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Definition 5.1.1 The random variables Xj,..., X, are called a random sample of
size n from the population f(z) if X,,..., X, are mutually independent random vari-
ables and the marginal pdf or pmf of each X is the same function f(z). Alternatively,
Xi,...,X, are called independent and identically distributed random variables with
pdf or pmf f(z). This is commonly abbreviated to iid random variables.

(5.1.1) f@1,szn) = f@)f(@2) - f(2a) = IIch

(5.1.2) f(@ry.. . zal0) = [ [ £(2:l6),
i=1

where the same parameter value @ is used in each of the terms in the product. If, in a
statistical setting, we assume that the population we are observing is a member of a
specified parametric family but the true parameter value is unknown, then a random
sample from this population has a joint pdf or pmf of the above form with the value of
6 unknown. By considering different possible values of , we can study how a random
sample would behave for different populations.

Example 5.1.2 (Sample pdf-exponential) Let X;,..., X, be a random sample
from an exponential(8) population. Specifically, X, ..., X, might correspond to the
times until failure (measured in years) for n identical circuit boards that are put on
test and used until they fail. The joint pdf of the sample is

f(@1,.. 2al8) = ] £(il8) = [ %e"*/ﬂ = 6%6-<=1+--~+=n)/6.
i=1 i=1

This pdf can be used to answer questions about the sample. For example, what is
the probability that all the boards last more than 2 years? We can compute

P(X] >2,...,X, >2)

/ /H—e zi/Bdx, - dz,,

o o]
= 6—2/13/ / H e */Bdry... dzr, (integrate out i)
2 2 =2 ﬁ

(integrate out the remaining z;s successively)
= ( 6—2/ ﬁ)n

— e—2n/ﬁ.

If 3, the average lifelength of a circuit board, is large relative to n, we see that this
probability is near 1.



P(X:>2,..., X, >2)

=P(X,>2)---P(Xn>2) (independence)
= [P(X;>2)]" (identical distributions)
= (e~%/Byn (exponential calculation)
— e~ 2/8, I

The random sampling model in Definition 5.1.1 is sometimes called sampling from
an infinite population. Think of obtaining the values of X, ..., X, sequentially. First,
the experiment is performed and X; = z; is observed. Then, the experiment is re-
peated and Xy = x4 is observed. The assumption of independence in random sampling
implies that the probability distribution for X, is unaffected by the fact that X; = z;
was observed first. “Removing” z, from the infinite population does not change the
population, so X, = z; is still a random observation from the same population.

When sampling is from a finite population, Definition 5.1.1 may or may not be
relevant depending on how the data collection is done. A finite population is a finite set
of numbers, {z;,...,zn}. A sample X),..., X, is to be drawn from this population.

Suppose a value is chosen from the population in such a way that each of the N
velues is equally likely (probability = 1/N) to be chosen. (Think of drawing num-
bers from a hat.) This value is recorded as X; = z,. Then the process is repeated.
Again, each of the N values is equally likely to be chosen. The second value chosen is
recorded as X, = z,. (If the same number is chosen, then z; = z5.) This process of
drawing from the IV values is repeated n times, yielding the sample X,,...,X,. This
kind of sampling is called with replacement because the value chosen at any stage is
“replaced” in the population and is available for choice again at the next stage. For
this kind of sampling, the conditions of Definition 5.1.1 are met. Each X is a discrete
random variable that takes on each of the values z;,...,zx with equal probability.
The random variables X3,..., X, are independent because the process of choosing
any X; is the same, regardless of the values that are chosen for any of the other
variables.

A second method for drawing a random sample from a finite population is called
sampling without replacement. Sampling without replacement is done as follows. A
value is chosen from {z;,...,zn} in such a way that each of the N values has prob-
ability 1/N of being chosen. This value is recorded as X; = z;. Now a second value
is chosen from the remaining N — 1 values. Each of the N — 1 values has probability
1/(N — 1) of being chosen. The second chosen value is recorded as X, = z;. Choice
of the remaining values continues in this way, yielding the sample X;,..., X,. But
once a value is chosen, it is unavailable for choice at any later stage.

A sample drawn from a finite population without replacement does not satisfy all
the conditions of Definition 5.1.1. The random variables X1, ..., X,, are not mutually
independent. To see this, let z and y be distinct elements of {zi,...,zn}. Then
P(X, = y| X, = y) = 0, since the value y cannot be chosen at the second stage
if it was already chosen at the first. However, P(X, = y|X; = z) = 1/(N — 1). The



probability distribution for X2 depends on the value of X; that is observed and, hence,
X, and X2 are not independent. However, it is interesting to note that Xi,..., X,
are identically distributed. That is, the marginal distribution of X; is the same for
each i = 1,...,n. For X, it is clear that the marginal distribution is P(X; = z) =
1/N for each z € {z1,...,2n5}. To compute the marginal distribution for X5, use
Theorem 1.2.11(a) and the definition of conditional probability to write

N
P(X; =z) =Y P(Xs=z|X) = z.)P(X) = z;).

i=1

For one value of the index, say k, z = zx and P(X; = z|X, = zx) = 0. For all other
j# k,P(Xy =z|X: =z;) =1/(N —1). Thus,

1 1 1
Similar arguments can be used to show that each of the X;s has the same marginal
distribution.

Sampling without replacement from a finite population is sometimes called simple
random sampling. It is important to realize that this is not the same sampling situa-
tion as that described in Definition 5.1.1. However, if the population size N is large
compared to the sample size n, X,,..., X, are nearly independent and some approxi-
mate probability calculations can be made assuming they are independent. By saying
they are “nearly independent” we simply mean that the conditional distribution of
X; given X;,...,X;_1 is not too different from the marginal distribution of X;. For
example, the conditional distribution of X, given X, is

P(Xs=z|X; =21)=0 and P(X2=z|X1=x1)=-ﬁl_—1 for z # z,.

This is not too different from the marginal distribution of X; given in (5.1.3) if
N is large. The nonzero probabilities in the conditional distribution of X; given
Xi,...,Xi—1 are 1/(IN — i+ 1), which are close to 1/N if ¢ < n is small compared
with N.

When a sample Xi,...,X, is drawn, some summary of the values is usually com-
puted. Any well-defined summary may be expressed mathematically as a function
T(z1,...,Zn) whose domain includes the sample space of the random vector (X1,...,
X»). The function 7" may be real-valued or vector-valued; thus the summary is a ran-
dom variable (or vector), Y = T'(X;,..., X,).

This be used to describe the distribution of ¥ in terms of the distribution of the
population from which the sample was obtained. Since the random sample X;,..., X,
has a simple probabilistic structure (because the X;s are independent and identically
distributed), the distribution of Y is particularly tractable. Because this distribution
is usually derived from the distribution of the variables in the random sample, it is
called the sampling distribution of Y. This distinguishes the probability distribution
of Y from the distribution of the population, that is, the marginal distribution of
each X;.



Definition 5.2.1 Let X;,...,X, be a random sample of size n from a population
and let T(z1,...,2,) be a real-valued or vector-valued function whose domain in-
cludes the sample space of (X1,...,X,). Then the random variable or random vector
Y =T(X,,...,X,) is called a statistic. The probability distribution of a statistic Y’
is called the sampling distribution of Y.

The definition of a statistic is very broad, with the only restriction being that a
statistic cannot be a function of a parameter. The sample summary given by a statistic
can include many types of information. For example, it may give the smallest or largest
value in the sample, the average sample value, or a measure of the variability in the
sample observations. Three statistics that are often used and provide good summaries
of the sample are now defined.

Definition 5.2.2 The sample mean is the arithmetic average of the values in a
random sample. It is usually denoted by

o Xt + X, 1
R=2T" T
22X
=1
Definition 5.2.3 The sample variance is the statistic defined by

n

[ p— ) (X - X)2.

n_1i=l

The sample standard deviation is the statistic defined by S = v S2.

Theorem 5.2.4 Let z1,...,Z, be any numbers and & = (1 + -+ + Zn)/n. Then

a. ming Yo (z; —a)? =30 (=i — 2)?,
b. (n-1)s2=Y" (z:-Z)2 =Y,z —nz

Proof: To prove part (a), add and subtract Z to get

Xn:(a:i —a)? = En:(z,- —-z2+z-a)?

=) (@i -2+ > (-a). (cross term is 0)

i=1 =1
It is now clear that the right-hand side is minimized at a = Z.

To prove part (b), take a =0 in the above. 0



Lemma 5.2.6 Let Xi1,...,X, be a random sample from a population and let g(z)
be a function such that Eg(X;) and Var g(X1) exist. Then

(5.2.1) E (Zg(Xx)) = n (Eg(X1))
=1

and

(5.2.2) Var (Z g(Xi)) =n(Var g(X1)).
i=1

Proof: To prove (5.2.1), note that

E (Zg(xi)) =) Eg(X:) =n(Eg(X1)).

i=1 1=1

Since the X;s are identically distributed, the second equality is true because Eg(X;) is
the same for all i. Note that the independence of X1, ..., X, is not needed for (5.2.1)

To prove (5.2.2), note that

Var (E g(Xi)) =E Zg(X,-) -E (Z g(X,-))} (definition of variance)

i=1 Li=1 i=1

_E expectation property a.nd)

(9(X;) — Eg(Xi) :l ) ( rearrangement of terms

[ n
i=1

In this last expression there are n? terms. First, there are n terms (g(X;) — Eg(X,-))z,
1=1,...,n, and for each, we have

E (9(X;) — Eg(X;))? = Var g(X;) (definition of variance)
= Var g(X1). (identically distributed)

The remaining n(n — 1) terms are all of the form (g(X;) — Eg(X:)) (¢(X;) — Eg(X;)),
with i # j. For each term,

definition of
E [((X:) — Eg(X:)) (9(X;) — Eg(X;))] = Cov (9(Xs), (X)) ( arianes )
~0 independence
o Theorem 4.5.5
Thus, we obtain equation (5.2.2). [l
Theorem 5.2.6 Let X;,...,X, be a random sample from a population with mean
1 and variance 0% < oo. Then
a. EX =4,
s 0’2
b. Var X = —,
n

c. ES?2 = 2.



Proof: To prove (a), let g(X;) = Xi/n, so Eg(X;) = u/n. Then, by Lemma 5.2.5,

EX =E 1anx- —IE nxv =1 EX; =
= 5 i —n - i —nn 1= H.

i=1 i=
Similarly for (b), we have

= 1 — 1 n 1 P

For the sample variance, using Theorem 5.2.4, we have

el ff]

i=1

_ 1 2 2 o? 2 _ 2
—m(n(a + u®) n(n+p =F",
establishing part (c) and proving the theorem. [

Theorem 5.2.7 Let X1,...,X, be a random sample from a population with mgf
Mx (t). Then the mgf of the sample mean is

My (t) = [Mx(t/n)]".

Example 5.2.8 (Distribution of the mean) Let X7,..., X, be a random sample
from a n(y,0?) population. Then the mgf of the sample mean is

Mg (t) = [exp (u% + gi’(t?/—n)z)]n

e o ({114 ZU)) < e 21007,

Thus, X has a n(y, 62 /n) distribution.

Theorem 5.2.11 Suppose X, ..., X, is a random sample from a pdf or pmf f(z|6),
where

k
£(z16) = h(z)c(6) exp (Z w; (e)ti(x))
1=1
is a member of an exponential family. Define statistics Ty,..., Ty by
n
Ti(Xpy oo s Xn) = Y _lX5), i=L..0,k.
j=1

If the set {(w;(8), w2(0),...,wi(6)),0 € O} contains an open subset of R*, then the
distribution of (T1,...,Tk) 18 an exponential family of the form

k
(5.2.6) Sr(ury ..oy uel0) = H(uy, ..., uk)[c(6)]" exp (Z wi(f’)ui) -
i=1



The open set condition eliminates a density such as the n(f, %) and, in general,
eliminates curved exponential families from Theorem 5.2.11.

Example 5.2.12 (Sum of Bernoulli random variables) Suppose X;,...,X
is a random sample from a Bernoulli(p) distribution. From Example 3.4.1 (withn =1
we see that a Bernoulli(p) distribution is an exponential family with k = 1, c(p)
(1 —p),wi(p) = log(p/(1 — p)), and t,(z) = z. Thus, in the previous theorem, T1 =
Th(X1,...,Xn) =X + -+ X,. From the definition of the binomial distribution in
Section 3.2, we know that 77 has a binomial(n, p) distribution. From Example 3.4.1
we also see that a binomial(n, p) distribution is an exponential family with the same
w; (p) and c(p) = (1 — p)™. Thus expression (5.2.6) is verified for this example. I

3

~—

i

Theorem 4.4.3 If X and Y are any two random variables, then
(4.4.1) EX = E(E(X|Y)),
provided that the expectations erist.

Proof: Let f(z,y) denote the joint pdf of X and Y. By definition, we have

waz)  Ex= [ [eftapdoay= [ [ [attet) dx] fe(v) dy,

where f(z|y) and fy (y) are the conditional pdf of X given Y = y and the marginal pdf
of Y, respectively. But now notice that the inner integral in (4.4.2) is the conditional
expectation E(X|y), and we have

EX = f E(X|y) fr (y) dy = E (B(X|Y)),

as desired. Replace integrals by sums to prove the discrete case. a

Theorem 4.4.7 {Conditional variance identity) For any two random variables
X and?,

(4.4.4) Var X = E (Var(X|Y)) + Var (E(X|Y)),
provided that the expectations exist.
Proof: By definition, we have
Var X = E ([X - EX|?) =E (X - E(X|Y) + E(X|Y) - EX]?),

where in the last step we have added and subtracted E(X|Y). Expanding the square
in this last expectation now gives

Var X = E (X - E(X|Y)]*) + E ([E(X]Y) - EX]?)
(4.4.5) + 2E ([X - E(X|Y)|[E(X|Y) — EX]).

The last term in this expression is equal to 0, however, which can easily be seen by
iterating the expectation:



(446) E([X - E(X|Y)|[E(X|Y) - EX]) = E(E{[X — E(X|V)|[E(X|Y) - EX]|Y}).
In the conditional distribution X|Y, X is the random variable. So in the expression
‘ E{[X - E(X[Y)][E(X]Y) - EX]|Y},
E(X|Y) and EX are constants. Thus,
E{[X - E(X|V)][E(X]Y) - EX]|Y} = (E(X|Y) — EX) (E{[X - E(X|Y)]|Y})
= (E(X|Y) - EX) (E(X[Y) — E(X|Y))
= (E(X|Y) - EX)(0)
=0.

Thus, from (4.4.6), we have that E((X — E(X|Y))(E(X|Y) — EX)) = E(0) = 0.
Referring back to equation (4.4.5), we see that

E (X - E(X|Y)P’) =E (E{[X - E(X|Y)P|Y})

= E (Var(X|Y))
and
E ([B(X|Y) — EX]?) = Var (E(X]Y)),
establishing Var X = E (Var(X|Y)) + Var (E(X|Y)) 0

Definition 4.6.5 Let X;,...,X,, be random vectors with joint pdf or pmf
f(x1,...,%n). Let fx,(x;) denote the marginal pdf or pmf of X;. Then X,,...,X,
are called mutually independent random vectors if, for every (xi1,...,%,),

n

Fe1s oy Xn) = fx, (1) e, (%n) = [ ] i, ().

i=1

If the X;s are all one-dimensional, then X), ..., X, are called mutually independent
random variables.

Theorem 4.6.6 Let X,,..., X, be mutu-
ally independent random variables. Let gy,...,g, be real-valued functions such that
gi(z;) is a function only of z;, i =1,...,n. Then

E(g1(X1)e+ - gn(Xn)) = (Egr(X1))+ -+ «(Egn(Xy))-

Theorem 4.6.7 Let X;....,X, be mutu- .
ally independent random variables with mgfs My, (t),...,Mx (t). Let Z = X1 +---+
Xn. Then the mgf of Z is ‘

Mz(t) = Mx, (t)---- -Mx,(1).
In particular, if X1,...,X, all have the same distribution with mgf Mx (t), then
Mz(t) = (Mx(t))" .



Lemma 4.2.7 Let (X,Y) be a bivariate random vector with joint pdf or pmf f(zx,y).
Then X and Y are independent random variables if and only if there exist functions
g(z) and h(y) such that, for everyz € R and y € R,

Proof: The “only if” part is proved by defining g(r) = fx(z) and h(y) = fy(y) and
using (4.2.1). To prove the “if” part for continuous random variables, suppose that
f(z,y) = g(z)h(y). Define

fg(a:)da::c and f h(y) dy = d,

where the constants ¢ and d satisfy

= ([0s) ([ 09

(4.2.2) = '/;: [Zg(r)h(y) dz dy

[ [ revaa

=1, (f(z,y) is a joint pdf)
Furthermore, the marginal pdfs are given by
(4.2.3)
fe@) = [ g@h)dy=s@d and f)= [ g@hiv)de = (e

Thus, using (4.2.2) and (4.2.3), we have

fz,y) = g(@)h(y) = g(z)h(y)ed = fx () fr (¥),

showing that X and Y are independent. Replacing integrals with sums proves the
lemma for discrete random vectors. ]

Theorem 4.6.11 Let X,,...,X,, be random

vectors. Then Xi,...,X, are mutually independent random wvectors if and only if
there ezist functions g;(x;),i = 1,...,n, such that the joint pdf or pmf of (X1, ...,X,)
can be written as

f(xla'--sxn) =g1()(1) """ gn(xn)'

Theorem 4.6.12 Let X,,...,X, be inde-
pendent random vectors. Let g;(x;) be a function only of x;,i = 1, ...,n. Then the
random variables U; = g;(X;),i = 1,...,n, are mutually independent.



Central Limit Theorem  Let

X1, Xa,... be a sequence of tid random variables with EX; = p and 0 < Var X; =
0% < oo. Define X, = (1/n) Yy X;. Let G,(z) denote the cdf of Vn(Xn — p)/o.
Then, for any x, —00 < T < 00,

lim G,(z) = / ———e"’ *12 gy,
n—o0
that is, /n(Xn — i) /o has a limiting standard normal distribution.

Slutsky’s Theorem If X,, —» X in distribution and Y,, — @, a
constant, in probability, then

a. Y, X, — aX in distribution.
b. X, + Y, — X + a in distribution.
Example Normal approximation with estimated variance Suppose

that Va(Xn — 1)

E(S2 - 0?2  Var 82

€2 €2

— n(0,1), but the value of o is unknown.

P(IS; —a% 2 ¢) <

if lim,, o Var 82 =0, then §2 — o2 in probability. /S, — 1 in probability. Hence,
Slutsky’s Theorem tells us

_'\/T_l(Xn - ﬂ‘) .

o Va(Xn - p)
3, S_,,——a—_ n(0,1). |

The Delta Method

Example 5.5.19 (Estimating the odds) Suppose we observe X, Xo,..., X, in-
dependent Bernoulli(p) random variables. The typical parameter of interest is p, the
success probability, but another popular parameter is t£-, the odds. For example, if
the data represent the outcomes of a medical treatment with p = 2/3, then a person
has odds 2 : 1 of getting better. Moreover, if there were another treatment with suc-
cess probability r, biostatisticians often estimate the odds ratio ; / 1=, giving the
relative odds of one treatment over another.

As we would typically estimate the success probability p with the observed success
probability p = Y. Xi/n, we might consider using —p—p as an estimate of —L But
what are the properties of this estimator? How might we estimate the vanance of
—;L'7 Moreover, how can we approximate its sampling distribution?

fntmtxon abandons us, and exact calculation is relatively hopeless, so we have to
rely on an approximation. The Delta Method will allow us to obtain reasonable,
approximate answers to our questions. I



Definition 5.5.20 If a function g(z) has derivatives of order r, that is, ¢(”(z) =
?g; g(z) exists, then for any constant a, the Taylor polynomial of order r about a is

Tiz)= ZT: M(z —a)..

il
i=0

Taylor’s major theorem, which we will not prove here, is that the remainder from

the approximation, g(z) — Tr(z), always tends to  faster than the highest-order
explicit term.

Theorem 5.5.21 (Taylor) If g7 (a) = d“;rg(:z:)l==ﬂ erists, then

9(z) — T:(z)
@-ay
In general, we will not be concerned with the explicit form of the remainder.
one useful one being z g(re1) ()

o)~ Tote) = [

L !

limg_.g

=40.

(z —t)"dt.

For the statistical application of Taylor’s Theorem, we are most concerned with
the first-order Taylor series, that is, an approximation using just the first derivative

Let T3,...,Tk be random variables with means 6, ..., 0k, and define T = (T,...,
Tx) and @ = (0,,...,6k). Suppose there is a differentiable function g(T) (an estimator
of some parameter) for which we want an approximate estimate of variance. Define

, 1o}
9i (B) = bt_,‘g(t) {h=91 et =0 "

The first-order Taylor series expansion of g about 8 is

k
g(t) = g(8) + 3" gi(8)(t:; — 6;) + Remainder.

i=1

For our statistical approximation we forget about the remainder and write

k
(5.5.7) 9(t) ~ g(8) + ) gi(8)(t: — 6:).
i=1
Now, take expectations on both sides of (5.5.7) to get
k
(5.5.8) Egg(T) =~ g(6) + Y _ gi(8)Eo(T; — 6;)
i=1
= g(8). (T; has mean 0;)
We can now approximate the variance of g(T) by
Varg g(T) ~ Eg ([9(T) - 9(6))%) (using (5.5.8))

2
~ Eq ((leg:(e)(Tz = 9.')) ) (using (5.5.7))



k
(5.5.9) = [6/(6))Vare Ts +2 Y 4/(6)g; (6)Cove(T:, T3),
1=1 t>7
useful because it gives us a variance formula for a general function, using only simple
variances and covariances.

