ < τ(θ) + ϵ] = 𝑃ఏ[ |𝑇௡ − 𝜏(𝜃)| < 𝜖] 

= 𝑃ఏ[{𝑇௡ − 𝜏(𝜃)}ଶ < 𝜖ଶ] 

≥ 1 −
𝐸ఏ[𝑇௡ − 𝜏(𝜃)]ଶ

𝜖ଶ
 

by the Chebyshev inequality. Since 

𝐸ఏ[𝑇௡ − 𝜏(𝜃)]ଶ → 0  as  𝑛 → ∞. 

Hence, 

lim
୬→ஶ

𝑃ఏ[𝜏(𝜃) − 𝜖 < 𝑇௡ < 𝜏(𝜃) + 𝜖] = 1. 

Definition.   Best asymptotically normal estimators (BAN estimators) 

A sequence of estimators 𝑇ଵ
∗, 𝑇ଶ

∗, … , 𝑇௡
∗, …of 𝜏(𝜃) is defined to be best asymptotically 

normal (BAN) if and only if the following four conditions are satisfied: 

(i) The distribution of  √𝑛 [𝑇௡
∗ − 𝜏(𝜃)]  approaches the normal distribution with 

mean 0 and variance 𝜎∗మ
(𝜃) as 𝑛 approaches infinity, i.e. 

lim
௡→ஶ

√𝑛 [𝑇௡
∗ − 𝜏(𝜃)] → 𝑁 ቀ0, 𝜎∗మ

(𝜃)ቁ  as 𝑛 → ∞. 

(ii) For every 𝜖 > 0, 

lim
௡→ஶ

𝑃ఏ[ |𝑇௡
∗ − 𝜏(𝜃)| > 𝜖 ]ଶ = 0,   ∀ 𝜃 ∈ 𝛩. 

(iii) Let {𝑇௡} be any other sequence of simple consistent estimators for which the 

distribution of √𝑛 [𝑇௡
∗ − 𝜏(𝜃)] approaches the normal distribution with mean 0 

and variance 𝜎ଶ(𝜃). 

(iv) 𝜎ଶ(𝜃) is not less than 𝜎∗మ
(𝜃) for all 𝜃 in any open interval. 



 
 

The abbreviation BAN is sometimes replaced by CANE, standing for consistent 

asymptotically normal efficient.  BAN estimators are necessarily weakly consistent 

by (𝑖𝑖) of the definition. 

Let us consider the maximum-likelihood estimation of the parameter θ, which is 

to be estimated on the basis of a random sample from a density f( ∙ ;  θ), where θ 

is assumed to be a real number. For the observed sample  xଵ, xଶ, … , x୬ , the 

maximum-likelihood estimate of θ is that value, say θ෠, of θ which maximizes the 

likelihood function 

L(θ; xଵ, xଶ, … , x୬) = ෑ f(x୧;  θ)

୬

୧ୀଵ

. 

Let Θ෡୬ = ϑ෠୬(Xଵ, Xଶ, … , X୬) denote the maximum-likelihood estimator of θ based on 

a sample of size n. 

One property that it seems reasonable to expect of a sequence of estimators is that 

of consistency. 

Theorem  If the density f(x; θ) satisfies certain regularity conditions and if Θ෡୬ =

ϑ෠୬(Xଵ, Xଶ, … , X୬) is the maximum-likelihood estimator of θ for a random sample of 

size n from f(x; θ), then 

(i) Θ෡୬ is asymptotically normally distributed with mean θ and variance 

1

n E஘ ൤
∂

∂θ
log f(X;  θ)൨

ଶ . 

(ii) The sequence of maximum-likelihood estimators  Θ෡ଵ, Θ෡ଶ, … , Θ෡୬, …  is best 

asymptotically normal (BAN).  



 
 

The theorem says that for large sample size, the maximum-likelihood estimator of 𝜃 

is as good an estimator as there is. We may point out that the asymptotic normal 

distribution of the maximum-likelihood estimator is not given in terms of the distribution 

of the maximum-likelihood estimator. It is given in terms of  𝑓( ∙ ;  𝜃) , the density 

sampled. Also, the variance of the asymptotic normal distribution given in the theorem is 

the Cramér-Rao lower bound. 

Example   Let Xଵ, Xଶ, … , X୬ be a random sample from the density 

f(x; θ) = f(x; μ, σଶ) = ϕஜ,஢మ(x) =
1

σ√2π
 exp ൤−

1

2σଶ
(x − μ)ଶ൨. 

We have already derived, in Example 2.2.3, the maximum-likelihood estimators 

of μ and σଶ, as 

𝛩෠ଵ =
1

𝑛
෍ 𝑋௜ 

௡

௜ୀଵ

 and   𝛩෠ଶ =
1

𝑛
෍൫𝑋௜ − 𝛩෠ଵ൯

ଶ
௡

௜ୀଵ

. 

According to the above, the asymptotic large-sample joint distribution of 𝛩෠ଵ and 𝛩෠ଶ is a 

bivariate normal distribution with means 𝜇ଵ = 𝜇 and 𝜇ଶ = 𝜎ଶ. Since 

log 𝑓(𝑋;  𝜃) = −
1

2
log 2𝜋 −

1

2
log 𝜎ଶ −

1

2σଶ
(X − μ)ଶ, 

the required derivatives are 

∂ଶ

∂μଶ
log f(X;  θ) = −

1

σଶ
, 

∂ଶ

∂σଶ  ∂μ
log f(X;  θ) = −

(X − μ)

σସ
, and 

∂ଶ

∂σସ
log f(X;  θ) =

1

2σସ
−

(X − μ)ଶ

σ଺
. 

Since 



 
 

E[X] = μ  and  E[X − μ]ଶ = σଶ; 

E஘ ቈ
∂ଶ

∂μଶ
log f(X;  θ)቉ = −

1

σଶ
, 

E஘ ቈ
∂ଶ

∂σଶ  ∂μ
log f(X;  θ)቉ = 0, 

E஘ ቈ
∂ଶ

∂σସ
log f(X;  θ)቉ = −

1

2σସ
 , 

which gives 

∆ =  E஘ ቈ
∂ଶ

∂μଶ
log f(X;  θ)቉ E஘ ቈ

∂ଶ

∂σସ
log f(X;  θ)቉ − ቆE஘ ቈ

∂ଶ

∂σଶ  ∂μ
log f(X;  θ)቉ቇ

ଶ

 

=  ൬−
1

σଶ
൰ ൬−

1

2σସ
൰ − (0)ଶ 

=  
1

2σ଺
 . 

Finally, then 

σଵ
ଶ =  

−E஘ ൤
∂ଶ

∂σସ log f(X;  θ)൨

n ∆
=

1
2σସ

n ∙
1

2σ଺

=
σଶ

n
, 

σଶ
ଶ =

−E஘ ൤
∂ଶ

∂μଶ log f(X;  θ)൨

n ∆
 =

1
σଶ

n ∙
1

2σ଺

=
2σସ

n
, and 

ρ =
−E஘ ൤

∂ଶ

∂σଶ  ∂μ
log f(X;  θ)൨

n ∆ σଵ σଶ
= 0. 



 

 

 



 

 

 



 



 

 

 



 

 

 

 



 

 

 

 

 

 

UNIT 2: CRITERION FOR GOOD ESTIMATORS 



 

 

 



 

 

 



 

 

 



 



 

 



 

 

 



 

 

 



Bhattacharya’s Bounds 

 

 

 



 

 

 



 

 

 



 

 

 
 
 
 
 
 



Chapman – Robbin – Kiefer Bound 
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