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Blocks & Units Introduction 

 

The present SLM on Non Parametrics consists of eleven units with three blocks. 

 The Block - 1 – Order Statistics, is the first block, which is divided into four units. 

The Unit - 1 – Basic Distribution Theory, is the first unit of present self learning 

material, which describes Order statistics, Distribution of maximum, minimum and r-th order 

statistic, Joint distribution of r-th and s-th order statistic. 

In Unit – 2 – Asymptotic Distribution Theory, the main emphasis on the Moments of 

order statistics, asymptotic distributions of an order statistic, asymptotic relative efficiency, non 

parametric estimation of distribution function, Glivenko-Cantelli fundamental theorem  

In Unit – 3 – Distribution Free Intervals, we have focussed mainly on Distribution of 

range function of order statistics, distribution free confidence intervals for quintiles, distribution 

free tolerance interval, distribution free bounds for moments, Fooleries limits  

In Unit – 4 – Rank order Statistics, is being discussed the Rank order statistics, Dwass’ 

technique, Ballot theorem its generalization, extension and application to fluctuations of sums of 

random variables. 

The Block - 2 – Sequential Analysis is the second block with two units. 

In Unit – 5 – Sequential Tests is discussed with SPRT and its properties, Wald’s 

Fundamental identity, OC and ASN functions, Wald’s equation, Wolfowitz generalization of 

FRC bound, Stein’s two stage procedure.  

In Unit – 6 – Sequential Estimation has been discussed, Asymptotic theory of sequential 

estimation, sequential estimation of normal mean. 

The Block - 3 – Nonparametric Tests and Inference has three units.   

Unit – 7 – One- sample Location Tests dealt with One and two sample location tests, 

Sign test. Wilcoxon test, Median test. 

Unit – 8 – Other non- parametric tests  dealt with Mann- Whitney U- Test, Application 

of U-statistic to rank tests. One sample and two sample Kolmagorov-Smirnov tests. Run tests. 

Unit – 9 – Nonparametric Inference, The Kruskal-Wallis one way ANOVA Test, 

Friedman’s two-way analysis of variance by ranks, efficiency criteria and theoretical basis for 

calculating ARE, Pitman ARE.  

At the end of every block/unit the summary, self assessment questions and further 

readings are given.  

  



 

 

Block 1- Order Statistics 

Unit 1: Basic Distribution Theory 

Structure 

1.1 Order statistics 

 1.1.1 Definition 

 1.1.2 Important Uses 

1.2 Distribution of maximum 

 1.2.1 p.d.f. of maximum 

 1.2.2 Examples 

1.3 Distribution of minimum  

 1.3.1 p.d.f. of minimum 

 1.3.2 Examples 

1.4 Distribution of r-th order statistic 

 1.4.1 p.d.f. of r-th order statistic 

 1.4.2 Examples 

1.5 Joint distribution of r-th and s-th order statistic 

 1.4.1 p.d.f. of r-th and s-th order statistic 

 1.4.2 Joint p.d.f. of n order statistic 

 1.4.3 Examples 

Unit 2: Distribution Free Intervals 

Structure 

2.1 Distribution of range function of order statistics 

2.2 Distribution free confidence intervals for quantiles 

2.3 Distribution free tolerance interval 

2.4 Coverage 



UNIT 1: BASIC DISTRIBUTION THEORY 

 

1.1 ORDER STATISTICS 

Definition: The observation occupying thr  place in ascending order of the sample 

values is known as the thr  order statistic. We denote it by rY  or 
 r

X  so that 1Y =

 1
X  represents the minimum of the sample observations while nY =

 n
X  is the 

maximum of sample observations.  

The definition of order statistics does not require that the X’s to be identically 

distributed, nor do we need them to be independent. Also, it was not presumed 

that the parent distributions be continuous, nor that their densities exist. 

Although, most of the classical results dealing with order statistics were 

originally derived in more restrictive settings. Generally, it is assumed that the 

X‟s were independent and identically distributed (i.i.d.) with common 

continuous (cumulative) distribution function F(x), and having a density 

function f(x) and, henceforth, we will assume the X’s to be so. 