Example 5.5.22 (Continuation of Example 5.5.19) Recall that we are inter-
ested in the properties of —L as an estimate of {2 p, where p is a binomial success

probability. In our above nota.tlon, take g(p) = e £ so0 g'(p) = (_T’ and

Va.r(l ﬁp) l¢'(p)]? Var(p)

_[1 rp(l—p)_ P i
_t(l—z’)z n n(l-p)p?

giving us an approximation for the variance of our estimator.

Example 5.5.23 (Approximate mean and variance) Suppose X is a random
variable with E, X = p # 0. If we want to estimate a function g(u), a first-order
approximation would give us

9(X) = g(p) + g'(u)(X — ).
If we use g(X) as an estimator of g(u), we can say that approximately
Eug(X) = g(u),
Var, g(X) ~ [¢' (p,)]2Va.r,‘ X
For a specific example, take g(x) = 1/u. We estimate 1/u with 1/X, and we can say

1 1
E“(Y) ~
1 1\*
Var“(j(—) ~ (;) Var, X. Il

Using these Taylor series approximations for the mean and variance, we get the
following useful generalization of the Central Limit Theorem, known as the Delta
Method.

Theorem 5.5.24 (Delta Method) Let Y;, be a sequence of random variables that
satisfies \/n(Yn — 8) — n(0,0?) in distribution. For a given function g and a specific
value of 8, suppose that g'(6) ezxists and is not 0. Then

(5.5.10) Vn[g(Ya) — 9(8)] — n(0,0%[g'(8)]?) in distribution.



Proof: The Taylor expansion of ¢g(Y,) around Y, = 8 is
(5.5.11) g9(Y,) = g(8) + ¢'(8)(Yn — 6) + Remainder,

where the remainder — 0 as Y,, — 8. Since Y, — 0 in probability it follows that the
remainder — 0 in probability. By applying Slutsky’s Theorem

Vn[g(Yn) — 9(0)] = ' (0)vn(Yn — 6)

the result now follows. O

Example 5.5.25 (Continuation of Example 5.5.23) Suppose now that we have
the mean of a random sample X. For u # 0, we have

A3+ (o(3) wox)

If we do not know the variance of X;, to use the above approximation requires an
estimate, say S2. Moreover, there is the question of what to do with the 1/u term, as
we also do not know u. We can estimate everything, which gives us the approximate

variance
— (1 1 3*
Var(= | =~ [ =] S2
“(%)= (%)
Furthermore, as both X and $? are consistent estimators, we can again apply Slutsky’s
Theorem to conclude that for u # 0, '

\/_L(E:%);S—%) —n(0,1)
X

in distribution.

in distribution.

There are two extensions of the basic Delta Method that we need to deal with to
complete our treatment. The first concerns the possibility that ¢’(u) = 0.

If g'(8) = 0, we take one more term in the Taylor expansion to get

9(Yn) = g(0) + ¢’ (6)(Yn — 6) + 9”2(9) (Yo — 9)2 + Remainder.

If we do some rearranging (setting ¢’ = 0), we have

(55.12) (%)~ 9(0) = L2

Now recall that the square of a n(0,1) is a x? , which implies that

(Y, — 8)? + Remainder.

n(Yn—G)z_’ 9

o2 X1



Theorem 5.5.26 (Second-order Delta Method) Let Y, be a sequence of random
variables that satisfies \/n(Y, — ) — n(0,0?) in distribution. For a given function g
and a specific value of 6, suppose that ¢'(6) = 0 and g” (@) exists and is not 0. Then

(5.5.13) nlg(Yn) — g(8)] — 029 ( x? in distribution.

Example 5.5.27 (Moments of a ratio estlmator) Suppose X and Y are random
variables with nonzero means px and puy, respectively. The parametric function to
be estimated is g(ux,py) = px/uy. It is straightforward to calculate

9 ( )__1_
Bux T
and 5
Iix
By (hx,py) = 7

The first-order Taylor approximations (5.5.8) and (5.5.9) give
X X
E| — |~—=
( Y ) By
and

Va.r(iyf—) ~ —12~V rX+ e} VarY 2;—-Cov(X ,Y)

Ky
ux Var X VarY Cov(X,Y)
=\ o 7t 3 —2 :
Hy Hx Hy Hx By

Thus, we have an approximation for the mean and variance of the ratio estimator, and
the approximations use only the means, variances, and covariance of X and Y. Exact
calculations would be quite hopeless, with closed-form expressions being unattainable.

present a CLT to cover an estimator such as the ratio estimator.

Theorem 5.5.28 (Multivariate Delta Method) Let X;,...,X, be a random
sample with E(X;;) = p; and Cov(Xix, Xjx) = 0i;. For a given function g with
continuous first partial derivatives and a specific value of pu = (u1,...,pp) for which
= EZG,J—g(ﬂ —y(ﬂ >0,

Vvnlg(Xy, ..., Xs) — g(p, - - - ip)] = n(0, 72) in distribution .

Suppose the vector-valued random variable X = (X,,...,X,) has mean

p=(p1,...,1p) and covariances Cov(X;, X;) = 0;;, and we observe an independent
random sample X1,...,X, and calculate the means X; = Y3 _; Xie, i = 1,...,p.
For a function g(x) = g(:cl, ..., &p) We can write

9(Z1,.. ., ZTp) = g(h1, -+ Up) +ng Nk — pie),



UNIT 2: SUFFICIENCY



SUFFICIENCY

Any statistic, 7'(X), defines a form of data reduction or data summary. An experi-
menter who uses only the observed value of the statistic, 7'(x), rather than the entire
observed sample, x, will treat as equal two samples, x and y, that satisfy 7'(x) = T'(y)
even though the actual sample values may be different in some ways.

Data reduction in terms of a particular statistic can be thought of as a partition
of the sample space X. Let 7 = {t: t = T(x) for some x € X} be the image of
X under T'(x). Then T'(x) partitions the sample space into sets A;,t € 7, defined
by A; = {x: T(x) = t}. The statistic summarizes the data in that, rather than
reporting the entire sample x, it reports only that 7T'(x) = ¢ or, equivalently, x € A;.
For example, if T'(x) = z; + -+ + Z,, then T(x) does not report the actual sample
values but only the sum. There may be many different sample points that have the
same sum.

The Sufficiency

A sufficient statistic for a parameter 0 is a statistic that, in a certain sense, captures
all the information about @ contained in the sample. Any additional information
in the sample, besides the value of the sufficient statistic, does not contain any more
information about 8.

SUFFICIENCY PRINCIPLE: 1f T'(X) is a sufficient statistic for 8, then any inference
about # should depend on the sample X only through the value T'(X). That is, if x
and y are two sample points such that T(x) = T'(y), then the inference about @
should be the same whether X = x or X =y is observed.

The Sufficiency

A sufficient statistic for a parameter 0 is a statistic that, in a certain sense, captures
all the information about # contained in the sample. Any additional information
in the sample, besides the value of the sufficient statistic, does not contain any more
information about 6.

SUFFICIENCY PRINCIPLE: If T'(X) is a sufficient statistic for 8, then any inference
about @ should depend on the sample X only through the value T'(X). That is, if x
and y are two sample points such that T'(x) = T'(y), then the inference about #
should be the same whether X = x or X =y is observed.

Definition A statistic T(X) is a sufficient statistic for 6 if the conditional
distribution of the sample X given the value of T(X) does not depend on 8.



Theorem 8.2.2  If p(x|6) is the joint pdf or pmf of X and q(t|6) is the pdf or pmf
of T(X), then T(X) is a sufficient statistic for 0 if, for every x in the sample space,
the ratio p(x|0)/q(T(x)|0) is constant as a function of 6.

Proof: since {X = x} is a subset of {7T(X) = T'(x)},
Pp(X =x and T(X) = T'(x))
Fo(T(X) = T(x))

Pp(X =x|T(X) =T(x)) =

_ PX=x)

 Pp(T(X) = T(x))

_ _p(x|0)
a(T(x)|6)’

where p(x|8) is the joint pmf of the sample X and ¢(¢|0) is the pmf of T(X). Thus,
T(X) is a sufficient statistic for @ if and only if, for every x, the above ratio of pmfs
is constant as a function of 6.

Example 6.2.3 (Binomial sufficient statistic) Let X,,..., X, be iid Bernoulli
random variables with parameter 6,0 < 8 < 1. We will show that T'(X) = X;+-- -+ X,
is a sufficient statistic for 6. Note that 7'(X) counts the number of X;s that equal 1,
so T(X) has a binomial(n,6) distribution. The ratio of pmfs is thus

p(xlf) _ T6*(1— )= _ g¥u(1_ g)201-2 (define t = £,)
o(T(x)|0)  (7)ér (1 -6t — (7)6r(1—6)t (1% = §%=1)
_ 0‘(1 — 0)714! 1 1

S (hea-ent Ty T

Jo (%)
Yz
Since this ratio does not depend on 6, by Theorem 6.2.2, T(X) is a sufficient statistic
for 8. The interpretation is this: The total number of 1s in this Bernoulli sample
contains all the information about # that is in the data. Other features of the data,
such as the exact value of X3, contain no additional information.

Example 6.2.4 (Normal sufficient statistic) Let X,..., X, be iid n(u,0?),
where 02 is known. We wish to show that the sample mean, T(X) = X = (X; 4 --- +
Xn)/n, is a sufficient statistic for u. The joint pdf of the sample X is

F(xiw) = [[(2m0®)'72 exp (—(z: — p)?/(20%))

i=1

= (2n0%) " exp (—i(zi - u)’/(202))

i=1

1

= (2r0?) ™2 exp ( i(‘”‘ -Z+I- ,u)’/(202)> (add and subtract I)

i

=1

(6.2.1) = (2r0?)™™ % exp ( (Z(z,- —2)% 4 n(z - p)z) /(202)) :



The last equality is true because the cross-product term Y0 ,(z; — Z)(Z — p) may
be rewritten as (Z — p)Y 1, (z: — z), and .., (z; — Z) = 0. Recall that the sample
mean X has a n(u, 02/n) distribution. Thus, the ratio of pdfs is

fxlf) _ @no?) "2 exp (= (Tomy(zi — 22 + (@ - u)?) /(20%)
2(T)10) (@no?/n)-172 exp(—n(z — )2/ (20))

— n—1/2(2ﬂ.02)—(‘""1)/2 exp (— i(zi - 5)2/(202)) s
1=1

which does not depend on u. By Theorem 6.2.2, the sample mean is a sufficient
statistic for p. I

Example 6.2.5 (Sufficient order statistics) Let X;,..., X, be iid from a pdf
f, where we are unable to specify any more information about the pdf (as is the case
in nonparametric estimation). It then follows that the sample density is given by

(6.2.2) fx) =[] f=) =] f =iy,
=1 i=1

where z(;y < r(z) < -+ < I(n) are the order statistics. By Theorem 6.2.2, we can
show that the order statistics are a sufficient statistic. Of course, this is not much of a
reduction, but we shouldn’t expect more with so little information about the density
f.

However, even if we do specify more about the density, we still may not be able to
get much of a sufficiency reduction. For example, suppose that f is the Cauchy pdf

f(z]9) = Wﬁ? or the logistic pdf f(z|f) = (T:?—%F We then have the same

reduction as in (6.2.2), and no more. So reduction to the order statistics is the most
we can get in these families



It turns out that outside of the exponential family of distributions, it is rare to have
a sufficient statistic of smaller dimension than the size of the sample, so in many cases
it will turn out that the order statistics are the best that we can do.

It may be unwieldy to use the definition of a sufficient statistic to find a sufficient

statistic for a particular model. To use the definition, we must guess a statistic 7'(X)
to be sufficient, find the pmf or pdf of T(X), and check that the ratio of pdfs or
pmfs does not depend on 6. The first step requires a good deal of intuition and
the second sometimes requires some tedious analysis. Fortunately, the next theorem,
due to Halmos and Savage (1949), allows us to find a sufficient statistic by simple
inspection of the pdf or pmf of the sample.!
Theorem 6.2.6 (Factorization Theorem) Let f(x|0) denote the joint pdf or
pmf of a sample X. A statistic T(X) is a sufficient statistic for 6 if and only if there
ezist functions g(t|0) and h(x) such that, for all sample points x and all parameter
points 0,

(6.2.3) f(x|6) = 9(T'(x)[6)h(x).

Proof: We give the proof only for discrete distributions.

Suppose T'(X) is a sufficient statistic. Choose g(t|8) = Po(T(X) = t) and h(x) =
P(X = x|T(X) = T(x)). Because T'(X) is sufficient, the conditional probability
defining h(x) does not depend on 6. Thus this choice of h(x) and g(t|6) is legitimate,
and for this choice we have

f(x]0) = P(X =x)
= Py(X =x and T(X) = T(x))
= Py(T(X) =T(x))P(X = x|T(X) = T(x)) (sufficiency)
= 9(T(x)|0)h(x).
So factorization (6.2.3) has been exhibited. We also see from the last two lines above

that
Po(T(X) = T(x)) = g(T(x)|6),

so g(T'(x)|#) is the pmf of T(X).

Now assume the factorization (6.2.3) exists. Let q(t|@) be the pmf of T(X). To
show that T'(X) is sufficient we examine the ratio f(x|8)/q(T(x)|6). Define Ap(x) =
{y:T(y) = T(x)}. Then

f(xl0)  _ 9(T(x)I9)h(x)

q(T(x)|6) q(T(x}|6)
_ o(T)0A)
Earm9(T(¥)|0)h(y)
_ o(T)B)Ax)
9(T(X)|6)E A, R (¥)
_ h(x) '
T LA hy)

Since the ratio does not depend on 8, by Theorem 6.2.2, T'(X) is a sufficient statistic
for 4. O

(since (6.2.3) is satisfied)

(definition of the pmf of T")

(since T is constant on Ag(x))



Example 6.2.7 (Continuation of Example 6.2.4) For the normal model de-
scribed earlier, we saw that the pdf could be factored as

(6.2.4)  f(x|p) = (2rc®) " exp (— > (@i— 5)2/(202)) exp(—n(Z — p)?/(20?)).
i=1

We can define
n

h(x) = (2r0?) "2 exp (— ) (zi— ) /(202)) ,

i=1
which does not depend on the unknown parameter pu. The factor in (6.2.4) that
contains u depends on the sample x only through the function T'(x) = Z, the sample

mean. So we have g(tlp) = exp (—n(t — p)?/(20%))

f(x|n) = h(x)g(T'(x]| ).
Thus, by the Factorization Theorem, 7(X) = X is a sufficient statistic for y. I

and note that

Example 6.2.8 (Uniform sufficient statistic) Let X,,..., X, be iid observa-
tions from the discrete uniform distribution on 1,...,8. That is, the unknown param-
eter, 0, is a positive integer and the pmf of X is
1
F(2]0) = { 1 z=1,2...,0
0 otherw1se
Thus the joint pmf of X1,...,X, is
" zie{l,...,.0}fori=1,...,n
x 0 = { ? ] L] ] 3
f () 0 otherwise.

The restriction “z; € {1,...,6} for i = 1,...,n" can be re-expressed as “z; €
{1,2,...} fori=1,...,n (note that there is no 4 in this restriction) and max; z; < 6.”
If we define T'(x) = max; x;,

1 z;€{1,2,...}fori=1,...,n

g h(z) = 0 otherwise,
h ot =4y L0
0 otherwise,

it is easily verified that f(x|6) = g(T'(x)|@)h(x) for all x and 0. Thus, the largest
order statistic, T(X) = max; X;, is a sufficient statistic in this problem.

This type of analysis can sometimes be carried out more clearly and concisely using
indicator functions. Recall that I4(z) is the indicator function of the set A; that is,
it is equal to 1 if z € A and equal to 0 otherwise. Let N = {1,2,...} be the set of
positive integers and let Ny = {1 2,...,0}. Then the joint pmf of Xy,...,X, is

f(x|6) = H 07 Iy, (z;) =07 HIM, (z:).
i=1
Defining T'(x) = max; a:l. we see that

HINs -7:1. = (HIN Ti ) INs ( ))

Thus we have the factonzatlon

n
f(x|8) = 67" Iny (T(x)) (HIN(SCJ)
i=1
The first factor depends on z,...,2, only through the value of T(x) = max; x;



It is easy to find a sufficient statistic for an exponential family of distributions

using the Factorization Theorem. The proof of the following important result is left
as Exercise

Theorem 6.2.10 Let Xi,..., X, be iéid observations from a pdf or pmf f(x|@) that
belongs to an exponential family given by

k
£(z/6) = h(z)c(@) exp (z w,-.w)tf(z)) ,
1=1

where 8 = (01,0,,...,04), d < k. Then

T(X) = (Ztl (X5)s-0es Zik(xj))
j=1 =1

is o sufficient statistic for 6.

Minimal Sufficient Statistics
In any problem there are, in fact, many sufficient statistics.

It is always true that the complete sample, X, is a sufficient statistic. We can factor
the pdf or pmf of X as f(x|0) = f(T(x)|6)h(x), where T'(x) = x and h(x) = 1 for all
x. By the Factorization Theorem, T'(X) = X is a sufficient statistic.

Also, it follows that any one-to-one function of a sufficient statistic is a sufficient
statistic. Suppose T'(X) is a sufficient statistic and define 7 (x) = r(T'(x)) for all x,
where 7 is a one-to-one function with inverse r~!. Then by the Factorization Theorem
there exist g and h such that

F(x[6) = g(T(x)|6)h(x) = g(r~*(T* (x))|0)h(x).
Defining g*(t|8) = g(r~*(t)|6), we see that

f(x|6) = g" (T (x)|6)h(x).
So, by the Factorization Theorem, 7*(X) is a sufficient statistic.

Recall that the purpose of a sufficient

statistic is to achieve data reduction without loss of information about the parameter
0; thus, a statistic that achieves the most data reduction while still retaining all the
information about # might be considered preferable.

Definition 6.2.11 A sufficient statistic T(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7"(X), T'(x) is a function of 7"(x).

To say that T'(x) is a function of 7”(x) simply means that if 7(x) = 7”(y), then
T(x) = T(y). In terms of the partition sets
if {By:t' € T'} are the partition sets for 7/(x) and {A;: t € T} are the partition sets
for T'(x), then Definition 6.2.11 states that every By is a subset of some A;. Thus, the
partition associated with a minimal sufficient statistic, is the coarsest possible parti-
tion for a sufficient statistic, and a minimal sufficient statistic achieves the greatest
possible data reduction for a sufficient statistic.



Example 6.2.12 (Two normal sufficient statistics) The model considered in
Example 6.2.4 has X1, ..., X, iid n(g, ¢2) with 02 known. Using factorization (6.2.4),
we concluded that T(X) = X is a sufficient statistic for u. Instead, we could write
down factorization (6.2.5) for this problem (o2 is a known value now) and correctly
conclude that 7/(X) = (X, 8?) is a sufficient statistic for 4 in this problem. Clearly
T(X) achieves a greater data reduction than 7”(X) since we do not know the sample
variance if we know only T'(X). We can write T'(x) as a function of 7”(x) by defining
the function r(a, b) = a. Then T(x) = Z = r(Z, 5%) = r(T"(x)). Since T'(X) and T"(X)
are both sufficient statistics, they both contain the same information about x. Thus,
the additional information about the value of $2, the sample variance, does not add
to our knowledge of u since the population variance o2 is known.

Of course, if 02 is unknown,
as in Example 6.2.9, T(X) = X is not a sufficient statistic and T"(X)
contains more information about the parameter (u,02) than does T(X). I

Theorem 6.2.183 Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|6)/f(y|6)
is constant as a function of 6 if and only if T(x) = T(y). Then T'(X) is a minimal
sufficient statistic for 6.
Proof:

First we show that T(X) is a sufficient statistic. Let 7 = {¢: ¢t = T(x) for some
x € X'} be the image of X under T'(x). Define the partition sets induced by T'(x) as
Ay = {x: T(x) = t}. For each A;, choose and fix one element x; € A;. For any x € X,
Xr(x) is the fixed element that is in the same set, A, as x. Since x and xp(x) are
in the same set A;,T(x) = T'(xr(x)) and, hence, f(x|0)/f(xp(x)|0) is constant as a
function of #. Thus, we can define a function on X’ by h(x) = f(x|6)/f(xp(x)|6) and
h does not depend on 6. Define a function on 7 by g(t|8) = f(x:|6). Then it can be

seen that
_ f(xr|0)f(x16)

and, by the Factorization Theorem, T'(X) is a sufficient statistic for 6.

Now to show that 7(X) is minimal, let 7"(X) be any other sufficient statistic.
By the Factorization Theorem, there exist functions ¢’ and A’ such that f(x|f) =
g'(T"(x)|0)h'(x). Let x and y be any two sample points with 7/(x) = T'(y). Then

f(xl6) _ ¢(@®BKE) _ K(x)
1v10) " T WIORE) ~ W)

Since this ratio does not depend on 6, the assumptions of the theorem imply that
T(x) = T(y). Thus, T'(x) is a function of T"(x) and T'(x) is minimal. O




Example 6.2.14 (Normal minimal sufficient statistic) Let Xi,..., X, be iid
n(u,0?), both 4 and 02 unknown. Let x and y denote two sample points, and let
(z,s%) and (g, sf,) be the sample means and variances corresponding to the x and y
samples, respectively. Then, using (6.2.5), we see that the ratio of densities is

f(x|u,02)  (2mo?) " 2exp (- [n(Z — p)* + (n — 1)s3] /(20?))
flylu,0%)  (2m0?)=/2exp (- [n(y — u)2 + (n — 1)s2] /(202))
= exp ([-n(&® — 72) + 202 — §) - (n — 1)(s2 — 52)] /(207))..
2

This ratio will be constant as a function of x and o2 if and only if Z = § and s2 = 85
Thus, by Theorem 6.2.13, (X, 52) is 2 minimal sufficient statistic for (u,o?). I

Example 6.2.15 (Uniform minimal sufficient statistic) Suppose Xi,..., X,
are iid uniform observations on the interval (8,6 + 1), —00 < 8 < co. Then the joint
pdf of X is

1 f<z;<0+1,4i=1,...,n,

0 otherwise,

i) = {

which can be written as ) Y 2t )
_ max; z; — 1 < 0 < min; ;
f(xl0) = {0 otherwise.

Thus, for two sample points x and y, the numerator and denominator of the ratio
f(x|8)/f(y|6) will be positive for the same values of  if and only if min; z; = min; y,
and max; z; = max; ;. And, if the minima and maxima are equal, then the ratio is
constant and, in fact, equals 1. Thus, letting X(;) = min; X; and X(,) = max; X,
we have that 7'(X) = (X(1), X(n)) is a minimal sufficient statistic. This is a case in
which the dimension of a minimal sufficient statistic does not match the dimension
of the parameter. I

A minimal sufficient statistic is not unique. Any one-to-one function of a minimal
sufficient statistic is also a minimal sufficient statistic.
(X(ny — X1y, (X(n) + X(1))/2) is also a minimal sufficient statistic in Example 6.2.15

(X7, X;, £7_, X?) is also a minimal sufficient statistic in Example 6.2.14.



Ancillary Statistics
sufficient statistics contain all the information about § that is available in the sample
we introduce a different sort of statistic, one that has a complementary purpose.

Definition 6.2.16 A statistic S(X) whose distribution does not depend on the
parameter 0 is called an ancillary statistic.

Alone, an ancillary statistic contains no information about §. An ancillary statistic
is an observation on a random variable whose distribution is fixed and known, unre-
lated to 6. Paradoxically, an ancillary statistic, when used in conjunction with other
statistics, sometimes does contain valuable information for inferences about 8.

Example 6.2.17 (Uniform ancillary statistic) As in Example 6.2.15, let
X1,..., X, be iid uniform observations on the interval (4,0 + 1),—00 < 8 < oo.
Let X1y < -++ < X(n) be the order statistics from the sample. We show below that
the range statistic, R = X(,) — X(1), is an ancillary statistic by showing that the pdf

of R does not depend on §. Recall that the cdf of each X; is

0 z<6@
F(z|0)={x-0 f<r<f+1
1 6+1<z

Thus, the joint pdf of X(;) and X, is

g(x(1)9x('n)|9) =

n(n — 1)(x(n) — .’23(1))"_2 0<z))<T(n)<b+1
0 otherwise.

Making the transformation R = X(,) — X(1) and M = (X 1)+ X(n))/2, which has the
inverse transformation X,y = (2M — R)/2 and X,y = (2M + R)/2 with Jacobian 1,
we see that the joint pdf of R and M is

h(r,m|6) = nn—1)r""2 0<r<1,0+(r/2)<m<0+1—(r/2)
, 0 otherwise.
(Notice the rather involved region of positivity for h(r,m|#).) Thus, the pdf for R is
0+1—(r/2)
h(Tla) =/ n(TL - l)rn—de
0+(r/2)
=nn-1)r"(1-r), 0<r<l.

This is a beta pdf with @ = n — 1 and 8 = 2. More important, the pdf is the same
for all 6. Thus, the distribution of R does not depend on 8, and R is ancillary. |



The ancillarity of R does not depend on the uniformity
of the Xjs, but rather on the parameter of the distribution being a location parameter.

Example 6.2.18 (Location family ancillary statistic) Let X,,...,X, be iid
observations from a location parameter family with cdf F(z — 8), —00 < 8 < c0. We
will show that the range, R = X,y — X(1), is an ancillary statistic. We

work with Zy, ..., Z, iid observations from F(z) (corresponding to 6 = 0)

with Xy =2, +6,..., X, = Z, + 0. Thus the cdf of the range statistic, R, is

Fr(r|6) = Py(R <)
= Py(max X; — min X; < 7)
1 1

= Py(max(Z; +6) —min(Z; +0) <7)

= Py(maxZ; —minZ; + 6 — 6 <)
1 1

Fgr(r|0) = Py(max Z; — min Z; < 7).

The last probability does not depend on @ because the distribution of Z,,..., Z, does
not depend on . Thus, the cdf of R does not depend on @ and, hence, R is an ancillary
statistic. [

Example 6.2.19 (Scale family ancillary statistic)  Scale parameter familieg
also have certain kinds of ancillary statistics. Let X1,..., X, be iid observations from
a scale parameter family with cdf F(z/c),c > 0. Then any statistic that depends
on the sample only through the n — 1 values X,/X,,...,Xn-1/X, is an ancillary

statistic. For example,
_)_(lixn_+)_(ﬁ = ;((_,1,— v 5o %_;_1 +1
is an ancillary statistic. To see this fact, let Z), ..., Z, be iid observations from F(z)
(corresponding to o = 1) with X; = ¢Z;. The joint cdf of X,/Xn,..., Xn_1/X, is
F(yla cee ayn—lld) = PU(XI/Xn <wy,--.- ,Xn—l/-xn < yn-l)
= P, (062:/(02Zn) S Y1,---,02n-1/(02Z1) < Yn-1)

=Po(Z21/Zn <911 Zn-1/Zn < Yn1)-
The last probability does not depend on o because the distribution of Z, ..., Z, does
not depend on o. So the distribution of X;/X,,..., Xn_1/X, is independent of o,
as is the distribution of any function of these quantities.



In particular, let X; and X, be iid n(0,0?) observations. From the above result,
we see that X;/X, has a distribution that is the same for every value of ¢. But, in
we saw that, if o = 1, X; /X5 has a Cauchy(0,1) distribution. Thus,
for any o > 0, the distribution of X, /X is this same Cauchy distribution. I

Definition 3.5.2 Let f(z) be any pdf. Then the family of pdfs f(z — u), indexed
by the parameter p, —00 < p < oo, is called the location family with standard pdf
f(z) and pu is called the location parameter for the family.

| [ |
-3 -2 -1 0 | 2 3 4 5

X

Two members of the same location family: means at 0 and 2

It is clear from Figure that the area under the graph of f(z) between =1
and z = 2 is the same as the area under the graph of f(z — ) between z = u —1 and
z = p+ 2. Thus if X is a random variable with pdf f(z — u), we can write

P(-1< X <2[0)=Plu—-1<X < p+2lp),

where the random variable X has pdf f(z — 0) = f(z) on the left of the equality and
pdf f(z — p) on the right.

If X is a random variable with pdf f(z—p), then X may be represented as X = Z+
i, where Z is a random variable with pdf f(z). This representation is a consequence
of Theorem 3.5.6 (with ¢ = 1), which will be proved later.



Example 3.5.3 (Exponential location family) Let f(z) = e *, z > 0, and
f(z) =0, z < 0. To form a location family we replace z with z — x to obtain

e @m z_u>0
ra={g " TIh20
_ e_(z""i‘) x 2 m
10 z < U

Graphs of f(z|u) for various values of x are shown in Figure

the graph has been shifted. Now the positive part of the graph starts at u rather than
at 0. If X measures time, then p might be restricted to be nonnegative so that X
will be positive with probability 1 for every value of x. In this type of model, where
1 denotes a bound on the range of X, u is sometimes called a threshold parameter. ||

Ezponential location densities

Definition 3.5.4 Let f(z) be any pdf. Then for any o > 0, the family of pdfs
(1/0)f(x/c), indexed by the parameter o, is called the scale family with standard pdf
f(z) and o is called the scale parameter of the family.

The effect of introducing the scale parameter o is either to stretch (o > 1) or to
contract (o0 < 1) the graph of f(z) while still maintaining the same basic shape of
the graph. This is illustrated in Figure Most often when scale parameters are
used, f(z) is either symmetric about 0 or positive only for z > 0. In these cases the
stretching is either symmetric about O or only in the positive direction. But, in the
definition, any pdf may be used as the standard.



=§ —4 =2 0 2 4 6
Members of the same scale family

Definition 3.5.5 Let f(z) be any pdf. Then for any p, —oo < u < 00, and any
o > 0, the family of pdfs (1/0) f((z — u)/e), indexed by the parameter (u, o), is called
the location—scale family with standard pdf f(z); p is called the location parameter
and o is called the scale parameter.

The effect of introducing both the location and scale parameters is to stretch (o > 1)
or contract (o < 1) the graph with the scale parameter and then shift the graph so that
the point that was above 0 is now above p. Figure illustrates this transformation
of f(z). The normal and double exponential families are examples of location—scale
families. the Cauchy as a location—scale family.

-6 -4 -2 0 2 4 6
Members of the same location—scale family



Theorem 3.5.6 Let f(-) be any pdf. Let u be any real number, and let o be any
positive real number. Then X is a random variable with pdf (1/0) f((x — p)/o) if and
only if there ezists a random variable Z with pdf f(z) and X = o0Z + p.

Proof: To prove the “if” part, define g(z) = 0z+pu. Then X = g(Z), g is a monotone
function, g~'(z) = (z — p)/o, and |(d/dz)g~'(z)| = 1/o. Thus the pdf of X is

fx(2) = fz(s~' (@) —f (I;“) N

To prove the “only if” part, define g(z) = (z — u)/c and let Z = g(X).
97 (2) = 0z + p,|(d/dz)g 7 (2)| = o, and the pdf of Z is

d—i-g*‘(-"c)

fa(2) = fx(67@) | o @) = 57 (A ) o = 1o
Also,
oZ+u=ag(X)+u=a(X;”)+u=X. a

Theorem 3.5.7 Let Z be a random variable with pdf f(z). Suppose EZ and Var Z
exist. If X is a random variable with pdf (1/0)f((z — u)/0), then

EX =0EZ+pu and VarX =o?VarZ.

In particular, if EZ =0 and Var Z = 1, then EX = u and Var X = o2
Proof: By Theorem 3.5.6, there is a random variable Z* with pdf f(z) and X =
02* + u. So EX = gEZ* + uy = 0EZ + p and Var X = 02?Var Z* = ¢*Var Z. O
Probabilities for any member of a location—scale family may be computed in terms
of the standard variable Z because '
P(XSx)=P(X_" < ‘”;“) =P(Zs x_“)
o o c
Thus, if P(Z < z) is tabulated or easily calculable for the standard variable Z, then
probabilities for X may be obtained. Calculations of normal probabilities using the
standard normal table are examples of this.

Definition 6.2.21 Let f(t|0) be a family of pdfs or pmfs for a statistic 7(X). The
family of probability distributions is called complete if Egg(T) = 0 for all § implies
Py(g(T) = 0) =1 for all §. Equivalently, 7(X) is called a complete statistic.

Notice that completeness is a property of a family of probability distributions, not
of a particular distribution. For example, if X has a n(0, 1) distribution, then defining
g9(z) = z, we have that Eg(X) = EX = 0. But the function g(z) = z satisfies
P(g(X) =0) = P(X =0) =0, not 1. However, this is a particular distribution, not a
family of distributions. If X has a n(#, 1) distribution, —oo < § < oo, we shall see that
no function of X, except one that is 0 with probability 1 for all 8, satisfies Egg(X) =0
for all 8. Thus, the family of n(@,1) distributions, —oo < 8 < oo, is complete.



Example 6.2.22 (Binomial complete sufficient statistic) Suppose that T" has
a binomial(n, p) distribution, 0 < p < 1. Let g be a function such that E,g(T") = 0.

Then
0=Euo(T) =3 _ot) (}) (1 - p)*"*
t=0

-0 50 (7) (25)

for all p, 0 < p < 1. The factor (1 —p)” is not O for any p in this range. Thus it must
be that

0=3300(}) (+75) = L0 ()

t=0

for all 7, 0 < r < co. But the last expression is a polynomial of degree n in r, where the
coefficient of r* is g(t)(7} ). For the polynomial to be 0 for all 7, each coefficient must be
0. Since none of the () terms is 0, this implies that g(t) = 0 for t =0, 1,...,n. Since
T takes on the values 0,1,...,n with probability 1, this yields that P,(g(T) =0) =1
for all p, the desired conclusion. Hence, T is a complete statistic. I

Example 6.2.23 (Uniform complete sufficient statistic) Let X,,...,X, be
iid uniform(0, #) observations, 0 < # < oo. Using an argument similar to that in
Example 6.2.8, we can see that T'(X) = max; X; is a sufficient statistic and, by
Theorem 5.4.4, the pdf of T'(X) is

-1g-n
f(t16) {0 otherwise.
Suppose g(t) is a function satisfying Egg(T") = 0 for all 8. Since E¢g(T') is constant
as a function of 6, its derivative with respect to 8 is 0. Thus we have that

0= iE (T) = ifa (t)nt" 10 "dt
7 B AR N

d [° 1 d o 1
C] )d6 ] ng(t)t" 'dt + (409 )/o ng(t)t" 'd
applying the product)

__p-n n—1
=6""ng(6)6"" +0 (rule for differentiation



== H_lng(O).

The first term in the next to last line is the result of an application of the Fundamental
Theorem of Calculus. The second term is 0 because the integral is, except for a
constant, equal to Egg(T), which is 0. Since §~'ng(f) = 0 and #~'n # 0, it must
be that g(6) = 0. This is true for every 6 > 0; hence, T is a complete statistic.

note that the Fundamental Theorem of Calculus does
not apply to all functions, but only to functions that are Riemann-integrable. The

equation d f°
7 [ sttt =00

is valid only at points of continuity of Riemann-integrable g. Thus, strictly speaking,
the above argument does not show that 7T is a complete statistic, since the condition
of completeness applies to all functions, not just Riemann-integrable ones. From a
more practical view, however, this distinction is not of concern since the condition of
Riemann-integrability is so general that it includes virtually any function we could
think of.) I

Theorem 6.2.24 (Basu’s Theorem) If T(X) is a complete and minimal suffi-
cient statistic, then T(X) is independent of every ancillary statistic.

Proof: We give the proof only for discrete distributions.
Let S(X) be any ancillary statistic. Then P(S(X) = s) does not depend on 6 since
S(X) is ancillary. Also the conditional probability,

P(S(X) = s|T(X) = t) = P(X € {x: S(x) = s}|T(X) = t),

does not depend on 6 because T'(X) is a sufficient statistic (recall the definition!).
Thus, to show that S(X) and 7(X) are independent, it suffices to show that

(6.2.6) P(S(X)=s|T(X)=t)= P(S(X) =s)
for all possible values t € T. Now,

P(S(X)=s)=Y_ P(S(X) = s|T(X) = t) P(T(X) = 1.

teT

Furthermore, since Y, ., Po(T(X) = t) = 1, we can write
P(S(X)=5) =Y P(S(X) = s)Py(T(X) = ).
teT

Therefore, if we define the statistic
9(t) = P(S(X) = s|T(X) = t) - P(S(X) = s),
the above two equations show that

Eog(T) =Y _ g(t)Py(T(X)=1t)=0 for all 6.
teT

Since T(X) is a complete statistic, this implies that g(t) = 0 for all possible values
t € T. Hence (6.2.6) is verified. O

Basu’s Theorem is useful in that it allows us to deduce the independence of two
statistics without ever finding the joint distribution of the two statistics.



Theorem 6.2.25 (Complete statistics in the exponential family) Let
Xi,..., X, be ud observations from an ezponential family with pdf or pmf of the
form

k
(6.2.7) 1(218) = hiz)e(B) exp | 3 w(;)t;(a) | |

i=1

where 8 = (01,62,...,0). Then the statistic

T(X) = (Zt;(Xg),th(X:‘)»- : -,Ztk(Xi))
i=1 i=1

i=1

is complete as long as the parameter space © contains an open set in R*.

The condition that the parameter space contain an open set is needed to avoid a sit-
uation like the following. The n(, §2) distribution can be written in the form (6.2.7);
however, the parameter space (6,62) does not contain a two-dimensional open set,
as it consists of only the points on a parabola. As a result, we can find a transfor-
mation of the statistic T(X) that is an unbiased estimator of 0
(Recall that exponential families such as the n(8,62), where the parameter space is a
lower-dimensional curve, are called curved ezponential families)

Example 6.2.26 Let X1,...,X,, beiid exponential
observations with parameter #. Consider computing the expected value of

Xn
9(X) = X140+ Xn
We first note that the exponential distributions form a scale parameter family and
thus, by Example 6.2.19, g(X) is an ancillary statistic. The exponential distributions
also form an exponential family with t(z) =z and so, by Theorem 6.2.25,

T(X) =) X
is a complete statistic and, by Theorem 6.2.10, 7'(X) is a sufficient statistic. (As noted
below, we need not verify that 7°(X) is minimal, although it could easily be verified
using Theorem 6.2.13.) Hence, by Basu’s Theorem, 7'(X) and g(X) are independent.
Thus we have

6 = EgXn = EoT(X)g(X) = (EoT(X))(Eeg(X)) = nfEgg(X).

Hence, for any 6,Egg(X) = n™1. I



Theorem 6.2.28 If a minimal sufficient statistic ezists, then any complete statistic
18 also a minimal sufficient statistic.



UNIT 3: COMPLETENESS



Minimal Sufficient Statistics
In any problem there are, in fact, many sufficient statistics.

It is always true that the complete sample, X, is a sufficient statistic. We can factor
the pdf or pmf of X as f(x|0) = f(T(x)|6)h(x), where T'(x) = x and h(x) = 1 for all
x. By the Factorization Theorem, T'(X) = X is a sufficient statistic.

Also, it follows that any one-to-one function of a sufficient statistic is a sufficient
statistic. Suppose T'(X) is a sufficient statistic and define 7 (x) = r(T'(x)) for all x,
where 7 is a one-to-one function with inverse r~!. Then by the Factorization Theorem
there exist g and h such that

F(x[6) = g(T(x)[6)h(x) = g(r~1(T* (x))|0)h(x).
Defining g*(t|8) = g(r~'(t)|6), we see that

f(x|6) = g" (T (x)|6)h(x).
So, by the Factorization Theorem, 7*(X) is a sufficient statistic.

Recall that the purpose of a sufficient

statistic is to achieve data reduction without loss of information about the parameter
0; thus, a statistic that achieves the most data reduction while still retaining all the
information about 8 might be considered preferable.

Definition 6.2.11 A sufficient statistic T(X) is called a minimal sufficient statistic
if, for any other sufficient statistic 7/(X), T'(x) is a function of 7"(x).

To say that T'(x) is a function of 7”(x) simply means that if 7(x) = 7”"(y), then
T(x) = T(y). In terms of the partition sets
if {By:t' € T'} are the partition sets for 7/(x) and {A,: t € T} are the partition sets
for T'(x), then Definition 6.2.11 states that every By is a subset of some A;. Thus, the
partition associated with a minimal sufficient statistic, is the coarsest possible parti-
tion for a sufficient statistic, and a minimal sufficient statistic achieves the greatest
possible data reduction for a sufficient statistic.



Example 6.2.12 (Two normal sufficient statistics) The model considered in
Example 6.2.4 has X1, ..., X, iid n(g, ¢2) with 02 known. Using factorization (6.2.4),
we concluded that T(X) = X is a sufficient statistic for u. Instead, we could write
down factorization (6.2.5) for this problem (o2 is a known value now) and correctly
conclude that 7/(X) = (X, 8?) is a sufficient statistic for 4 in this problem. Clearly
T(X) achieves a greater data reduction than 7”(X) since we do not know the sample
variance if we know only T'(X). We can write T'(x) as a function of 7”(x) by defining
the function r(a, b) = a. Then T(x) = Z = r(Z, 5%) = r(T"(x)). Since T'(X) and T"(X)
are both sufficient statistics, they both contain the same information about x. Thus,
the additional information about the value of $2, the sample variance, does not add
to our knowledge of u since the population variance o2 is known.

Of course, if 02 is unknown,
as in Example 6.2.9, T(X) = X is not a sufficient statistic and T"(X)
contains more information about the parameter (u,02) than does T(X). I

Theorem 6.2.183 Let f(x|0) be the pmf or pdf of a sample X. Suppose there ezists a
function T(x) such that, for every two sample points x andy, the ratio f(x|6)/f(y|6)
is constant as a function of 6 if and only if T(x) = T(y). Then T'(X) is a minimal
sufficient statistic for 6.
Proof:

First we show that T(X) is a sufficient statistic. Let 7 = {¢: ¢t = T(x) for some
x € X'} be the image of X under T'(x). Define the partition sets induced by T'(x) as
Ay = {x: T(x) = t}. For each A;, choose and fix one element x; € A;. For any x € X,
Xr(x) is the fixed element that is in the same set, A, as x. Since x and xp(x) are
in the same set A;,T(x) = T'(xr(x)) and, hence, f(x|0)/f(xp(x)|0) is constant as a
function of #. Thus, we can define a function on X’ by h(x) = f(x|6)/f(xp(x)|6) and
h does not depend on 6. Define a function on 7 by g(t|8) = f(x:|6). Then it can be

seen that
_ f(xr|0)f(x16)

and, by the Factorization Theorem, T'(X) is a sufficient statistic for 6.