The following list, though, not exhaustive, but may serve help to convince the 

reader that this text will not be focusing on some abstract concepts of little 

practical utility: 

1. Robust Location Estimates. Suppose that n independent measurements 

are available, and we wish to estimate their assumed common mean. It has 

long been recognized that the sample mean, though attractive from many 

viewpoints, suffers from an extreme sensitivity to outliers and model violations. 



Estimates based on the median or the average of central order statistics are 

less sensitive to model assumptions. 

2. Detection of Outliers. If one is confronted with a set of measurements and 

is concerned with determining whether some have been incorrectly made or 

reported, attention naturally focuses on certain order statistics of the sample. 

Usually the largest one or two and/or the smallest one or two are deemed most 

likely to be outliers.  

3. Censored Sampling. Fifty expensive machines are started up in an 

experiment to determine the expected life of a machine. If, as is to be hoped, 

they are fairly reliable, it would take an enormously long time to wait for all 

machines to fail. Instead, great savings in time and machines can be effected if 

we base our estimates on the first few failure times (i.e., the first few order 

statistics from the conceptual sample of i.i.d. failure times). 

4. Waiting for the Big One. Disastrous floods and destructive earthquakes 

recur throughout history. Dam construction has long focused on so called 100-

year floods. Presumably the dams are built big enough and strong enough to 

handle any water flow to be encountered except for a level expected to occur 

only once every 100 years. Whether one agrees or not with the 100-year 

disaster philosophy, such inferences are concerned with the distribution of 

large order statistics from a possibly dependent, possibly not identically 

distributed sequence. 

5. Strength of Materials. The adage that a chain is no stronger than its 

weakest link underlies much of the theory of strength of materials, whether 



they be threads, sheets, or blocks. By considering failure potential in 

infinitesimally small sections of the material, one quickly is led to strength 

distributions associated with limits of distributions of sample minima, which is 

again an order statistic.  

6. Reliability. The example of a cord composed of n threads can be extended 

to lead us to reliability applications of order statistics. It may be that failure of 

one thread will cause the cord to break (the weakest link), but more likely the 

cord will function as long as k (a number less than n) of the threads remain 

unbroken. 

7. Quality Control. Each candy bar should weigh 2.1 ounces; just a smidgen 

over the weight stated on the wrapper. No matter how well the candy pouring 

machine was adjusted at the beginning of the shift, minor fluctuations will 

occur, and potentially major aberrations might be encountered (if a peanut gets 

stuck in the control valve). We must be alert for correctable malfunctions 

causing unreasonable variation in the candy bar weight. Enter the quality 

control man with his X and R charts or his median and R charts. If the median 

(or perhaps the mean) is far from the target value, we must shut down the line.  

8. Selecting the Best. Field trials of corn varieties involved carefully balanced 

experiments to determine which of several varieties is most productive. 

Obviously we are concerned with the maximum of a set of probably not 

identically distributed variables in such a setting. 

9. Inequality Measurement. The income distribution in India (where a few 

individuals earn most of the money) is clearly more unequal than that of 



United Kingdom (where progressive taxation has a leveling effect). How does 

one make such statements precise? The usual approach involves order 

statistics of the corresponding income distributions. The particular device used 

is called a Lorenz curve. It summarizes the percent of total income accruing to 

the poorest p percent of the population for various values of p. Mathematically 

this is just the scaled integral of the empirical quantile function. A high degree 

of convexity in the Lorenz curve signals a high degree of inequality in the 

income distribution. 

10. Olympic Records. Bob Beamon's 1968 long jump remains on the Olympic 

record book. Few other records last that long. If the best performances in each 

Olympic Games were modeled as independent identically distributed random 

variables, then records would become more and more scarce as time went by. 

Such is not the case. The simplest explanation involves improving and 

increasing populations. Thus the 1964 high jumping champion was the best of, 

say, Nx active international-caliber jumpers. In 1968 there were more high-

caliber jumpers of probably higher caliber. So we are looking, most likely, at a 

sequence of not identically distributed random variables. But in any case we 

are focusing on maxima, that is, on certain order statistics. 

11. Allocation of Prize Money. At the end of the annual Bob Hope golf 

tournament the player with the lowest score gets first prize. The second lowest 

score gets second prize, etc. In 1991 the first five prizes were: $198,000, 

$118,800, $74,800, $52,800, and $44,000. Obviously we are dealing with 



order statistics here. Presumably the player with the highest ability level will 

most likely post the lowest score. 