Now to show that 7(X) is minimal, let 7"(X) be any other sufficient statistic.
By the Factorization Theorem, there exist functions ¢’ and A’ such that f(x|f) =
g'(T"(x)|0)h'(x). Let x and y be any two sample points with 7/(x) = T'(y). Then

f(xl6) _ ¢(@®BKE) _ K(x)
1v10) " T WIORE) ~ W)

Since this ratio does not depend on 6, the assumptions of the theorem imply that
T(x) = T(y). Thus, T'(x) is a function of T"(x) and T'(x) is minimal. O




Example 6.2.14 (Normal minimal sufficient statistic) Let Xi,..., X, be iid
n(u,0?), both 4 and 02 unknown. Let x and y denote two sample points, and let
(z,s%) and (g, sf,) be the sample means and variances corresponding to the x and y
samples, respectively. Then, using (6.2.5), we see that the ratio of densities is

f(x|u,02)  (2mo?) " 2exp (- [n(Z — p)* + (n — 1)s3] /(20?))
flylu,0%)  (2m0?)=/2exp (- [n(y — u)2 + (n — 1)s2] /(202))
= exp ([-n(&® — 72) + 202 — §) - (n — 1)(s2 — 52)] /(207))..
2

This ratio will be constant as a function of x and o2 if and only if Z = § and s2 = 85
Thus, by Theorem 6.2.13, (X, 52) is 2 minimal sufficient statistic for (u,o?). I

Example 6.2.15 (Uniform minimal sufficient statistic) Suppose Xi,..., X,
are iid uniform observations on the interval (8,6 + 1), —00 < 8 < co. Then the joint
pdf of X is

1 f<z;<0+1,4i=1,...,n,

0 otherwise,

i) = {

which can be written as ) Y 2t )
_ max; z; — 1 < 0 < min; ;
f(xl0) = {0 otherwise.

Thus, for two sample points x and y, the numerator and denominator of the ratio
f(x|8)/f(y|6) will be positive for the same values of  if and only if min; z; = min; y,
and max; z; = max; ;. And, if the minima and maxima are equal, then the ratio is
constant and, in fact, equals 1. Thus, letting X(;) = min; X; and X(,) = max; X,
we have that 7'(X) = (X(1), X(n)) is a minimal sufficient statistic. This is a case in
which the dimension of a minimal sufficient statistic does not match the dimension
of the parameter. I

A minimal sufficient statistic is not unique. Any one-to-one function of a minimal
sufficient statistic is also a minimal sufficient statistic.
(X(ny — X1y, (X(n) + X(1))/2) is also a minimal sufficient statistic in Example 6.2.15

(X7, X;, £7_, X?) is also a minimal sufficient statistic in Example 6.2.14.



Ancillary Statistics
sufficient statistics contain all the information about § that is available in the sample
we introduce a different sort of statistic, one that has a complementary purpose.

Definition 6.2.16 A statistic S(X) whose distribution does not depend on the
parameter 0 is called an ancillary statistic.

Alone, an ancillary statistic contains no information about §. An ancillary statistic
is an observation on a random variable whose distribution is fixed and known, unre-
lated to 6. Paradoxically, an ancillary statistic, when used in conjunction with other
statistics, sometimes does contain valuable information for inferences about 8.

Example 6.2.17 (Uniform ancillary statistic) As in Example 6.2.15, let
X1,..., X, be iid uniform observations on the interval (4,0 + 1),—00 < 8 < oo.
Let X1y < -++ < X(n) be the order statistics from the sample. We show below that
the range statistic, R = X(,) — X(1), is an ancillary statistic by showing that the pdf

of R does not depend on §. Recall that the cdf of each X; is

0 z<6@
F(z|0)={x-0 f<r<f+1
1 6+1<z

Thus, the joint pdf of X(;) and X, is

g(x(1)9x('n)|9) =

n(n — 1)(x(n) — .’23(1))"_2 0<z))<T(n)<b+1
0 otherwise.

Making the transformation R = X(,) — X(1) and M = (X 1)+ X(n))/2, which has the
inverse transformation X,y = (2M — R)/2 and X,y = (2M + R)/2 with Jacobian 1,
we see that the joint pdf of R and M is

h(r,m|6) = nn—1)r""2 0<r<1,0+(r/2)<m<0+1—(r/2)
, 0 otherwise.
(Notice the rather involved region of positivity for h(r,m|#).) Thus, the pdf for R is
0+1—(r/2)
h(Tla) =/ n(TL - l)rn—de
0+(r/2)
=nn-1)r"(1-r), 0<r<l.

This is a beta pdf with @ = n — 1 and 8 = 2. More important, the pdf is the same
for all 6. Thus, the distribution of R does not depend on 8, and R is ancillary. |



The ancillarity of R does not depend on the uniformity
of the Xjs, but rather on the parameter of the distribution being a location parameter.

Example 6.2.18 (Location family ancillary statistic) Let X,,...,X, be iid
observations from a location parameter family with cdf F(z — 8), —00 < 8 < c0. We
will show that the range, R = X,y — X(1), is an ancillary statistic. We

work with Zy, ..., Z, iid observations from F(z) (corresponding to 6 = 0)

with Xy =2, +6,..., X, = Z, + 0. Thus the cdf of the range statistic, R, is

Fr(r|6) = Py(R <)
= Py(max X; — min X; < 7)
1 1

= Py(max(Z; +6) —min(Z; +0) <7)

= Py(maxZ; —minZ; + 6 — 6 <)
1 1

Fgr(r|0) = Py(max Z; — min Z; < 7).

The last probability does not depend on @ because the distribution of Z,,..., Z, does
not depend on . Thus, the cdf of R does not depend on @ and, hence, R is an ancillary
statistic. [

Example 6.2.19 (Scale family ancillary statistic)  Scale parameter familieg
also have certain kinds of ancillary statistics. Let X1,..., X, be iid observations from
a scale parameter family with cdf F(z/c),c > 0. Then any statistic that depends
on the sample only through the n — 1 values X,/X,,...,Xn-1/X, is an ancillary

statistic. For example,
_)_(lixn_+)_(ﬁ = ;((_,1,— v 5o %_;_1 +1
is an ancillary statistic. To see this fact, let Z), ..., Z, be iid observations from F(z)
(corresponding to o = 1) with X; = ¢Z;. The joint cdf of X,/Xn,..., Xn_1/X, is
F(yla cee ayn—lld) = PU(XI/Xn <wy,--.- ,Xn—l/-xn < yn-l)
= P, (062:/(02Zn) S Y1,---,02n-1/(02Z1) < Yn-1)

=Po(Z21/Zn <911 Zn-1/Zn < Yn1)-
The last probability does not depend on o because the distribution of Z, ..., Z, does
not depend on o. So the distribution of X;/X,,..., Xn_1/X, is independent of o,
as is the distribution of any function of these quantities.



In particular, let X; and X, be iid n(0,0?) observations. From the above result,
we see that X;/X, has a distribution that is the same for every value of ¢. But, in
we saw that, if o = 1, X; /X5 has a Cauchy(0,1) distribution. Thus,
for any o > 0, the distribution of X, /X is this same Cauchy distribution. I

Definition 3.5.2 Let f(z) be any pdf. Then the family of pdfs f(z — u), indexed
by the parameter p, —00 < p < oo, is called the location family with standard pdf
f(z) and pu is called the location parameter for the family.

| [ |
-3 -2 -1 0 | 2 3 4 5

X

Two members of the same location family: means at 0 and 2

It is clear from Figure that the area under the graph of f(z) between =1
and z = 2 is the same as the area under the graph of f(z — ) between z = u —1 and
z = p+ 2. Thus if X is a random variable with pdf f(z — u), we can write

P(-1< X <2[0)=Plu—-1<X < p+2lp),

where the random variable X has pdf f(z — 0) = f(z) on the left of the equality and
pdf f(z — p) on the right.

If X is a random variable with pdf f(z—p), then X may be represented as X = Z+
i, where Z is a random variable with pdf f(z). This representation is a consequence
of Theorem 3.5.6 (with ¢ = 1), which will be proved later.



Example 3.5.3 (Exponential location family) Let f(z) = e *, z > 0, and
f(z) =0, z < 0. To form a location family we replace z with z — x to obtain

e @m z_u>0
ra={g " TIh20
_ e_(z""i‘) x 2 m
10 z < U

Graphs of f(z|u) for various values of x are shown in Figure

the graph has been shifted. Now the positive part of the graph starts at u rather than
at 0. If X measures time, then p might be restricted to be nonnegative so that X
will be positive with probability 1 for every value of x. In this type of model, where
1 denotes a bound on the range of X, u is sometimes called a threshold parameter. ||

Ezponential location densities

Definition 3.5.4 Let f(z) be any pdf. Then for any o > 0, the family of pdfs
(1/0)f(x/c), indexed by the parameter o, is called the scale family with standard pdf
f(z) and o is called the scale parameter of the family.

The effect of introducing the scale parameter o is either to stretch (o > 1) or to
contract (o0 < 1) the graph of f(z) while still maintaining the same basic shape of
the graph. This is illustrated in Figure Most often when scale parameters are
used, f(z) is either symmetric about 0 or positive only for z > 0. In these cases the
stretching is either symmetric about O or only in the positive direction. But, in the
definition, any pdf may be used as the standard.



=§ —4 =2 0 2 4 6
Members of the same scale family

Definition 3.5.5 Let f(z) be any pdf. Then for any p, —oo < u < 00, and any
o > 0, the family of pdfs (1/0) f((z — u)/e), indexed by the parameter (u, o), is called
the location—scale family with standard pdf f(z); p is called the location parameter
and o is called the scale parameter.

The effect of introducing both the location and scale parameters is to stretch (o > 1)
or contract (o < 1) the graph with the scale parameter and then shift the graph so that
the point that was above 0 is now above p. Figure illustrates this transformation
of f(z). The normal and double exponential families are examples of location—scale
families. the Cauchy as a location—scale family.

-6 -4 -2 0 2 4 6
Members of the same location—scale family



Theorem 3.5.6 Let f(-) be any pdf. Let u be any real number, and let o be any
positive real number. Then X is a random variable with pdf (1/0) f((x — p)/o) if and
only if there ezists a random variable Z with pdf f(z) and X = o0Z + p.

Proof: To prove the “if” part, define g(z) = 0z+pu. Then X = g(Z), g is a monotone
function, g~'(z) = (z — p)/o, and |(d/dz)g~'(z)| = 1/o. Thus the pdf of X is

fx(2) = fz(s~' (@) —f (I;“) N

To prove the “only if” part, define g(z) = (z — u)/c and let Z = g(X).
97 (2) = 0z + p,|(d/dz)g 7 (2)| = o, and the pdf of Z is

d—i-g*‘(-"c)

fa(2) = fx(67@) | o @) = 57 (A ) o = 1o
Also,
oZ+u=ag(X)+u=a(X;”)+u=X. a

Theorem 3.5.7 Let Z be a random variable with pdf f(z). Suppose EZ and Var Z
exist. If X is a random variable with pdf (1/0)f((z — u)/0), then

EX =0EZ+pu and VarX =o?VarZ.

In particular, if EZ =0 and Var Z = 1, then EX = u and Var X = o2
Proof: By Theorem 3.5.6, there is a random variable Z* with pdf f(z) and X =
02* + u. So EX = gEZ* + uy = 0EZ + p and Var X = 02?Var Z* = ¢*Var Z. O
Probabilities for any member of a location—scale family may be computed in terms
of the standard variable Z because '
P(XSx)=P(X_" < ‘”;“) =P(Zs x_“)
o o c
Thus, if P(Z < z) is tabulated or easily calculable for the standard variable Z, then
probabilities for X may be obtained. Calculations of normal probabilities using the
standard normal table are examples of this.

Definition 6.2.21 Let f(t|0) be a family of pdfs or pmfs for a statistic 7(X). The
family of probability distributions is called complete if Egg(T) = 0 for all § implies
Py(g(T) = 0) =1 for all §. Equivalently, 7(X) is called a complete statistic.

Notice that completeness is a property of a family of probability distributions, not
of a particular distribution. For example, if X has a n(0, 1) distribution, then defining
g9(z) = z, we have that Eg(X) = EX = 0. But the function g(z) = z satisfies
P(g(X) =0) = P(X =0) =0, not 1. However, this is a particular distribution, not a
family of distributions. If X has a n(#, 1) distribution, —oo < § < oo, we shall see that
no function of X, except one that is 0 with probability 1 for all 8, satisfies Egg(X) =0
for all 8. Thus, the family of n(@,1) distributions, —oo < 8 < oo, is complete.



Example 6.2.22 (Binomial complete sufficient statistic) Suppose that T" has
a binomial(n, p) distribution, 0 < p < 1. Let g be a function such that E,g(T") = 0.

Then
0=Euo(T) =3 _ot) (}) (1 - p)*"*
t=0

-0 50 (7) (25)

for all p, 0 < p < 1. The factor (1 —p)” is not O for any p in this range. Thus it must
be that

0=3300(}) (+75) = L0 ()

t=0

for all 7, 0 < r < co. But the last expression is a polynomial of degree n in r, where the
coefficient of r* is g(t)(7} ). For the polynomial to be 0 for all 7, each coefficient must be
0. Since none of the () terms is 0, this implies that g(t) = 0 for t =0, 1,...,n. Since
T takes on the values 0,1,...,n with probability 1, this yields that P,(g(T) =0) =1
for all p, the desired conclusion. Hence, T is a complete statistic. I

Example 6.2.23 (Uniform complete sufficient statistic) Let X,,...,X, be
iid uniform(0, #) observations, 0 < # < oo. Using an argument similar to that in
Example 6.2.8, we can see that T'(X) = max; X; is a sufficient statistic and, by
Theorem 5.4.4, the pdf of T'(X) is

-1g-n
f(t16) {0 otherwise.
Suppose g(t) is a function satisfying Egg(T") = 0 for all 8. Since E¢g(T') is constant
as a function of 6, its derivative with respect to 8 is 0. Thus we have that

0= iE (T) = ifa (t)nt" 10 "dt
7 B AR N

d [° 1 d o 1
C] )d6 ] ng(t)t" 'dt + (409 )/o ng(t)t" 'd
applying the product)

__p-n n—1
=6""ng(6)6"" +0 (rule for differentiation



== H_lng(O).

The first term in the next to last line is the result of an application of the Fundamental
Theorem of Calculus. The second term is 0 because the integral is, except for a
constant, equal to Egg(T), which is 0. Since §~'ng(f) = 0 and #~'n # 0, it must
be that g(6) = 0. This is true for every 6 > 0; hence, T is a complete statistic.

note that the Fundamental Theorem of Calculus does
not apply to all functions, but only to functions that are Riemann-integrable. The

equation d f°
7 [ sttt =00

is valid only at points of continuity of Riemann-integrable g. Thus, strictly speaking,
the above argument does not show that 7T is a complete statistic, since the condition
of completeness applies to all functions, not just Riemann-integrable ones. From a
more practical view, however, this distinction is not of concern since the condition of
Riemann-integrability is so general that it includes virtually any function we could
think of.) I

Theorem 6.2.24 (Basu’s Theorem) If T(X) is a complete and minimal suffi-
cient statistic, then T(X) is independent of every ancillary statistic.

Proof: We give the proof only for discrete distributions.
Let S(X) be any ancillary statistic. Then P(S(X) = s) does not depend on 6 since
S(X) is ancillary. Also the conditional probability,

P(S(X) = s|T(X) = t) = P(X € {x: S(x) = s}|T(X) = t),

does not depend on 6 because T'(X) is a sufficient statistic (recall the definition!).
Thus, to show that S(X) and 7(X) are independent, it suffices to show that

(6.2.6) P(S(X)=s|T(X)=t)= P(S(X) =s)
for all possible values t € T. Now,

P(S(X)=s)=Y_ P(S(X) = s|T(X) = t) P(T(X) = 1.

teT

Furthermore, since Y, ., Po(T(X) = t) = 1, we can write
P(S(X)=5) =Y P(S(X) = s)Py(T(X) = ).
teT

Therefore, if we define the statistic
9(t) = P(S(X) = s|T(X) = t) - P(S(X) = s),
the above two equations show that

Eog(T) =Y _ g(t)Py(T(X)=1t)=0 for all 6.
teT

Since T(X) is a complete statistic, this implies that g(t) = 0 for all possible values
t € T. Hence (6.2.6) is verified. O

Basu’s Theorem is useful in that it allows us to deduce the independence of two
statistics without ever finding the joint distribution of the two statistics.



Theorem 6.2.25 (Complete statistics in the exponential family) Let
Xi,..., X, be ud observations from an ezponential family with pdf or pmf of the
form

k
(6.2.7) 1(218) = hiz)e(B) exp | 3 w(;)t;(a) | |

i=1

where 8 = (01,62,...,0). Then the statistic

T(X) = (Zt;(Xg),th(X:‘)»- : -,Ztk(Xi))
i=1 i=1

i=1

is complete as long as the parameter space © contains an open set in R*.

The condition that the parameter space contain an open set is needed to avoid a sit-
uation like the following. The n(, §2) distribution can be written in the form (6.2.7);
however, the parameter space (6,62) does not contain a two-dimensional open set,
as it consists of only the points on a parabola. As a result, we can find a transfor-
mation of the statistic T(X) that is an unbiased estimator of 0
(Recall that exponential families such as the n(8,62), where the parameter space is a
lower-dimensional curve, are called curved ezponential families)

Example 6.2.26 Let X1,...,X,, beiid exponential
observations with parameter #. Consider computing the expected value of

Xn
9(X) = X140+ Xn
We first note that the exponential distributions form a scale parameter family and
thus, by Example 6.2.19, g(X) is an ancillary statistic. The exponential distributions
also form an exponential family with t(z) =z and so, by Theorem 6.2.25,

T(X) =) X
is a complete statistic and, by Theorem 6.2.10, 7'(X) is a sufficient statistic. (As noted
below, we need not verify that 7°(X) is minimal, although it could easily be verified
using Theorem 6.2.13.) Hence, by Basu’s Theorem, 7'(X) and g(X) are independent.
Thus we have

6 = EgXn = EoT(X)g(X) = (EoT(X))(Eeg(X)) = nfEgg(X).

Hence, for any 6,Egg(X) = n™1. I



Theorem 6.2.28 If a minimal sufficient statistic ezists, then any complete statistic
18 also a minimal sufficient statistic.

Definition 2.1.1 A statistics T(X) is called an unbiased estimator for a function of
the parameter ¢g(¢), provided that for every choice of 4,

ET(X) = g(0) (2:1.1)
Any estimator that is not unbiased is called biased. The bias is denoted by b(#).

b(#) = ET(X) — g(#) (2.1.2)

We will now define mean square error (mse)

MSE[T(X)] = E[T(X) — g()’
= E[T(X) —ET(X) + b(O)]*
= E[T(X) — ET(X)]* + 2b(0)E[T(X) — ET(X)] + b*(0)
= V[T(X)] + b*(9)
= Variance of [T (X)] + [bias of ]!'"(X)]2

Example 2._1 LI 1Bt X o X,) be Bernoulli rvs with parameter #, where € is

unknown. X is an estimator for #. Is it unbiased ?

= no
EX=->Xi=—=19
Thus. X is an un?iase_d estimator for 4.
We denote it as § = X

" Tl| o nf(l —6) #(1 —6)
Var(X)=?;V(X;): —

n



Example 2.1.2 LetX;(i=1,2

unknown.

Define nS? = > X — X)? and no? = > (G — g
Consider

Z(X,- — ,u.)2 =3 Z(Xf — XX — ;L)z
i=1

=1

=2 X —-X7+2> X — W& —p) +nX —p)?

i=1 =1
= Z(X" - X)? +nX — p)*

i=1

n n
Theretore, Z(X; —X) = Z(X,- — ,u)2 —n{X — ,u,)2
i=1 i=1

E [Z% - 12)3] =E [Z(X,- — uf} — nE[(X — p)’]
i=1 i=1

S no?
=no°— — =no- —o°
n
o? n—1
) 2 , 9 -
Hence, ESH)=c2—-" =72
n n
Thus, 52 is a biased estimator of 2.
40 )
5 , 0° 5 a2
Hence bc)=6"———0" = ——
i n

2

i % i el
Further, ,’1’51 1s an unbiased estimator of o-.

..... i) be iid rvs from N (p, a?), where 1tand o? are



Best Unbiased Estimators a comparison of estimators based on MSE consider-
ations may not yield a clear favorite. Indeed, there is no one “best MSE” estimator.
Many find this troublesome or annoying, and rather than doing MSE comparisons of
candidate estimators, they would rather have a “recommended” one.

If W; and W, are both unbiased estimators of a parameter 8, that is, EgW; =
EgW; = 6, then their mean squared errors are equal to their variances, so we should
choose the estimator with the smaller variance. If we can find an unbiased estimator
with uniformly smallest variance—a best unbiased estimator—then our task is done.

Suppose W™ is an estimator of 8 with Eg W* = 7(0) # 6, and we are interested in
investigating the worth of W*. Consider the class of estimators

Cr = {W: EgW = 1(6)}.
For any Wy, W, € C,, Biasg W, = Biasy W5, so
Eg(W) — 8)? — Eg(W, — 0)? = Varg W, — Vary W,
and MSE comparisons, within the class C., can be based on variance alone. Thus,

although we speak in terms of unbiased estimators, we really are comparing estimators
that have the same expected value, 7(0).



Definition 7.3.7 An estimator W* is a best unbiased estimator of 7() if it satisfies
EgW™ = 7(0) for all § and, for any other estimator W with EgW = 7(8), we have
Varg W* < Varp W for all 6. W* is also called a uniform minimum variance unbiased
estimator (UMVUE) of 7(6).