12. Characterizations and Goodness of Fit. The exponential distribution is 

famous for its so-called lack of memory. The usual model involves a light bulb 

or other electronic device. For example, if X1,...,Xn are i.i.d. exponential, then 

their spacings (X(i) – X(j)) are again exponential and, remarkably, are 

independent. It is only in the case of exponential random variables that such 

spacings properties are encountered. A vast literature of exponential 

characterizations and related goodness-of-fit tests has consequently developed. 

It is interesting to note that most tests of goodness of fit for any parent 

distribution implicitly involve order statistics, since they often focus on 

deviations between the empirical quantile function and the hypothesized 

quantile function. 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let 1Y  be the 

minimum of 1X , 2X ,…., nX  is called the first order statistics, 2Y  be the next 

minimum is called the second order statistics and so on so that nY
 
be the 

maximum of 1X , 2X ,…., nX  is called the thn  order statistics. Then 1 2 .... nY Y Y    

is known as order statistics of the random sample 1X , 2X ,…, nX .  

 

 

 



1.2 DISTRIBUTION OF MAXIMUM  

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let   
nYF x  be 

the c .d. f.  of maximum or the n-th order statistics nY  at the point x  is given by 

   
nY nF x P Y x   

 1 2P , ,..., nMax of X X X x   

 
 1 2P , ,..., nX x X x X x     

 
     1 2P .... nX x P X x P X x   

       
( 1 2, ,..., nX X X  are mutually independent) 

 
     

1 2
...

nX X XF x F x F x                                                                        (1) 

where  
iXF x  is  c. d. f.  of  iX  for i= 1, 2,…, n and since 1 2, ,..., nX X X  are 

identically distributed with c. d. f.  F x  such that  

        
1 2

...
nX X XF x F x F x F x                                     (2) 

Using (2) in (1), we get 

    
n

n

YF x F x          (3)
 

Since in case continuous population, the density function is given by  

p. d. f. of nY
 
=  

nYf x  

 
nYdF x

dx
  

   
 1n dF x

n F x
dx



         
 dF x

f x
dx

 
 

 
  



   
1

;

  0                          ;otherwise

n

n F x f x a x b
      



     (4)       

Example: Find out the p.d.f. of the maximum of the sample values from a sample 

of size n drawn from  0,U 
 
parent. 

Solution: Consider the p.d.f. of  0,U   given by 

 
1

;0

0 ;

x
f x

otherwise





 

 



 

so that its d.f. is given by 

 

0  ; 0

;0

1 ;

x

x
F x x

x










  




 

Let  n
X  be the thn  order statistics or maximum of sample values in a sample of 

size n. Then  

        
1

;0
n

X n
f x n F x f x x 



    

                  

1
1

;0

n
x

n x 
 



 
   

 
 

                  
1

;0
n

n

x
n x 




    

Hence, the p.d.f. of 
 n

X  is given by 

 
 

1

  ;0

0          ;
n

n

n
X

nx
x

f x

otherwise





 

 



 

 



PROBABILITY INTEGRAL TRANSFORM 

If X is a random variable of a continuous type having p.d.f.  f x  and distribution 

function  F x , then  Z F x  has a uniform distribution  0,1U . 

Proof: Given X is a continuous random variable with p. d. f.  f x  and c. d. f. 

 F x  then we wish to prove that  Z F x follows  0,1U . Consider the p.d.f. of z 

given by
  

   modf z J (put x in terms of z in  f x ) 

where J stands for the jacobian of transformation. For particular (or specific) 

values of z and x, we may write 

 z F x
 

   
1 1 1dx

J
dz dz dx dF x dx f x

                          0f x 
 

so that  

 
1 0 1

0

z
f z

otherwise

 
 


 

   ~ 0,1Z F x U             Q.E.D. 

Remark: The importance of probability integral transform is that the order 

statistics 
   1

, ,
n

X X  in a sample from any continuous distribution with c.d.f. 

 F x  are transformed by order preserving probability integral transform 

 u F x  into 
   1

, ,
n

U U . 