Example 7.3.8 (Poisson unbiased estimation) Let X,;,...,X, be iid
Poisson(A), and let X and S? be the sample mean and variance, respectively. Re-
call that for the Poisson pmf both the mean and variance are equal to A. Therefore,

we have g, ¥ — A for all ),

and EyS?2 =1, for all A,
go both X and S? are unbiased estimators of ).

Even if we can establish that X is better than S2, consider the class of estimators
Wa(X,8%) =aX + (1 —a)S2

For every constant a, ExW,(X, §?) = ), so we now have infinitely many unbiased
estimators of A. Even if X is better than S2, is it better than every W,(X, S%)?
Furthermore, how can we be sure that there are not other, better, unbiased estimators
lurking about? |

This example shows some of the problems that might be encountered in trying to
find a best unbiased estimator, and perhaps that a more comprehensive approach is
desirable. Suppose that, for estimating a parameter 7(8) of a distribution f(z|6), we
can specify a lower bound, say B(6), on the variance of any unbiased estimator of
7(8). If we can then find an unbiased estimator W™ satisfying Varg W* = B(6), we
have found a best unbiased estimator. This is the approach taken with the use of the
Cramér-Rao Lower Bound.



Theorem 7.3.9 (Cramér-Rao Inequality) Let X,,..., X, be a sample with pdf
f(x|8), and let W(X) = W(X\,...,X,) be any estimator satisfying

ZEW 0 = [ Weosxi)] dx

(7.3.4) and
VargW (X) < 0.
Then
d B, W (X))’
(7.3.5) Varg (W(X)) > (s (X))

Eo (& logf(X9)")

Proof: The proof of this theorem is elegantly simple and is a clever application of the
Cauchy-Schwarz Inequality or, stated statistically, the fact that for any two random
variables X and Y,

(7.3.6) [Cov(X,Y))? < (Var X)(VarY).

If we rearrange (7.3.6) we can get a lower bound on the variance of X,

[Cov(X,Y)]?
VarY

The cleverness in this theorem follows from choosing X to be the estimator W (X)
and Y to be the quantity 5— log f(X|6) and applying the Cauchy-Schwarz Inequality.

Var X >

First note that
FEW 0 = [ W | Z5x0)] az

% f(X[6)

(7.3.7) =E, [W(X) X0)

] (multiply by f(X|6)/f(X|8))

=Eg [W(X) o log f (X|6)J (property of logs)

which suggests a covariance between W(X) and £ log f(X|0). For it to be a co-
variance, we need to subtract the product of the expected values, so we calculate
Eq (2 log f(X|6)). But if we apply (7.3.7) with W (x) = 1, we have



(7.3.8) Ey ((% - f(X|0)) - Q%Eg[l] =0.

Therefore Covg(W (X), % log f(X|8)) is equal to the expectation of the product, and
it follows from (7.3.7) and (7.3.8) that

d

(7.3.9) Cove (W(X), % log f(X|0)) =y (W(X)% log f(XI())) = EW(X).

Also, since Eg(a% log f(X|8)) = 0 we have

8 8 2
(7.3.10) Vary (% log f(XlO)) =Ep ((% log f(XIG)) ) :
Using the Cauchy-Schwarz Inequality together with (7.3.9) and (7.3.10), we obtain
4 BeW (X))
Varg (W (X)) > (zg L)
By ( (£ log £(X19))”)
proving the theorem. 0

Corollary 7.3.10 (Cramér—Rao Inequality, iid case) If the assumptions of The-
orem 7.3.9 are satisfied and, additionally, if X1,..., X, are iid with pdf f(z|0), then

(&HEWX)"
nEy (£ 1og £(X16))")

Varg W(X) >

Proof: We only need to show that

Es ( (6% log f(X|0))2) — nEy ((% logf(le'))z) .

Since Xi,..., X, are independent,

2 n 2
Eg(%log f(X|0)) =E9(<% long(XaIO)) )



n 2
=Ey ((; % log f(Xile)) ) ‘(property of logs)

2
= ZEg (( log f X,IO)) ) (expand the square)

0
7.3.
(r311) D (5108 £016) 35 108 1510
For i # j we have

B (5108 /(X,1) 5 log /(X,10))

=Ep (666 log f(leg)) ( 80 log f(XjIG)) (independence)

=0. (from (7.3.8))

Therefore the second sum in (7.3.11) is 0, and the first term is

2 a 2
ZE@ Iog F(Xi10)) | =nEs log f(X|6)) |, (identical distributions)
36

which establishes the corollary. O

The quantity Eg ( (4 log /(X|6))") is called the information number, or Fisher
information of the sample. This terminology reflects the fact that the information
number gives a bound on the variance of the best unbiased estimator of 8. As the
information number gets bigger and we have more information about 6, we have g
smaller bound on the variance of the best unbiased estimator.

In fact, the term Information Inequality is an alternative to Cramér-Rao Inequality

Before looking at some examples, we present a computational result that aids in
the application of this theorem. Its proof is left to Exercise

Lemma 7.3.11 If f(z|0) satisfies

o (5 os1x10)) = [ 55| (F51o8 (@) 7(ale)] as

(true for an exponential family), then

Ee((b%log f(Xl0)>2) £ (g5 081 X10)).



Example 7.3.12 (Conclusion of Example 7.3.8) Here 7(\) = A, so 7'(}) = 1.
Also, since we have an exponential family, using Lemma 7.3.11 gives us

n 2
E (%loggf(XiIA)) ) = s (7 log SXIV)

62 B_'\Ax
= “"E*(av log (T))

52
= —nE, (W(_)‘ + Xlog A — log X!))

X n
= —nE,\ (—F) = X

Hence for any unbiased estimator, W, of A\, we must have
A
Vary W > —.
n

Since Vary X = A\/n, X is a best unbiased estimator of . I

It is important to remember that a key assumption in the Cramér—-Rao Theorem
is the ability to differentiate under the integral sign, which, of course, is somewhat
restrictive. As we have seen, densities in the exponential class will satisfy the assump-
tions but, in general, such assumptions need to be checked, or contradictions such as
the following will arise.

Example 7.3.13 (Unbiased estimator for the scale uniform) Let X;,...,
X, be iid with pdf f(z|8) =1/0,0 < z < 6. Since 3% log f(z|8) = —1/6, we have

E, ((;’0 Lo f(X|9)) 2) 0—12

The Cramér-Rao Theorem would seem to indicate that if W is any unbiased estimator
of 6,

92
Varg W > —.
n

We would now like to find an unbiased estimator with small variance. As a first guess,
consider the sufficient statistic Y = max(X,,...,X,), the largest order statistic. The
pdf of Y is fy (y|f) =ny™~'/6", 0 <y <6, so

showing that 1Y is an unbiased estimator of 6. We next calculate

s (2219) = (21 v,
(5
(=

+ 3

) e (nilef]
Y s (79) |

= n(n+2)0




which is uniformly smaller than 62/n. This indicates that the Cramér-Rao Theorem
is not applicable to this pdf. To see that this is so, we can use Leibnitz’s Rule
to calculate

dB/ h(z) f(z|0) dz d h() e
= —0)+/ h(x)%(%) dr
/h(x) f(z|0) dz,

unless h(9)/6 = 0 for all 6. Hence, the Cramér-Rao Theorem does not apply. In
general, if the range of the pdf depends on the parameter, the theorem will not be
applicable. |

Example 7.3.14 (Normal variance bound) Let X,...,X, be iid n(g,o?),
and consider estimation of o2, where . is unknown. The normal pdf satisfies the
assumptions of the Cramér-Rao Theorem and Lemma 7.3.11, so we have

A 1 —ame-wyer) o L (@4
(2mo2)1/2 2

3(0?)2 o8 4 i
and
0 2 2\ _ 1 (X — )
—E(gfag—)Qlng(le'io Wy O ) —_E(Tr’_—a-— Ko )
_ 1
204"

Thus, any unbiased estimator, W, of 02 must satisfy

4
Var(Wlu,o2) > 2—2—

204
—=1°?

Var(S?|u, 0?) =

so S? does not attain the Cramér-Rao Lower Bound. [

In the above example we are left with an incomplete answer; that is, is there a better
unbiased estimator of 02 than S2, or is the Cramér-Rao Lower Bound unattainable?

The conditions for attainment of the Cramér-Rao Lower Bound are actually quite
simple. Recall that the bound follows from an application of the Cauchy-Schwarz
Inequality, so conditions for attainment of the bound are the conditions for equality
in the Cauchy-Schwarz Inequality



Corollary 7.3.15 (Attainment) Let Xy,..., X, be iid f(z|6), where f(z|8) sat-
isfies the conditions of the Cramér-Rao Theorem. Let L(0|x) = []i—, f(x:|0) denote
the likelihood function. If W(X) = W(X1,...,X,) is any unbiased estimator of 7(0),
then W (X) attains the Cramér-Rao Lower Bound if and only if

(7.3.12) a(8)[W(x) - 7(8)] = ;% log L(6]x)

for some function a(8).
Proof: The Cramér-Rao Inequality, as given in (7.3.6), can be written as

n 2 n
[Cove (W(X), S log [ ] f(xiw))] < VargW (X)Varg (% g [T f(xile)) ,

and, recalling that EgW = 7(6), Eg(Z log [T'—, f(Xi|6)) = 0, and using the results
of Theorem-4.5.7, we can have equality if and only if W (x) — 7(8) is proportional to
% log [, f(i|6). That is exactly what is expressed in (7.3.12). O

Theorem 4.5.7 For any random variables X and Y,

a. -1 <pxy <1
b. lpxy| = 1 if and only if there exist numbers a # 0 and b such that P(Y =
aX +b)=1. If pxy =1, thena > 0, and if pxy = —1, thena <O0.

Example 7.3.16 (Continuation of Example 7.3.14) Here we have

1 - n )2 0.2
L(p,0%x) = el (/2T (=) 0

and hence

o) n 2 (s — u)?
— log L(u, 0%|x) = ot (Z (——nﬂ - 02) :

do? ;
i=1

Thus, taking a(c?) = n/(20*) shows that the best unbiased estimator of o? is
S (@i — u)?/n, which is calculable only if x is known. If y is unknown, the bound

i=1
cannot be attained. [l



Definition 1.5.3 A family of distributions {F (¢]f) : # € ©} is boundedly com-
plete if

Elg(T)] = /Ag(l‘)f(l‘)dl‘ =0V4

and real statistics g(f) satisfying |g(f)| < M, then g(f) = 0.
Theorem 1.5.2 [fafamily of distributions is complete then it is boundedly complete.

Remark The converse of the theorem is not true.
Example 1.5.10 Let T be a random variable with the following probability distrib-
ution:

PI[T=0]=qg and P[T=i+1]1=p>¢'. i=012,...,0<p<l,g=1—p

Let E[g(T)] = O then
90 +g(Hp* + 9 p*q + g3)p*g* +--- =0
9(1) + 9(2)q + g(3)g> + - - = —g(O)gp~>
= —g(0)g(1 =)™
= —g(0)g +2¢° +3¢° + -]
This implies that g(1) = 0, g(2) = —g(0), g(3) = —2g(0), etc.
Hence, g(i) = —(i — 1)g(0)
If g(0) = 0 then g(f) = O at all nonnegative integers. Otherwise, the function g(r)
is unbounded.

Therefore, there are nondegenerate unbiased estimates of zero but they are none
that are bounded. Hence, we conclude that the family of distributions is boundedly

complete but not complete.

Definition 2.1.1 A statistics 7(X) is called an unbiased estimator for a function of
the parameter g(f), provided that for every choice of 6,

ET(X) = g(8) (2.1.1)
Any estimator that is not unbiased is called biased. The bias is denoted by h(8).
b(#) = ET(X) — g(#) (2.1.2)

We will now define mean square error (mse)
MSE[T (X)] = E[T(X) — g(O)]
= E[T(X) — ET(X) + b(H)]*
= E[T(X) — ET(X))* + 2b(8)E[T(X) — ET(X)] + b* ()
= VIT(X)] + b*(6)
= Variance of [T(X)] + [bias of T(X)]*



Empirical Distribution Function

Let X1, X5, ..., X, be arandom sample from a continuous population with df " and
pdf . Then the order statistics X;), < X5y < --- < X, is a sufficient statistics.

= o Number of X/s <x s i ’ 5 o
Define F(x) = ——— =" same thing can be written in terms of order statistics as,
0 ) X([) > X 1 n
I k . .
F) =155 X =X <Xgqy = - E I — X))
15 x> Xy e

I;v>0

where  I(y) = I(); “otherwise

Example 2.1.10 Show that empirical distribution function is an unbiased estimator

of F(x)

. 1 n
P =~ ;m— —Xgp)
!:

. 1 n
EF () =~ > PlXg <x]
j=1

n n

| n k n—k
==2 2\, JF@I = Fo
n“ < \k
j=1 k=i
| £ = n k n—k
2>t - Fen
ns k

=1 k=1

| = (1 Pe T n—k -
—;g(k)[m)] [1—F)] Z(l)

Jj=1

1 ! n k n—k
== Dk, JIF@FI - F)]
B k=1 I\

= l[HF()C)] = F(x)
n

Note: One can see that I(x — X;)) is a Bernoulli random variable. Then EI(x — X{;)) =
F(x), so that EF (x) = F(x). We observe that F (x) has a Binomial distribution with

mean F'(x) and variance M Using central limit theorem, for iid rvs, we can
show that as n — o0

\/ﬁ[ 8 — } —  NQ.1).

VEQ[T = F(x)]



Recall that if X and Y are any two random variables, then, provided
the expectations exist, we have

EX = E[E(X[Y)],
Var X = Var[E(X|Y)] + E[Var(X|Y)].

Theorem 2.2.1 Let h(X) be an unbiased estimator of g(#). Let T(X) be a suf-
ficient statistics for 6. Define W(T) = E|T). Then E[W¥(T)] = g(0) and
VIW(T)] < V(h) V 6.

This theorem is known as Rao—Blackwell Theorem.

Proof E[h(X)] = E[Eh(X)|T = 1] = E[¥(T)] = g(8) (2.2.6)
Hence W (T) is unbiased estimator of g(#)
VIa(X)] = VIE(hX)|T (X))] + E[V(h(X)|T(X))]
= VI¥(D)] + E[V(h(X)|T(X))]
Since V[A(X)|T(X)] = 0and E[V(h(X)|T(X))] > 0
Therefore, VW (T)] < VIh(X)] (2.2.7)

From the definition of sufficiency, we can conclude that the distribution of /2(X) given
T'(X) is independent of 4. Hence W(T) is an estimator.

Theorem 2.2.2 (Lehmann—Scheffe Theorem) If' T is a complete sufficient statistic
and there exists an unbiased estimate h of g(#), there exists a unique UMVUE of 6,
which is given by Eh|T.

Proof Let h; and h> be two unbiased estimators of g(#) Rao-Blackwell theorem,
E(h,|T) and E(h,|T) are both UMVUE of ¢(6).

Hence E[E(|T) — E(h,|T)] =0

But 7 is complete therefore

[E(|T) — E(h2|T)] =0

This implies E(h|T) = E(h2|T).
Hence, UMVUE is unique.



Example 2.2.4 Let Xy, X5, ..., X, are iid rvs with B(n, p), 0 < p < 1. In this case,
we have to find the UMVUE of p'¢*, g =1 —p, r, s # 0 and P[X < c]. Assume
n is known.

Binomial distribution belongs to exponential family. So that Z:’zl X; is sufficient
and complete for p.

(i) The distribution of T is B(mn, p).

Let U(r) be unbiased estimator for p'g°.

nm
nm .
Z H(f)( )pi‘qm”—T - [).r q_s (22 13)
=0 r
nm nm
ult 72‘71' N —1—s . 1
> un(") g
=0
nm—s . (nm) M — S — F B o
Z u(r) (nm:.v‘fr) ( {—r )Pr q“' =8 1
I=r I—r
Then
(nm)
H(I) lUN—IX-—I' = 1
.
Hence lTﬂJfS*F)
u(r) = W:f:r.r+l,r+2 ..... nm— s (2.2.14)
0 ; otherwise
(i1) To find UMVUE of P[X < c]
Now &
ny . .
PIX<cl=7 ( )p‘q"-‘
X
x=0
Then UMVUE of
(HH!*IH)
p,\' qnf,\‘ _ f;\
(")
Hence UMVUE of P[X < c]
> (”)(’; =% Bl 2,..., nm—n-+x, ¢ < min(t,n)

— \=() X (.ﬂ',ﬂl) ’
1 ; otherwise (2.2.15)



Note: UMVUE of P[X = x] = (")p*q"is 20D v —0.1.2

(IJ’IIJ) 9
Particular cases:
(a) r =1,5=0. From (2.2.14), we will get UMVUE of p,

[ _ i

.....

ut) = —— = — 2.2.16
) (”:”) nm ( )
(b) r =0,5 = 1. From (2.2.14), we will get UMVUE of ¢.
('"“,_1) nm —t ¢
Ul) = ——= = =1—-— (2:2.17)
( f ) nm nm
(c)r=1,s= 1. From (2.2.14), we will get UMVUE of pgq.
t nm —t
u(t) = (—) ( ) (2.2.18)
nm nm — 1
Example 2.2.5 1etX;, X, ..., X, are iid rvs with P(A). In this case we have to find

UMVUE of (i) N'e™** (ii) P[X < c]

Poisson distribution belongs to exponential family. So that 7 = Z:’:l X is sufficient

and complete for A.
(i) The distribution of T is P(m\).
Let U(t) be unbiased estimator for \"e™**

o —mA t
e nA 5 o
M(f)$ — (_1_3’\)\’
- 1!
o o= M=)\t \1=1 i
Z u(z‘)# =
=0
i u(1) m' (& — )l e — AT B
= (m—5)" il {t— )
Then m' (t — nr)!
u(t) =1
(m — s)i—r t!
u(r) = (m;,‘:),_r ﬁ i s i ] T s<m
0 ; otherwise
(ii) To find UMVUE of P[X < ¢]
¢ —A)\x
e\
PIX <=2 —

x=0

Now, UMVUE of e~ ¥ js &= _1!

m! (t—x)!
o

1

_ i m—1Y) *
Sl G Rlt gl = Z (r— x)x! m m—1

x=0

(2.2.19)

(2.2.20)



. .
— p el (i) (%)\ (%) CiE =i (2.2.21)
1 ; otherwise

Remark UMVUE of PIX = x] = <X is () (L)' (=)™ x = 0,1,....1
Particular cases:

(as=0,r=1
From (2.2.20), we will get the UMVUE of A,
m'='1! t
ut) = ———— = — (2.2.22
mi(t —1)! m
(b) & = 1y# =0

(m = 1)'
u(t) = (2293}
m

(m — D1 m—1\" 1t
L) = = (2.2.24)

m'(t — 1)! m m—1

Remark UMVUE of \e™ % (UMVUE of A\)(UMVUE of e

Theorem 2. Let {fy: @ € @} be a k-parameter exponential family given by

k
€) fo(x) =exp [Z Q;T;(x) + D(6) + S(x)] .
j=1

where @ = (61,607, ... .6;) € ©,anintervalin R¢, T, T2, ... , Tk, and § are defined
onRy, T=(T1,T2,..., Tt), and X = (x1,x2,... ., Xn), k < n. Let Q = (Q1, @1,

. » Q), and suppose that the range of Q contains an open set in R;. Then

T = (N (X), T2(X), ..., Ti(X))

is a complete sufficient statistic.

Proof. For a complete proof in a general setting, we refer the reader to Lehmann
[63, pp. 142-143]. Essentially, the unicity of the Laplace transform is used on the

probability distribution induced by T. We will content ourselves here by proving the
result for the £ = 1 case when fp is a PMF.



Let us write Q(8) = 0 in (2), and let (a, B) T ©. We wish to show that

Eog(T(X)) =Y _ g(t) Py{T(X) =1}

4

(3) = Zg(t)exp[Gt +D@E)+S*@®]1=0 foralld
t

implies that g(¢) = 0.

Letuswritext =xifx > 0,=0ifx < 0,andx™ = —xifx <0,=0ifx > 0.
Then g(z) = g+ (1) — g~ (), and both g+ and g~ are nonnegative functions. In terms
of g™ and g, (3) is the same as

(4) Zg-i-(t)eo!-fs*(t) — Zg— (t)eel-f—s"(l)
! t

for all 6.

Let 6p € (o, B) be fixed, and write
5) P+(t) _ g+(1)eﬂor+3*(t) 5 - " = g (t)efibt+S"(t)
¥ gH(r)ebot+5¥® Yo g™ (et +S* 1)’

Then both p* and p~ are PMFs, and it follows from (4) that
(6) D fpti =) ¥p
t t
for all § € (w — 99, B — 6p). By the uniqueness of MGFs (6) implies that

rr@)=p (@) for all ¢
and hence that gt =g for all ¢,
which is equivalent to g(t) =0 for all .

Since T is clearly sufficient (by the factorization criterion), it is proved that 7 is a
complete sufficient statistic.

Example 15. Let X, X2, ..., X, be iid N(u,6%) RVs where both 1 and o2
are unknown. We know that the family of distributions of X = (Xy,...,X,) isa
two-parameter exponential family with 7(X1, ..., X») = (3] X, 2.1 X%). From
Theorem 2 it follows that 7 is a complete sufficient statistic. Examples 10 and 11
fall in the domain of Theorem 2,

Example 10. 1et Xi,X2,...,X, beiid b(1, p) RVs. Then T = Z’{ X;isa
sufficient statistic. We show that T is also complete; that is, the family of distributions
of T, {b(n, p),0 < p < 1}, is complete.



Example 11. Let X be N(0, 6). Then the family of PDFs {N(0, 8), ¢ > 0} is not
complete since EX = 0 and g(x) = x is not identically zero. Note that 7 (X) = X 2
is complete, for the PDF of X2 ~ 8 x2(1) is given by

8—4/29
e ——— 0\
F@) = {«/2716" e

0, otherwise.

1
270

which holds if and only if f0°° gt 1127120 4t = 0, and using the uniqueness
property of Laplace transforms, it follows that

g 2 =0  forallt >0,
that is, g{t) =Q0.

o0
Eog(T) = / gt Ve gy =0  forall >0,
¢



UNIT 4: EXPONENTIAL FAMILY



Theorem 6.2.24 (Basu’s Theorem) If T(X) is a complete and minimal suffi-
cient statistic, then T(X) is independent of every ancillary statistic.

Proof: We give the proof only for discrete distributions.
Let S(X) be any ancillary statistic. Then P(S(X) = s) does not depend on 6 since
S(X) is ancillary. Also the conditional probability,

P(S(X) = s|T(X) = t) = P(X € {x: S(x) = s}|T(X) = t),

does not depend on 6 because T'(X) is a sufficient statistic (recall the definition!).
Thus, to show that S(X) and T(X) are independent, it suffices to show that

(6.2.6) P(SX)=s|T(X)=t)= P(S(X) =s)
for all possible values t € T. Now,

P(S(X)=s)=Y_ P(S(X) = s|T(X) = t) P(T(X) = 1.

teT

Furthermore, since 3", .+ Po(T(X) =t) = 1, we can write
P(S(X) =5) =Y P(S(X) = s)Py(T(X) = ).
teT
Therefore, if we define the statistic
g9(t) = P(S8(X) = s|T'(X) =t) — P(S(X) = s),

the above two equations show that

Eog(T) =Y _ g(t)Ps(T(X)=1t)=0 for all 6.
teT

Since T'(X) is a complete statistic, this implies that g(¢t) = 0 for all possible values
t € T. Hence (6.2.6) is verified. O

Basu’s Theorem is useful in that it allows us to deduce the independence of two
statistics without ever finding the joint distribution of the two statistics.

Theorem 6.2.25 (Complete statistics in the exponential family) Let
X,..., X, be ud observations from an exponential family with pdf or pmf of the
form

k
(6.2.7) 1(18) = h(z)c(8) exp (zww,)tj(x)) ,

i=1

where 8 = (01,02, ...,0). Then the statistic

T(X) = (Ztl (Xi), Zh(xi); eey Ztk(Xi))
i=1 i=1 i=1

is complete as long as the parameter space © contains an open set in R*.



The condition that the parameter space contain an open set is needed to avoid a sit-
uation like the following. The n(, §2) distribution can be written in the form (6.2.7);
however, the parameter space (9,6%) does not contain a two-dimensional open set,
as it consists of only the points on a parabola. As a result, we can find a transfor-
mation of the statistic 7°(X) that is an unbiased estimator of 0
(Recall that exponential families such as the n(8,62), where the parameter space is a
lower-dimensional curve, are called curved ezponential families )

Example 6.2.26 Let X1,..., X, beiid exponential
observations with parameter #. Consider computing the expected value of

Xn
9(X) = X4+ Xn
We first note that the exponential distributions form a scale parameter family and
thus, by Example 6.2.19, g(X) is an ancillary statistic. The exponential distributions
also form an exponential family with t(z) =z and so, by Theorem 6.2.25,

T(X) =) X;
is a complete statistic and, by Theorem 6.2.10, 7'(X) is a sufficient statistic. (As noted
below, we need not verify that 7°(X) is minimal, although it could easily be verified
using Theorem 6.2.13.) Hence, by Basu’s Theorem, 7'(X) and g(X) are independent.
Thus we have

6 = E¢gXn = EoT(X)g(X) = (E¢T(X))(Eeg(X)) = nfEgg(X).
Hence, for any 8,Egg(X) = n!. I

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic
i8 also a minimal sufficient statistic.



BLOCK 2: ESTIMATION THEORY
UNIT 1: METHODS OF ESTIMATION



1.1 METHOD OF MOMENTS

The method of moments is, perhaps, the oldest method of finding point estimators,
dating back at least to Karl Pearson in the late 1800s. The method of moments
essentially amounts to equating the sample moments and corresponding population
moments and solving the resulting equations for the parameters to be determined.

Let f(-;04,0,,..,8,) be a density of a random variable X having k
parameters 6, 6,, ..., 0. Further, let u. be the r** moment about origin, where . is a
known function of the k parameters 6,, 6,, ..., 6, i.e.

tr = pr (01,0, ..., 0) = E[X"]
LetX;,X;, ..., X, be a random sample from the density f(-;6,,6,,...,6;) and let M; be

the j!" sample moment, i.e.

Form the k equations,

M, = (61,6, ..., 6) =12,k (1)
in the k variables 6,,0,,...,0;, and let ;, 0,, ..., 8, be their unique solution, i.e. 6;
estimates 6;;Vj = 1,2, ..., k. Eq. (1) is obtained by using the first k raw moments.
The estimator (0, 0,, ..., 6)) is the estimator of (6;,6,, ..., 6;) obtained by the method-
of-moments. The estimators (8, 0,,..., 8;) were obtained by replacing population

moments by sample moments.

The method-of-moments estimators are not uniquely defined.



If instead of estimating (64,0,,...,0y), method-of-moments estimators of, say
7,(04,05,...,0%),T5(04,0,, ...,0%), ..., T.(04,0,,..,0¢) are desired, they can be
obtained in several ways. One way would be to first find method-of-moments
estimates, say 0,,0,,..,0;, of 0,,0,,..,0, and then use t;(81,0, ..,6,) as an
estimate of
Tj(04, 0, ...,0y) forj=1,2,...,r. Another way would be to form the equations

M]-' = u]f(rl,rz, ey Tp) ;j=1,2,..,r
and solve them for 14, 1y, ..., .. Estimators obtained using either way are called
method-of-moments estimators and may not be the same in both cases.
Example 2.1.1 LetX, X,,..,X, be a random sample from a normal distribution with
mean p and variance o2. Let (6,,6,) = (u,0). Estimate the parameters u and o by the
method of moments.

Since we know that,

p=E[X]=p
and o = E[X?] = {E[X]}* = up — (u1)?
= w, = a? + u?.

Using method-of-moments, we have the following equations
M =w=pwo)=yp

and My =y, = (4, 0) = 0* + 2.

Thus, the method-of-moments estimator of i is
@1 = M{ = X

and the method-of-moments estimator of o2 is



Example 2.1.2 LetX,,X,,..,X,, be a random sample from uniform distribution on
(u —+30,u++/30). Here, the unknown parameters are u and o, which are the
population mean and standard deviation.
Let (64,6,) = (u,0) and since we know that,

H=H
and wy, = o + p?.
It follows that the method-of-moments equations are

Mi=w=mo)=u

and M; = py = pp(p,0) = 0? + 2.
Hence, the method-of-moments estimators are

@lz)?

and 6, = |=S5.

1.2 METHOD OF MAXIMUM LIKELIHOOD

Consider an estimation problem where we suppose that an urn contains a number of

blue balls and number of red balls. Suppose that it is known that the ratio of the



numbers is 3:1 but that it is not known whether the blue or the red balls are more

numerous.

Let X be a random variable which denotes the event of drawing a blue ball. If n balls
are drawn with replacement from the urn, the distribution of X is given by the binomial

distribution

f(x; p) = (Z) p*q"* ;x=0,1,2,...,n,

whereq =1—pand 0 < p < 1 is the probability of drawing a blue ball,

We shall draw a sample of three balls, i.e. n = 3, with replacement and attempt to
estimate the unknown parameter p of the distribution. Let us anticipate the results of

drawing the sample. The possible outcomes and their probabilities are given below:

Outcome : x 0 1 2 3
| ZZ L

f (x; Z) 64 64 64 64

| L | 2| Z | =

f (x; Z) 64 64 64 64

Here, if x = 0 in a sample of 3, the estimate 0.25 for p would be preferred over 0.75

since,

r(o3)>r(03)



In other words, a sample with x = 0 is more likely to arise in a population with p = 0.25
than from one withp = 0.75. In general, we should estimate p by 0.25 whenx =0 or1

and by 0.75 when x = 2 or 3. So, the estimator may be defined as

The estimator thus selects for every possible x, the value of p, say p, such that
fG;p) > fp),
where p’ is the complement value of p.
Now, if we found x = 6 in a sample of 25 from a binomial population, we should

substitute all possible values of p in the expression

25
f(6:p)=(6)p6(1—p)25‘6 ;0<p<1 2)
and choose that value of p as our estimate which maximizes f(6;p). For the given
possible values of p, we should find our estimate to be 235 The position of its maximum

value can be found by putting the derivative of the function defined in Eq. (2) with

respect to p equal to zero and solving the resulting equation for p. Thus,
d 25
- . — 51 _ )18 _ _
o6 =()pa-p 601 -p) ~199]
and on substituting this equal to zero and solving for p, we obtain

d (6;p) = 0 012
N . — = — J—
dpf P p ' 25

The possible probabilities for the outcome x = 6 are given below:

Probability : p 0 0.24 1




0 0.18 0
f(6; p)

Therefore, our estimate is

6
P =5z =024 (3)

Note that the point where the maximum value of f(6; p) takes place forO0 <p <1in
Fig. 1 is the same as that given in Eq. (3) whenn = 25.
This estimate has the property that

f(6;0) > f(6;p),

where p’ is any other value of p in the interval 0 < p < 1.

Figure 1. Maximum Likelihood Estimate of p for Bin(25, p) given x = 6

Definition. Likelihood function



The likelihood function of n random variables X, X,, ..., X,, is defined to be the joint

density of the n random variables, say fy, x, . x, (X1, X3, ..., Xn), Which is considered

to be a function of 8. In particular, if X;,X,, ..., X, is a random sample from the

density f(x; 0), then the likelihood function is f(x1; 6) f(x; 6) = f(x,; 6).

The likelihood function L(8; x4, x5, ...,x,) gives the likelihood that the random
variables assume a particular value of a density function. The likelihood is the value of a
density function; so for discrete random variables, it is a probability. Let us suppose
that 6 is known and denote this known value of 8 by 8,. The particular value of the
random variables which is “most likely to occur’ is that value x,x,...,x, such
that fy, x,,..x, (X1, X2, ..., Xn; B9) is @ maximum. For example, let us assume thatn =1
and X;~N(6,1). Then, the value of the random variable which is most likely to occur
is X, = 6. By “most likely to occur”, we mean the value x; of X; such that

DPe,1(x1) > Dg 1 (7).

Further, suppose that the joint density of mn random variables
iS fx, x,,..x, (X1, X2, ..., Xp; 0), Where 6 is unknown. Let the particular values which are
observed be represented by x;, x5, ..., x5,. We want to find the value of 8 in the parameter
space 0, denoted by 8, which maximizes the likelihood function L(6; x;, x5, ..., x,). The
value 8 which maximizes the likelihood is, in general, a function of x, x,, ..., x,,, say =
(x4, %, ..., x,). When this is the case, the random variable & = 9(X,, X,, ..., X,,) is called
the maximum-likelihood estimator of 6.

Definition. Maximum-likelihood estimator

Let L(6) = L(6; x1,x5,...,x,) be the likelihood function for the random

variables X;,X,, ..., X,. If 8, a function of x;,x,,...,x,,, is the value of 8 in @ which



maximizes L(0), then @ = 9(X,, X,, ..., X,,) is the maximum-likelihood estimator of 6

and 8 = 9(xy, x5, ..., x,) is the maximum-likelihood estimate of 6 for the given

sample.

Many likelihood functions satisfy regularity conditions. So, the maximum-likelihood
estimator is the solution of the equation

dL(6)
—=0.

Since L(6) and log L(8) have their maxima at the same value of 8, it is sometimes
easier to find the maximum of the logarithm of the likelihood.

If the likelihood function contains k parameters, i.e. if

n
L(Ql, 92, . Qk) = l_lf(xl; 91, 92, ...,ek),
i=1

then the maximum-likelihood estimators of the parameters 6,,0,, ..., 8, are the random
variables 0, = 9,(X1, X5, ..., Xn), 0, = 9, (X1, X5, s X))y e, O = 0 (X1, Xy o X))
where 8,,0,, ..., 8, are the values in @ which maximize L(6;, 6., ..., ;).

If certain regularity conditions are satisfied, the point where the likelihood is
maximum is a solution of the k equations

aL(0,,0,, ..., 0;)

=0
96,

aL(@,ebuuek)__o
00, B

aL(@,ebnwek)__O

20,



Example 2.2.1 Suppose that a random sample of size n is drawn from the Bernoulli
distribution

fOsp) =p*q l(g1)(x) ;0<p<landq=1-p.
Since the random sample is drawn from B(1,p), the sample values x;, x5, ..., x,, will be a
sequence of 0’s and 1’s, and the likelihood function is

Xi.

n n
L(p) = pr"ql"‘i =p? (1-p)"7 Y=
i=1 i=1
We obtain
log L(p) = ylogp — (n — y) log(1 — p).

And on differentiating above with respect to the parameter p, we get

dlogl(p) _y n—vy
dp p 1-p

On substituting the last expression equal to zero and solving for p, we find the estimate

S|
S|ke

p= Xp =X 4)

n
i=1
which is intuitively what the estimate for this parameter should be. It is also a method-of-
moments estimate.

Forn = 3, let us sketch the likelihood function.

Since the likelihood function depends on the x;’s only through }: x;, thus the likelihood
function can be represented by the following four curves:

3
L0=L<p;2xi=0)=(1—p)3

i=1

3
L1=L<p,- in=1)=p(1—p)2

i=1



which are sketched in Fig. 2:

1.0

08
|

04

00
1

0.0 0.2 04 06 0.8 1.0

Figure 2. Likelihood Function Plot

Note that the point where the maximum of each of the curves takes place for0 <p <1
is the same as that given in Eq. (4) whenn = 3.
Example 2.2.2 Letthe random variable X have a uniform density given by
1
flx; 0) = f(x; po) = 2\/—?1[,1_\@0, wiv3 o] (X)

where —oo < u < o andag > 0.



Let X3, X, ..., X;, be a random sample of size n. Then, the likelihood function is given by

n
1m0 = | [ P 100
i=1

n

- (2\/1§ a>n 1_[ I[u—\/§ o, u+V3al (x;)

i=1

n

1
- (2\/_?) Iu-vao, yl](y") Iy, ”+‘/§”](yn)

1 n
= (3755) e )@, (@ T 00

where y; is the smallest of the observations and y, is the largest.

Figure 3

The likelihood function is (2v3 ) in the shaded area of Fig. 3 and 0 elsewhere.
(2\/§ a)_n within the shaded area is clearly a maximum when ¢ is smallest, which is the

intersection of the lines u—+v3 o=y, and u++v30 =7y, . Hence, the maximum-

likelihood estimates of u and o are



A1 -
H=- i1 Xi =X )

1 n
and ot == Z(xi — %2, 6)
i=1

which are quite different from the method-of-moments estimates given in Example

2.1.2.

Example 2.2.2 shows that one must not always rely on the differentiation process to

locate the maximum.
The function L(8) may, for example, be represented by the curve in Fig. 4, where

the actual maximum is at 8, but the derivative set equal to 0 would locate 8’ as the

maximum.

\/
Sy

2 6

Figure 4

We know that the equation

oL

P

locates minima as well as maxima, and hence we must avoid using a root of the

equation which actually locates a minimum.



Theorem 2.2.1 Invariance property of maximum-likelihood estimators
Let @ = 9(X;,X,, ..., X,,) be the maximum-likelihood estimator of 6 in the density f(x; ),
where 6 is assumed unidimensional. If z(-) is a function with a single-valued inverse,
then the maximum-likelihood estimator of t(8) is t(0).

For example, in the normal density with mean u, known, the maximume-likelihood

estimator of a2 is

@—1n(x 2
—EZ i — Ho)”.
=1

By the invariance property of maximume-likelihood estimators, the maximum-likelihood

estimator of o is

n
. 1
T1(@) = EZ(XL'_.“O)Z' [ T1(9):0:\/02]
i=1
Similarly, the maximume-likelihood estimator of log o2 is

. 1w
7,(6) = log [;Z(Xi _Ho)zl- [ 7,(8) = log? ]
i=1

The invariance property of maximum-likelihood estimators can be extended in two
directions: First, & can be taken as k-dimensional rather than unidimensional, and,
second, the assumption that z(-) has a single-valued inverse can be removed. It can be
noted that such an extension is necessary by considering an example. Suppose an
estimate of the variance, namely (1 — 6), of a Bernoulli distribution is desired. Example
2.2.1 gives the maximum-likelihood estimate of 6 to be X, but since 6(1 — 8) is not a
one-to-one function of 8, Theorem 2.2.1 does not give the maximum-likelihood estimator

of (1 — 0). Theorem 2.2.2 below will give such an estimate, and it will be x(1 — X).



Let 8 = (6,,0,,...,6,) be a k -dimensional parameter, and let @ denote the
parameter space. Suppose that the maximum-likelihood estimate of 7(0) =
(11(0),7,(0), ...,7,(0)), where 1 <r <k, is desired. Let T denote an r-dimensional
range space of the transformation z(-). Define

M(T; X1, X9, ooy Xp) = sup  L(6;xq1,%3, .., Xp)-
(0:7(0) =7}

The function M(-; x4, x5, ..., x,,) is called the likelihood function induced by t(-). When
estimating 8, we maximized the likelihood function L(8; x4, x5, ..., x;,) a@s a function of 8
for fixed x;,x,..,x, . So, in order to estimate t=1t(0) , we wil
maximize M (7 ; x4, X5, ..., x,) as a function of t for fixed x4, x5, ..., x,,. Thus, the maximum-
likelihood estimate of T = 7(0), denoted by Z, is any value that maximizes the
induced likelihood function for fixed x4, x5, ..., x,,, i.e.
{T: M(T;x1, x5, ., Xp) = M(T; X1, X2, ., X)), VT ET}

The extended form of the invariance property of maximum-likelihood estimation is
given in the following theorem.
Theorem 2.2.2 Let & =(04,0,,..,6,), where 0; =9;(-; X1, Xs, ..., X)) , be a
maximum-likelihood estimator of 6 = (6;,60,,...,0;,) in the density function f(:
5 01,05, ..., 0. 1f7(0) = (7,(8),72(0), ..., 7,(8)) for L <r < k is a transformation of the
parameter space @, then a maximum-likelihood estimator of 7(0)=
(11(9),T2 (@), ...,TT(Q)) is T(@), where T(@) = (Tl(@),‘fz(@), ...,Tr(@)).
PROOF. Letd =(8,,0,,..,0,) be a maximum-likelihood estimate of = (6;,6,, ..., 6)).
Now, it will be sufficient to show that

M(T(é); X1, Xo, ...,xn) > M(1(0); x1, X, o) Xp)



foranyt € T. We have

M(t(6);x1, %3, .., Xp) = sup  L(6;xq,Xx5, ..., Xp)
{6:7(6) =1}

< sup L(6;xq1,%x5, ..., Xy)
{6€eb}

= L(é; X1, X2, ...,xn)

= sup L(B; xq, X9, ), Xp)
{6:7(6)=1(8)}

= M(T(é);xl,xz, ...,xn)
= M(2(8); %1, %2, o, %) = M(T(0); X1, X5, orr) X) -
Example 2.2.3 LetX,,X,,...,X, be a random sample of size n from the normal

distribution having density

£ 2) 1 1
X; W, 02) = exp | ——
H oV2m P17 202

where —co < p < o0 and o > 0. Then, the likelihood function is given by

(xi — w?|,

L(W, 62; Xq,Xp, e, Xp) = f(x;; w, 0)

TT 1

1
= ——(x: — )2

“ (i) o] a0 w7]
i=1

The logarithm of the likelihood function is

[N =1

n
n n 1
* = = —— — — 2 _ . — 2
L* =logL 2loan 2logcr 2GZZ(XI we.
1=

To find the location of its maximum, we compute



i 1w
au=§Z(Xi—H)

i=1

n

oL’ n 1 5
and 902 202 + 20421:()(i — W5
1=

and on putting these derivatives equal to zero and solving the resulting

equations for u and o2, we find the estimates

ﬁ=%in=>‘< ™)

1
5 == _Z(xi —%)? 8)

which turns out to be the sample moments corresponding to p and o2.

Suppose t(0) = u + z,40, where ¢(z,) = q, is the ¢*" quantile. Here, 8 = (4,¢%) and

o R 1w _ n—1
6,=X and 0, = —Z(Xi _X)2=|——5
Tli=1 n

are the maximum-likelihood estimators of

0, =u and 0, = o,
respectively. According to Theorem 2.2.2, the maximum-likelihood estimator of 7(8) is
given by

T(@) = T(@l) + qu(éz) [ (@) =pu+ an]

n
_ 1 _
=X +2, EZ(XL- — %)

i=1



1.3 MINIMUM CHI-SQUARE METHOD

Let X;,X,,...,X, be a random sample from a density given by fx(x; 8), and let
#1, 6, ..., 8 be a partition of the range of X.The probability that an observation falls in
cellp;,j=1,2,..,k, denoted by p;(8), can be found. For instance, if fx(x; 8) is the
density function of a continuous random variable, then

p;j(0) = P[X falls in cell goj]

k
— [ s 0 ax Y@ =1
#j j=1

Let the random variable N; denote the number of X;’s in the sample which falls in cell

#j,J =1,2,.., k. Then, the sample size n is given by

Form the following summation:

where n; is the value of N;.The numerator of the jt* term in the sum is the square of the
difference between the observed and the expected number of observations falling in
cell ;.

The minimum chi-square estimate of 6 is that  which minimizes x2. It is that# among
all possible 6’s which makes the expected number of observations in cell g; “nearest”

the observed number. The minimum chi-square estimator depends on the partition

(@1; @2; ---;pk Selected



Example 2.3.1 LetX,,X,,...,X, be a random sample from a Bernoulli distribution, i.e.
fx(x; 8) =6%*(1 —6)1™* ; x=0,1.

Further, let N; be the number of observations equal toj forj = 0,1. Here, the range of

the observation X is partitioned into the two sets consisting of the numbers 0 and 1

respectively. We have

[no —n(1—6)]*  (n, —nh)?
n(l-0) + nb

_[n—ny)—n(1-0)]* (n,—nh)?
n(l1-09) nb

[
1]
o

M-
3
I
S

_ (ny —nb)? 1
B n 6(1—6)"

The minimum of y2 as a function of § can be found by inspection by noting that y? = 0
for
6 = 2. Hence,

n

. ony
0 =—.
n

Often it is difficult to locate that & which minimizes y2 . Hence, the

denominator np;(6) is sometimes changed to n; and if n; = 0, unity is used. Thus,

i 2
Modified y? = E [y —np;(0)]
j=1

The modified minimum chi-square estimate of 6 is then that & which minimizes the

modified y2.



1.4 MINIMUM DISTANCE METHOD

Let X;,X,, ..., X, be a random sample from the distribution given by the cumulative
distribution function E.(x; 6) = F(x; 8), and let d(F,G) be a distance function that
measures how “far apart” two cumulative distribution functions F and G are. An example
of a distance function is

d(F,G) = sup |F(x) = G(x)l,

which is the largest vertical distance between F and G. This can be easily seen in Fig. 5.

The minimum-distance estimate of 6 is that # among all possible 6 for which
d(F(x; 0),F,(x)) is minimized, where E,(x) is the sample cumulative distribution
function. Thus, 8 is chosen so that F(x; #) will be “closest” to F,(x), which is desirable
since the Theorem 7.1 of Chap. | states that for a fixed argument x, the sample
cumulative distribution function has the same distribution as the mean of the binomial
distribution. Hence, by the law of large numbers, F,(x) converges to F(x).
Example 2.4.1 LetX,, X,,...,X,, be a random sample from a Bernoulli distribution;
then

F(x; 6) =(1— 90)1[0,1)(x) + I[l_w)(x),

where 0 <6 < 1.

d(F,G)

v




Figure 5

Further, let n; be the number the observations equal to j; j = 0,1. Then

n
Fa(0) = 2 o1y () + Iy ().
Now, if the distance function

d(F,G) = sup |F(x) — G(x)]

is used, then d(F (x; ), F,(x)) is minimized if

n
1-9=—
n
n 1
n, 1 _
= 9=—=—le =X ':an=n
n n

...
1l
==Y
-
1l
o

Hence, 6 = x.

2. PROPERTIES OF POINT ESTIMATORS

In this section, we will define certain properties, which an estimator may or may not

possess, that will help in deciding whether one estimator is better than another.

2.1 CLOSENESS

Let X;,X,,...,X,, be a random sample from a density, say f,(x; 8), which is known
except for 8. Then, a point estimator of (0) is a statistic, say £(X;, X3, ..., X,), whose
value is used as an estimate of 7(8), where t(0) is a real-valued function of the

unknown parameter 6. Ideally, we would like the value of (X, X5, ..., X;,) to be the value



of the unknown t(8), but this is not possible except in trivial cases. For example,

assume that one can sample from a density given by
flx; 0) = 1(9_%, 9+%)(x),

where 6 is known to be an integer, i.e. ® consists of all integers. Consider estimating 6
on the basis of a single observation x;. If £(x;) is assigned as its value the nearest
integer x;, then the estimator £(X;) will always correctly estimate 6. In a sense, this
problem is really not statistical since one knows the value of 6 after taking one
observation.

Not being able to achieve the ultimate of always estimating the unknown 7(8), we
look for an estimator that is “close” to t(6). There are several ways of defining “close”.
T =1(X,,X,,..,X,) is a statistic and hence has a distribution, or rather a family of
distributions, depending on what 6 is. The distribution of T tells us how the values t of T
are distributed, and we would like to select ¢+ so that the values of T distributed
near 7(0).

Rather than resorting to characteristics of a distribution, such as its mean and
variance, one can define what “concentration” might mean in terms of the distribution
itself. Two such definitions follow.

Definition. More concentrated and most concentrated

LetT = £(Xy,X,, ..., X,) and T' = £'(Xy,X,, ..., X;,) be two estimators of t(6). T' is

called a more concentrated estimator of 7(8) than T if and only if

Po[t(0) —A<T ' <7(0) +A] =2 Py[t(0) =A< T <1(6) + 1]
for allA > 0 and for each 6 € ®. An estimator T* = t* (X4, X5, ..., X;,) is called most

concentrated if it is more concentrated than any other estimator.



The property of most concentrated is highly desirable. Unfortunately, most
concentrated estimators seldom exist.

Another criterion for comparing estimators is the following one.

Definition. Pitman-closer and Pitman-closest

Let T = £(Xy,X;, ..., X)) and T' = ' (X4, X,, ..., X)) be two estimators of ©(6). T' is

called a Pitman-closer estimator of () than T if and only if

Py[t(0) —A<T'<t(0) +A] = Py[r(0) =A< T <1(6) + 1]

for each 8 € @. An estimator T* = t*(Xy, X5, ..., X;,) is called Pitman-closest if it is

Pitman-closer than any other estimator.

The property of Pitman-closest is, like the property of most concentrated,
desirable, yet rarely there will exist a Pitman-closest estimator. Both Pitman-
closer and more concentrated are intuitively attractive properties to be used to compare
estimators, yet they are not always useful. Given two estimators T and T’, one does not
have to be more concentrated or Pitman-closer than the other. What often happens is
that one, say T, is Pitman-closer or more concentrated for some 6 € @; and since 8 is
unknown, we cannot say which estimator is preferred.

Competing estimators can be compared by defining a measure of the closeness of
an estimate to the unknown t(6). An estimator T’ = £'(Xy, X5, ..., X,,) of 7(8) will be
judged better than an estimator T = (X3, X,, ..., X,,) if the measure of the closeness
of T' to (0) indicates that T’ is closer to 7(0) than T. Here, we assume that n, the

sample size, is fixed.

2.2 MEAN-SQUARED ERROR



A useful, though perhaps crude, measure of goodness or closeness of an
estimator £(X,, X5, ..., X;;) of ©(6) is what is called the mean-squared error of the
estimator.

Definition. Mean-squared error

LetT = £(X,, X5, ..., X;,) be an estimator of 7(8). E4[T — t(6)]? is defined to be the

mean-squared error of the estimator T.

Let MSE.(0) denote the mean-squared error of the estimator T=
1 (X4, X5, ..., Xy) of 1(0).Then,

Eg[T — 1(0)]* = Eg[t(Xy, Xz, ..., Xpn) — T(0)]°

- f f [£Cta, Xz o ) — (O F(a1; 8) -+ fCxni 0) oty -+ iy,

where f(x; 6) is the probability density function from which the random sample was

selected.
MSE,_ (6)
e MSE,, (6)
» 0
Figure 6

The name “mean-squared error” can be justified if one thinks of the difference
t—1(0), where tis a value of T used to estimate 7(0), as the error made in
estimating t(6), and then interprets the “mean” in “mean-squared error” as expected or
average. Eg[T — 7(0)]? is a measure of the spread of T values about 7(#) so that the
mean-squared error of an estimator is taken as our standard in assessing the goodness

of an estimator. If we were to compare estimators by looking at their respective mean-



squared errors, we could define as best that estimator with small or smallest mean-
squared error, but such estimators rarely exist.

For any two estimators T;, = £, (X1, X,, ..., X,) and T, = £, (X4, X5, ..., X;,) of ©(60), their
respective men-squared errors MSE, (6) and MSE.,(0) are likely to cross. So for
some 6, ; has smaller MSE, and for others £, has smaller MSE.We would then have no
basis for preferring one of the estimators over the other. This can be easily seen in Fig.
6.

Example 3.2.1 Let X;,X,, ..., X, be a random sample from the density f(x; 0),
where 6 is a real number, and consider estimating 7(6) = 6. We seek an estimator, say
T =1*(X1,X,, ..., Xp,), such that

MSE,-(6) < MSE.(6)
for every 6 and for any other estimator T = £(X;, X;, ..., X,,) of 6.
Consider the family of estimators Ty = %4 (X1, X3, ..., Xy) = 6, indexed by 6, for 6, € 6.

For each 6, € 0, the estimator Ty, ignores the observations and estimates6 to be 6,.

Note that
MSE,, (8) = Eq[tg,(X1, Xz, ... Xp) — 6]
= Eg, [60 — 617
So, MSE, (6) = 0. 9)

Hence, if 3 an estimator T* = £*(Xy, X5, ..., X;,) satisfying MSE,-(8) < MSE.(0),V 6 and
for any estimator %,
MSE,+(6,) < MSE,, (6,) =0 [Using (9)]

0.



In order for an estimator £* to have its mean-squared error identically 0, it must always
estimate 6 correctly.

Example 3.2.1 shows that except in very rare cases, an estimator with smallest
mean-squared error will not exist. One reason for being unable to find an estimator with
uniformly smallest mean-squared error is that the class of all possible estimators is too
large — it includes some estimators that are extremely prejudiced in favor of particular 6.
For instance, in the example above, £y, (X;, X, ...,X,) is highly partial to 8, since it
always estimates 6 to be 6,. We could restrict the totality of estimators by considering
only estimators that satisfy some other property. One such property is that of

unbiasedness.

Definition. Unbiased

An estimator T = £(X4, X5, ..., X;,) is defined to be an unbiased estimator of 7(0) if

and only if

Eg[T] = Eg[t(X1, X5, ... Xp] = 1(0), VOEO.

An estimator is unbiased if the mean of its distribution equals 7(6), the function of
the parameter being estimated. Consider again the estimator £y (Xq, X3, ..., X)) = 6, of
Example 3.2.1. Since

Eglte, (X1, X2, ... Xpn) = Egl00] = 6, # 6,
SO ty,(X1,X2, ..., Xn) is not an unbiased estimator of 6. If we restricted the totality of
estimators under consideration by considering only unbiased estimators, we could hope
to find an estimator with uniformly smallest mean-squared error within the restricted

class, i.e. within the class of unbiased estimators.



Remark.
MSE.(0) = var[T] + {z(0) — E¢[T1}>. (10)
So if T is an unbiased estimator of 7(0), then MSE,(6) = var|[T].
PROOF. By definition, we have
MSE,[6] = Eg[T — ©(0)]?
= Eg[(T — Eo[T]) — {z(6) — Eo[T}]?
= Eq[T — EglT]]" = 2 {2(8) — Eq[T1} Eo[T — E4[T] + Eq[(6) — Eo[T1]"
= var[T] + {z(8) — Eg[T]}?.
u
The term 7(6) — Eg[T] is called the bias of the estimator T and can be either
positive, negative, or zero.

Example 3.2.2 LetXy,X,, ..., X, be a random sample from density f(x; 6) = ¢, ,2(x).

In Example 2.2.3, the maximum likelihood estimators of u and ¢ are, respectively, X

and

n

%Z(xi _ %)

i=1
Now, Eg4[X] = u. So, X is an unbiased estimator of u, and hence

0.2

MSEx(u) = EglX — u]? = var[X] = —.

We know that E,[S?] = ¢2. So,

n

LN %, - 2
n i

i=1

Eg




- ()

Hence, the maximum-likelihood estimator of 02 is not unbiased. Using Eq. (10), the

|

mean-squared error of the maximum-likelihood estimator of o2 is given by

n
1 _
= E (X; — X)?
n r

=1

= (n ; 1)2 var[S?] + :02 — (n _ 1) 02]

n

n ]
1 _
2y — _ . — ¥)2 2 _
MSE[%Z(XL-—)?)Z](O- ) = var [nZ(XL X))+ {cr Eg
=1 _

() - ) 2

using Eq. (5) of Theorem 6.1 in Chap. I.

2.3 CONSISTENCY AND BAN

Properties of point estimators that are defined for a fixed sample size are sometimes
referred to as small-sample properties, whereas properties that are defined for
increasing sample size are sometimes referred to as large-sample properties.
Consistency and asymptotic efficiency are two properties that are defined in terms of
increasing sample size.

When considering a sequence of estimators, it seems that a good sequence of
estimators should be one for which the values of the estimators tend to get closer to the
quantity being estimated as the sample size increases.

Definition. Mean-squared-error consistency



LetT,,T,, ..., T,, ... be a sequence of estimators of 7(0), where T,, = £,,(X1, X3, ..., X3)
is based on a sample of size n. This sequence of estimators is defined to be a
mean-squared-error consistent sequence of estimators of t(6), if and only if

lim Eg[T, —7(0)]>=0, VOE€E®O.
n—-0o

Example 3.3.1 In sampling from any density having mean u and variance o2, let

1w , 1\ .,
Xn = EZXL and Sn = mZ(XL - X)
=1 =1
be a sequence of estimators of u and o2, respectively. Since
Eg[X,, — n]?> = var[X,] » 0 as n - oo,
Hence, the sequence {X,} is a mean-squared-error consistent sequence of estimators
of u. Again, since

n—3

oI} — o717 = varlsl = [ us - (

=— )04]—>0asn—>00.
n

n—1
Hence, the sequence {S2} is a mean-squared-error consistent sequence of estimators
of o2.
Definition. Simple consistency
Let T,,T,,..,T,, .. be a countable sequence of estimators of 7(6), where
T, = (X1, X5, ..., X,) .-The sequence {T,} is defined to be a simple (or weakly)
consistent sequence of estimators of 7(8) if for every € > 0, the following is

satisfied:

lim Py[t(0) — e <T, <t(0) + €] =1, Vo eE@o.
n—-oo

Remark. If an estimator is a mean-squared-error consistent estimator, it is

also a simple consistent estimator, but not necessarily vice-versa.



PROOF. We have
Pg[t(0) —e < T, <1(0) +€] =Py |T,, —1(0)] < €]
= P[{T, — 7()}? < €?]

Eg[T, — 7(0)]°

=>1-
€2

by the Chebyshev inequality. Since
Eg[T,, —1(8)]? > 0 as n - oo.
Hence,
rlli_r)r.}oPg[‘c(H) —e<T,<t(0)+¢€]=1.
Definition. Best asymptotically normal estimators (BAN estimators)
A sequence of estimators Ty, T5, ..., Ty, ...of t(0) is defined to be best asymptotically
normal (BAN) if and only if the following four conditions are satisfied:
(i) The distribution of vn [T,y — t(8)] approaches the normal distribution with
mean 0 and variance ¢** (6) as n approaches infinity, i.e.
Tllgtgo\/r_l [T; —7(6)] = N (0, o* (9)) asn — oo,
(i) Foreverye >0,
AijrgoPg[lT; —1(0)]|>€]*=0, VO EO.
(iif)  Let{T,} be any other sequence of simple consistent estimators for which the
distribution of v/n [T;; — 7(68)] approaches the normal distribution with mean 0
and variance ¢2(0).

(iv)  ¢?%(6) is not less than 0*2(9) for all 8 in any open interval.



The abbreviation BAN is sometimes replaced by CANE, standing for consistent
asymptotically normal efficient. BAN estimators are necessarily weakly consistent
by (ii) of the definition.

Let us consider the maximum-likelihood estimation of the parameter 6, which is
to be estimated on the basis of a random sample from a density f(-; 0), where 6
is assumed to be a real number. For the observed sample x4,%,,...,x,, the
maximume-likelihood estimate of 8 is that value, say 8, of 8 which maximizes the

likelihood function
n
L(6; Xq,X5, oo, Xp) = nf(xi; ).
i=1

Let®, = 9, (X, Xy, ..., X,) denote the maximum-likelihood estimator of 6 based on
a sample of size n.

One property that it seems reasonable to expect of a sequence of estimators is that
of consistency.
Theorem If the density f(x; 0) satisfies certain regularity conditions and if ©,, =
9,(X1, X5, ..., X,) is the maximum-likelihood estimator of 6 for a random sample of
size n from f(x; 8), then

—~

(i) ©,is asymptotically normally distributed with mean 6 and variance
1

0 2
n Eg [%log f(X; 9)]

(i) The sequence of maximum-likelihood estimators 0,,0,,..,0,,.. is best

asymptotically normal (BAN).



The theorem says that for large sample size, the maximum-likelihood estimator of 6
is as good an estimator as there is. We may point out that the asymptotic normal
distribution of the maximum-likelihood estimator is not given in terms of the distribution
of the maximum-likelihood estimator. It is given in terms of f(-; 8), the density
sampled. Also, the variance of the asymptotic normal distribution given in the theorem is
the Cramér-Rao lower bound.

Example LetX,X,,..,X, be a random sample from the density

1 1
f ; 0) = f , W, 2) = = —_— —_ — 2 )
(X ) (X W o ) ¢|.L,0'2 (X) O'\/E e€xp 20_2 (X IJ‘)

We have already derived, in Example 2.2.3, the maximume-likelihood estimators

of p and o2, as

n n
N 1 N 1 <2
2] =—EX- =—E . — .
1=5 0% and 6, - (X; — 6,)
i=1 =1

According to the above, the asymptotic large-sample joint distribution of &; and 8, is a
bivariate normal distribution with means p; = u and u, = 2. Since
1 1 1
) - __ _ 2 _ T (v _ )2
log f(X; 6) 2log 21 2loga 202 X —we,

the required derivatives are

0* 1
—logf(; 0) = ——,

ou?

P ogfx; 0y = - X =W d
do? du OB B = o* ' an
02 1 X—p?
@logf(x, 9) = Dok - 06 .

Since



E[X] = p and E[X — p]? = 0%;

[ 12

d 1
Eg a_uzlogf(X; 0)| = —=

2

[ 0
Ee mlog f(X, 9)] =0,

0? 1
Ee ﬁlogf(x, 9) = _ﬁ’

which gives

2

92 92 2 2
A= Eg [6_;12 log f(X; 9)] Eg Iﬁlog f(X; 9)] — <E9 [—log f(X; G)D

do? du
- (B-2)-o

1
"~ 20°
Finally, then
0° 1
, —Ee [Wlogf(x, 6)] B W 02
" na TaL
20°
02 1
, —Ee [5_112 IOg f(X, 9)] F 204
03 = = = , and
nA -1 n
20°

62
_ —E9 [mlog f(X, 6)] _ 0

nAo; o,




Theorem 3.2.1 Let T be a sufficient statistics for the family of pdfipmf) f(x|0,0 €
®). If an MLE of 0 exists and it is unique then it is a function of T.

Proof Itis given that T is sufficient, from the factorization theorem,

S (x| = h(x)g(T16)
Maximization of the likelihood function with respect to # is therefore equivalent to
the maximization of g(7 |#), which is a function of T alone. U
Remark: This theorem does not say that a MLE is itself a sufficient statistics.

In Example 3.2.8, we have shown that MLE need not be a function of sufficient
statistics (see Remark 1).

Example 3.2.8 Let Xy, Xa, ..., X, be iid rvs with the following uniform pdf

u(o0, )

u(o, 26)

U@ —1,0+1)
U, 6 + 1)

(i) The pdf of X is given by

P RE

&

1

ﬂﬂ@z’_:0<x<&

7 -
0 : otherwise (3.2.51)

and the corresponding likelihood function is

EQxi=0":0<m <R id=1,0,.... n

Consider the order statistics X () < X¢2) < --- < X HenceO < X() < X2y <
- < X < 08 < oo. Note that the support of 8 is X, < 8 < 00
We have to maximize L(f|x) which is equivalent to finding the minimum value o
6, and it is given by = X (ny. Thus,

MLE of @ is X, (3.2.52

(ii) The pdf is given by

|
- fl<x <28
= H ? ?
FxlP) IO . otherwise

and the corresponding likelihood function is given by

) - =" ;0 < X(l) < X(n) <20,i=12,..., i
L(x]0) = {0 ; otherwise



Xn
0 <Xgyand =2 <6

Xl
=>i<9<X(|)

>
Maximizing L(6|x) occurs at minimum value of

That is, f = % (3.2.53)

(iii) The pdf and its corresponding likelihood functions are given by

L:ilf—1<x<l+1
- — 2 ’ ’
FxD !0 . otherwise

1
=l —1l<eXny< Xy <8 +1
— ] 27 (1) (n) >
L{plx)= {0 : otherwise
The support of 8 is X,y — 1 <0 < X, + 1. Here any value of # is MLE.
Therefore, 0=aXuw—1+0—a)(Xa + 1), (3.2.54)

where o € [0, 1]

(iv) In this case

oz Besg Bl
EBlal = {0 : otherwise
and
X 1;9<X(])<X(n)<9+1.
B )= {0 : otherwise

The support of #is X, — 1 < 6 < Xy,. Here also, any value of 6 is MLE,
0=aXuy—1D+0-)Xy (3.2.55)

Remark:
1. In (iii) and (iv), from (3.2.54) and (3.2.55), we can conclude that MLE is not a

function of sufficient statistics, if &« = O or 1.
2. From (3.2.54) and (3.2.55), we can say that MLE is not unique.

Example 3.2.15 Find the MLE of the parameter p and ¢ of the following pdf
x>0, p,oa>0

fx|p.o) = % (g)f’e,

For large value of p, one should use W (p),

1 , 1 1
U(p)=logp—— and V' (p) =—+ —.
2p p  2p-
where W (p) and W’(p) are known as digamma and trigamma functions,
dlogl’ dw
OBV Gy amd 2 =y (3.2.64)
dp dp

The corresponding likelihood function is given by,

1 n ; *fi-'i n o
Lip o) = (I‘_p) (E)Jpe & E.x;’ !

g



log L = —nlog'p 4 npllog p —logo] — — ZX: P — l)ZlOgA,

i=I
Let G be the geometric mean of x;, x»

n n

1
logG = — Zlom, =nlogG = Zloox,
i |

logL = —nlogU'p + npllog p — looa]——+ p— nlogG
dlog L
gl _ o MR _o ;s
do o o?
dlog L np  nx
= = -—n¥(p)+nllogp —logo] + — — — +nlogG
ap P p

= {—nlogp—l— 2’—1] +nflogp —logo + 1] —n+nlogG =0
P

1
:>7—-10g.f+l—1+ngG=0
)

- (3.2.65)
2log &

Hence, !

and 6 =1 (3.2.66)

Further, we state the following theorems on MLE without proof.
Theorem 3.2.2 (Invariance property of MLE):

If@ is the MLE of 0, then 11(9) is the MLE of h(0), where h(0) is any continuous
function of 6.



Theorem 3.2.3 Let X, X, ..., X, be iid rvs having common pdf f(x|6),0 € ©.
Assumption:

1. Thederivative % i = 1,2, 3 exist for almost all x and for every 6 belong-

ing fto a non-degenerate interval in ©

2. There exists functions Hy(x), H,(x) and H;(x) such that |- )9| < Hi(x), | )Hf| <
H>(x), |‘;H§| < H(x), V0 € ©, [Hi(x)dx < oo, sz(x)dx < 0,
[ Hiy(x)dx < oo,

dlog f(x|9)
[[22824T os

is finite and positive for every 8 € ©.

If assumptions (a)—(c) are satisfied and true parameter point 8y is an inner point

then for sufficiently large n,
i Olog f (x;16) _

j=1
has at least one root 8, which converges in probability to .

2. \/E(é,, — Oy) converges in distribution to N(0, [~'(0)), where
dlog £ (x]0)\*
I1(0) = = x|@)dx,
0= ( ) ree)
which is the Fisher information contained in the sample size n.
Theorem 3.2.4 Huzurbazar (1948): The consistent root is unique.

Theorem 3.2.5 Wald (1949): The estimate which maximizes the likelihood
absolutely is a consistent estimate.

Newton-Raphson Method

The Newton—Raphson method is a powerful technique for solving equations numer-

ically. Like so much of the differential calculus, it is based on the simple idea of

linear approximation.

Let f(x) be a well-behaved function. Let x* be a root of the equation f(x) =0
which we want to find. To find let us start with an initial estimate xy. From xg,
we produce to an improved estimate .x; (if possible) then from x; to x, and so on.
Continue the procedure until two consecutive values x; and x; 4 in ith and (i 4- 1)th
steps are very close or it is clear that two consecutive values are away from each
other. This style of proceeding is called ‘iterative procedure’.

Ne
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Consider the equation f(x) = 0 with root x*. Let xo be a initial estimate. Let
xX* = xo + h then h = x* — xy, the number # measures how far the estimate x is
from the truth. Since /i is small, we can use linear approximation to conclude that

0= f(x*) = f(xo+h) = fxo) + hf'(xo)
and therefore, unless f'(xy) is close to 0,

_ J(xo)
J'(x0)
This implies,
X
x¥=xo+h~xy— f’( o)
J'(xo0)
Our new improved estimate x; of x* is given by
~ J(xo)
X1 = Xg —
I (xo0)

Next estimate x» is obtained from x; in exactly the same way as x; was obtained
from x

G
f/(xy)

Xy = X

Continuing in this way, if x, is the current estimate,then next estimate x,, | is given by

S )
15,

Xpgp1 = Xy
Example 3.4.1 Consider the Example 3.2.15
npx
logL = —nlogl'p +npllogp —logo] — — +n(p—1)logG
o

dlog L n npx
g =—p—|— p7 =0=2X
do o o2

dlog L np nx
- = —nVW(p)+nllogp —logo]l+ — — — +nlogG
dp 2 o)

= logp — W(p) = log

Q|><|

Let log % =¥
Hence log p — W (p) = C. By Newton—Raphson iteration method gives

log(py—1) — W (Pr—1) — C
(Pr—1)"t — V' (Pr—1)

Pk = Pk-1 —

" . dW
Pr denotes the kth iterate starting with initial trial value p, and ¥/ (p) = —

The function W (p) and W'( p) are tabulated in Abramowitz and Stegun



UNIT 2: CRITERION FOR GOOD ESTIMATORS



Definition 5.1.1 A sequence of rvs {X,} is said to converge to X in probability,
P e
denoted as X, — X, ifforeverye > 0,asn — o0

Pl X, — X| = €] — 0. (5. 1.1)
Equivalently, X, Iox ,if for every € > 0,as n — 00

P[|X, — X| < €] = L. {5.1.2)

Definition 5.1.2 The sequence of rvs {X,} is said to converge to X almost surely

(a.s.) or almost certainly, denoted as X, AN Xt X,(w) — X (w) forall w, except
those belonging to a null set N.

Thus,

X, 25 X iff X, (w) — X(w) < oo, for weN°,

where P(NN) = 0. Hence we can write as

p [lim X, = X:I 51 (5.1.3)
n

Definition 5.1.3 Let F,,(x) be the df of arv X, and F(x), the df of X. Let C(F) be
the set of points of continuity of F. Then { X, } is said to converge to X in distribution

or in law or weakly, denoted as X, —L> X and/or F, L F. forevery x € C(F).
It may be written as X, i) Xor F, i> F.

Theorem 5.1.5 Let k be a constant, X, Ly k< X, 2 k.

Definition 5.1.4 A sequence of rvs { X,,} is said to converge to X in the rth mean if
E|X, — X|" — Oas n — 00. It is denoted as X, AN N

For r = 2, it is called convergence in quadratic mean or mean square.



Definition 5.2.1 Let X, X, ..., X, be asequence of iid rvs with pdf(pmf) f (x|0).

A sequence of point estimates 7 is called consistent estimator of ¢, where T =
T(X,, X5, ..., X,) if for a given €, § > 0, there exists ng(¢, 9, #) such that V6 € ®

P[IT -0 <e]l>1—-46.V n>ng (5.2.2)

; s s R
or, using the Definition 5.1.1, we can say that T — # asn — oc.
Moreover, we can say that

PlT — 8] <€ =1 (5.2.3)

Note: Some authors (5.2.3) define as a weak consistency and if we use a Defini-
tion 5.1.2 then they define it as a strong consistency.

Chebychev’s Inequality

Theorem 5.1.12 Let X be a rvwithEX = pand VarX = o> < oo, for any k > 0
1
PUX — | > kol < = (5.1.8)

Theorem 5.1.7 X, —> X = X, —» X.

lim MSE(T(X)) =0 (5:2.1)

n—oo

which means that as the number of observations increase, the mse decreases to

zero. For example, if X, X»,..., X, ~ N(6,1), then MSE(X) = % Hence
lim MSE()_() = 0, X is consistent estimator of #.
n—00

a X . . .
Example 5.2.1 Let {X;}]' beiid B(n, p),then — is consistent estimator for p, where
n

m
)‘( _ Zi:l Xi
i

Now. MSE (£) = &,g =1 - p. Asm — o0 = MSE (£) -0

mn’

Example 5.2.2 Let{X;}| beiidrvs with P(A) A > Othen X is a consistent estimator
of \, X=n"'>"_ X

Now, EX = Aand MSE(X) =2 — 0Oasn — oo.

n



Example 5.2.3 Let {Xi}] be iid rvs with U(0, 8), 8 > 0.
X is not an consistent estimator of .

- 3 2 . U 2 2
MSE(X) = 2% and lim, o 82808 = & 2

12n 12n
But X, is an consistent estimator.

262
(i) EX(y = 2 and MSE(X(y)) = —————— — Oasn — 00

= n+D@n+2)
(ii) Use the Definition (5.1.1) and assume ¢ < #, from (5.1.2)

Pl| Xy — 0l < €] =P[0 — e < Xiny < 0+ €]

0 1
ik 4 ; 6—e\ ; ~
= =1 — — 1 as n —
; 9” 9
f—e
(iii) Consider a df of X ,), let it be H,(x, 6)
0 cx <0
Hn:P[X(n)SX]: (%)” :OSX<9
1 : o S )
lim H,(x,6) = H(x, #),
n—0o
where
0:x<0
i ) = Il x>0
we have

X e H, W
In this case H (x, #) is a df of a singular random variable, i.e., P[X = 0] = 1, then

1 P
X(”) ;> X :> X(H) = 9.

Example 5.2.4 Consider {X;}{ are iid rvs as Cauchy distribution with location para-
meter 6.

| |

x|f)=—|— |, xeR,HeR
Fx19) 7(‘[14—(/\’—9)2}

then X is not a consistent estimator for 6.

The distribution of X is Cauchy with parameter 6.
Using the Definition 5.1.1,

P[|IX—0|<el=Pl0—ec< X <0+¢] (5.2.4)
O+€
/‘ ! dx * o
—_ — —————————eee. —_ — 6
J 714+ (x—8)> s
f—e

This does not tends to 1.
Hence X is not a consistent estimator.



Example 5.2.5 Let X, X, ..., X, be iid N (. o?) rvs. We have to find the con-
sistent estimator for 2.

We know that “';ﬂ ~ _\'(2”71), where §% = Z(’:’f_l”?
From Chebychev’s Inequality,
ko=€= k=<
Var(s*) = 20°

P[|S® - 0% > €l < 0 as n— 00

€2 (= 1)e?

2 . - - . o
Hence S- is consistent estimator for o~.

Theorem 5.2.1 Let T be a consistent estimator for 8 and let g be a continuous
function then g(t) is consistent for g().

Proof Given any € > 0, there exista 0 > 0, such that, |g(t) — g(f)] < € whenever
T —0]| <9

Therefore,  {x| |T — 0] < 8} C {x[lg(t) — g(0)] < e}
Then Plx| |g(t) — g(0)] < €} = P{x||T — 0| < &},
Hence,

Plx||g(t) —g@)| < e} — 1
Because
P{x||T — 0] <8} — 1
g(1) is consistent for g(#).



Example 5.2.6 Let X\, X5, ..., X,_, be iid p(A) rvs. To find the consistent estimator
for g(\) = e** . We know that X is consistent for ).

Using the Theorem 5.2.1, g (X) = e—sX ()_()r is consistent for g(\) = e\,

X
Example 5.2.7 Let Xy, Xa, ..., X,y beiid B(n, p) rvs. We know that — = (mn)~!
n

>, X, is consistent for p.

Now, using Theorem 5.2.1, (") X* (1 — X)"™" is consistent for () p*q"*. when
m— oo.

Example 5.2.8 Let Xy, X>, ..., X,, beiid B(n, p) rvs, where p is a function of 6,

in Bioassay problem, p(0) = i;i‘i(;(}j\), where y > 0 is a given dose level.

K

Now 5) is consistent for p.

X ; R X } mooy
X_ o0 5 Ll nv g 2mX
n 1 + exp(fy) y _X n
n
Example 5.2.9 Let X, X». ..., X, be iid with f(x|6),

fx|9) =6x"""; 0<x<1, 6§>0
Lety = —logx
g(v|9) = G~ y>0, >0

—i

- is consistent for 0.
> logx;

One can easily see that

Definition 5.2.2 Let X be a rv with its df F'(x|¢/), #¢® then population quantile g,
is defined as
PIX =qpl=p, O0<p<l
Itp= % then g is median.
It p = i (i = 1,2,3), then q: is called as ith Quartile. In many textbooks,
Quartiles sugh as Q, 0, and Q; are defined.
Ifp = ﬁ (i=1,2,..., 9), then q.i is called as i/th Decile. In many textbooks,
it is defined as (Dy, D», ..., Dy).



Let the rv X have exponential distribution with mean #, then to find
Q1. 0>, O3, Dy, D3, and Dy:

, 1 _:
fx|8) = Ee7 ;x>0 0>0

By Definition 5.2.2,
PIX < Q]=

Bl— =
]

21
l—e 70 =

Similarly, [ |
0> = —0log 5 and Q3 =—0log 1

s 7 2
D, = —flog 10° D; = —GIOgE and Dg =—6log T

Lemma 5.2.1 Let X be a random variable with its df F (x). The distribution of F(x)
is U0, 1)

Proof Then
PIFX)<z=P[X < F'@]=F[F'@]=z

Hence F(x) is U(O, 1). [

Example 3. Let Xy, X5,... beiid b(1, p) RVs. Then EXy = p and it follows

by the WLLN that .
21 Xi A
n

Thus X is consistent for p. Also, Gl Xi+1)/(n+2) o p, so that a consistent
estimator need not be unique. Indeed, if 7, —P> pand ¢, - Oasn — oo, then

P
Th+cn — p.

Theorem 1. If X}, X2 ... are iid RVs with common law £(X), and E}{X|? < o0

for some positive integer p, then

nxk
LiX Pk pei<k<p,
n



and n~! 377 X% is consistent for EX*, 1 < k < p. Moreover, if ¢, is any sequence
of constants such that ¢, — 0 as n — 0o, then (n~! y XI’.‘ + ¢,) is also consistent
for EX*, 1 < k < p. Also, if ¢, — 1asn — oo, then (c,n ! ¥ X¥) is consistent
for EX*. This is simply a restatement of the WLLN for iid RVs.

Theorem 2. If 7, is a sequence of estimators such that ET,, — v(0) and
var(T,) — 0 as n — 00, then T, is consistent for y(0).

Proof. We have

P(1T, — (8| > ¢} < e 2E[T, — ETp + ET, — ¥(0)1°
= e % var(T) + [ET, — v = 0  asn - oo.

Other large-sample properties of estimators are asymptotic unbiasedness, asymp-
totic normality, and asymptotic efficiency. A sequence of estimators {7},} is asymp-
totically unbiased for y (0) if

Jim EqTn(X) = ¢(6)

for all 8. A consistent sequence of estimators {7} is said to be consistent asymp-
totically normal (CAN) for v (8) if T, ~ AN (@), v(8)/n) forall @ € O. If
v(@) = 1/1(8), where 1{8) is the Fisher information , then {7,]} is known as a
best asymprotically normal (BAN) estimator.



Bhattacharya’s Bounds

Theorem 4.2.1 Let S, 55, ..., Sk and Ty, T, ..., Ty be the two sets of random
variables such that with probability one S;’s are linearly independent, i.e.,

Pla,S\+aS+---+a S, =0]=1 4.2.1)
Further,
A = Covariance matrix of S;,i =1,2,..., k
M = Covariance matrix of Tj,j =l P k

N = Covariance matrix of S; and T;,i # |
Then the matrix (M — N'A='N) > 0 is positive semi-definite, i.e.,
V(M — N'A"'Nyv >0
This is also known as Hodge's Lemma.

Proof Without loss of generality, assume that ES; = 0,ET; = 0 and if ES; and
ET; o= 0, then let §* = § — BE§; and T,* = T; — ET;, then Var(s;) = Var(s})
and Var(T;) = Var(TJ?“).

Using Cauchy—Schwarz inequality,

Cov>(u’'S,v'T) < Varu's)Var('T) (4.2.2)
['Cov(S, THv)) < [u'Var(S)ul[v'Var(T)v]

(u'Nv)? < (' Au)(v'Mv)
Suppose Au = Nv=u=A""Nv

[(AT'Nv)'Nv]? < [(AT'NoYAA'Nol[v M)
[WN'AT'NV? < VN AT'AA N[V M)
[WN' ANV < [N AT'Nu][vMv]

[VN'AT'Nv] < [V Mv]

Therefore,

V(M —NA"'"N)v>0 (4.2.3)



Theorem 4.2.2 Ler X, Xo, ..., Xy be iid rvs with joint pdf f(x;, xa2, ..., X,19)
satisfying the regularity conditions.

Fat 1 ¥ (e
T f(x]8) a8

thenES; =0,i =1,2, ...,k

A = Covariance matrix of S;,i =1,2,...,k

: dg®
N =[g"©),g7),.... g0 ©®)], where g 6) = égg( Liziak
X1, X2, ..., Xy) is an unbiased estimator of g(0), then
V(u(x)) > Ly where Ly =N'A"'N (4.2.4)

(4.2.4) is called Bhattacharya bound.

Proof Let u(x) be an unbiased estimator of g(60)

Hence, .
/ / / u(x) f(x|6)dx = g(6)
! _9g8(8)
ﬁ//'“/uu)f(xwm =
Y LS 11D e
// / e aa i =g0)

// /H(t )S1 [ (x]6)d

E[u(x)$i] = ¢g™(6)

X 8fx|9 W
// /fm@ — o Fle)dx = g@)

E[u(x)S;] = ¢"(0)

In general,

We know that ES; = 0 = Covlu(x), S;] = ¢V (8) We know that

By using Hodge’s Lemma (Theorem 4.2.1), By using Hoc

M—NA"'N>0

In this case M = Var[u(x)] In this case M =

Var[u(x)] = N'A7'N >0

Let Ly = N'A™'N then LetLy = N'A-
Var|U(x)] > Ly

Hence Ly>Li_y>--->1L,. 4.2.5) Hence



Note
Fork =1, Var[u(x)] = L,

B e @O
~ Var(S)’

1 af(le) _ alog f(x]0)
T ofxle) 90 96

Var(S,) = Var {w]

a6

CR bound becomes a particular case of Bhattacharya bound for &k = 1.

Steps to find Bhattacharya bound:

1. To get N’, differentiate the given parametric function g(6).

. ag(8) 32g(0 ok
ie., N = [.g’(e) d-g(6) L g(&)]

a0 > 902 > ek

2. Find § = L2400 = 1,2,k and verify ES; = 0

3. Find Var(S;) = E(5;)? and Cou(S5;, §;) = E(S8:§;)(i # j). Then obtain the
covariance matrix of (S;, S;), (i # j),i.e., A.

4. Calculate N'A~'N.

Example 4.2.1 Let X, X2, ..., X, be iid rvs with N(€, 1). We will obtain the
Bhattacharya bound for g(6) = 67
N =[g"@©), 2?0),..., e® @ =129,2,0,..., 0] (4.2.6)

Here, we can take N’ = [20, 2].
. 1 n ;
f(xlp) = 27)7 2 exp [—5 > - 9)-}
i=I

ofexle) o e IS gy
50 = 2m) zn(x Q)exp|: 2;@, 9):|
1 oafxle) B
= 7018) 98 =n(x—20) 4.2.7)

ThenES, =0



82 f (x16) -1 L sge. it Bz gyl 1 ZH o ot
202 =@2r) 2 —nexp 5. l()«,'—(?) 4+ n=(x —6)~ exp 3. l(.\,'—@)
1= =

= (277) "2 exp [—% Z(x,- - 9)3} [—n 4+ n* (X — 8)?]

i=1

L 8 f(x|0)

S, = T —n 4+ n?(x — gy (4.2.8)
Similarly, one can find S3, S4, ..., Sk.
ES:=—n+n=0
Var(S;) =ES;> =n’E(X¥ —9)’ =n (4.2.9)
Var(S,) = E[n*(X — 0)> — n)?
= n’E[n(x —0)* — 1]? (4.2.10)

= n?E[n3(F — 0)* — 2n(x — 6)2 + 1]
3

5

Now, E(x — 0)* =
n

- 1
= n‘[n'—2 —2n—+1]
n n

=n’[3 =2+ 1] = 2n?

Couv(S1, $2) = ES1S, =E[{n(X¥ —0)Hn?* (X — 6)> — n}]

=E[n*(Xx —6)’ ] —E[n*(x —6)] =0 (4.2.11)
Hence
_(n O R
a=(5ae) 2= (5 2)
1
1P 20
L,=NA'N=(202)(~
— @2)(52)(3)
_ 497 2
T on n2’ (4.2.12)
and Lq = % = CR lower bound

Therefore L, < L».



Chapman - Robbin — Kiefer Bound
Theorem 4.3.1 Let the random vector X have a pdfipmf) f(x|0). Let T(X) be an
unbiased estimator g(8), where g(9) defined on ®. Further, assume that ET?> < 00
Jor all Be®. If 8 # «, then assume that [ (x|0) and [ (x|«) are different. Assume

that S(9) = { f(x]6) > 0}, S(&) = { [ (x|e) > 0} and S(«) C S(P).
Then,

— o(B)?
Var[T(X)]>  sup Mvee@
S@cs@) a0 Var{LE2D)

f(x|e)
Proof Under f(x|0) and f(x|c)

4.3.1)

ET(X) = /T(X)f(xwmx = g(0)

ET(X) = / T(X)f (xler)dx = g(a)

f(xle) — f(x]0)
f(x16)

_ fxle) o )
= / TxD [f(-\‘m 1] f(x|8)dx

o [T(X). flxle) 1] = g(@) — £(6)
1(x10) : .

gla) —g(0) = /T(X) Fx|8)dx

Using Cauchy-Schwarz inequality.,

Cov? [T(X). J(xla) — ljl < Var|T(X)|Var [.f UI?) — I:|
Fexie) F(x16)

= VarT(X)Var |:f_('\. |a)}
S(x|8)
Therefore,

l2(@) — g®) < VarT(X)Var {f (x'“)]
B F(xl6)

] [g(a) — g(O)]
Var|T (X)] > WVGEG) (4.3.2)
fFx]e)

Then, (4.3.1) follows immediately.

Chapman and Robbins (1951) had given the same above-mentioned theorem in
different form.
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