Example: If X is a uniform random variable with distribution function F(x), prove 

that 

     
   

1

1

0

!
1

1 ! !

n rr

r

n
E X Y Y h Y dY

r n r

   
      

where    1h Y F Y  

Solution: Let  ~ ,X U a b  and consider 

   
 

r

b

Xr

a

E X x f x dx  
                                                ; a<x<b 

        
       

1!
         1

1 ! !

b
r n r

a

n
x F x F x f x dx

r n r

 

 
               

Let  F x y  

 
 

dF xdy
f x

dx dx
  

 
 dy f x dx   

so that 

   
   

 
1

1 1

0

!
1

1 ! !

n rr

r

n
E X F y y y dy

r n r

    
     

   
   

1

1

0

!
1

1 ! !

n rrn
y y h y dy

r n r

 
                 1F y h y         Q.E.D. 

Example: Let 
1, 2 3,x x x  be independent random variable with p. d. f. 

       ,
expf x x I x





      

Determine the constant  c c   for which 
  3

0.96P x c     

Solution: Since 



   
   ,

e
x

f x I x




   


  

where    ,

1

0

if x
I x

otherwise





  
 


 

In other words  

 
 

;

0 ;

x
e x

f x
otherwise




    
 


 

     Pr

x

F x X x f x dx


     

               
x

f x dx f x dx





    

            
0

x
x

e dx




 
    

             
x

x
e





   
 

 

            
1

x
e

   
 

 

Therefore,  
 

1 ;

0 ;

x
e x

F x
otherwise




     
 


 

We may write  
  3

0.96P x c     as 

 
 

3
0.96

c

xf x dx


  

where 
 
 

3xf x  stands for the p. d. f. of third order statistic where n=3, so that 

    
2

3 0.96

c

F x f x dx


  



Let  F x t   f x dx dt   so that  

 

 
23 0.96

F c

F

t dt


  

 
2

0

3 0.96

F c

t dt   

where   0F    and    
1

c
F c e

 
   so we get   

 
 3

0
0.96

F c

t   

 
3

0.96F c     

   
1/3

1 0.96
c

e
 

   

   1/3
1 0.96

c
e

 
   

 
1/3

ln 1 0.96c     
 

 

is the required value of c, such that 
 3

Pr 0.96x c   
 

. 

1.3 DISTRIBUTION OF MINIMUM 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let   
1YF x  be 

the c .d. f.  of minimum or the first order statistics 1Y  at the point x  is given by  

   
1 1PYF x Y x   

                 11 P Y x    

                 1 21 P min , ,..., nX X X x      



                 1 21 P , ,..., nX x X x X x      

                       1 21 ... nP X x P X x P X x        ( 1 2, ,...., nX X X  are mutually ind.) 

                         1 21 1 1 ... 1 nP X x P X x P X x         

                         
1 2

1 1 1 ... 1
nX X XF x F x F x      

where  
iXF x  is  c. d. f.  of  iX  for i= 1, 2,…, n and since 1 2, ,..., nX X X  are 

identically distributed with c. d. f.  F x  such that  

        
1 2

...
nX X XF x F x F x F x                                     (2) 

Using (2) in (1), we get 

    
1

1 1 ;
n

YF x F x a x b      

Since in case continuous population, the density function is given by  

p. d. f. of 1Y
 
=  

1Yf x  

 
1YdF x

dx
  

  
 1

1
n dF x

n F x
dx



         
 dF x

f x
dx

 
 

 
  

    
1

1 ;

  0                              ;otherwise

n

n F x f x a x b
   

 


    (4) 

Example: Let  1,2,...,jX j n  be i.i.d. negative exponential random variable with 

parameter   then show that the distribution of  1
X  is a negative exponential 

distribution with parameter n . Conversely, show that if  1,2,...,jX j n  are i.i.d. 



random variables and 
 1

X  follows a negative exponential distribution with 

parameter n  then the common distribution of X’s is negative exponential with 

parameter  . 

Solution: 

It is given as  
;0

0 ;

xe x
f x

elsewhere

    
 


 

Therefore  
1 ;0

0 ;

xe x
F x

otherwise

    
 


 

Let 
 
 

1XF x  be the c. d. f. of  1
X

 
and since,  1 2, ,...., nX X X  are identically 

distributed with c. d. f.   F x . Therefore, 

 
 

 
 

 
   

21

....
nX X XF x F x F x F x     

Hence,  

 
    

1

1 1
n

XF x F x  
 

           
 1 1 1

n
xe                           

            1 xne  
 

therefore,
 

 
   

 
1

1

X

X

dF x
f x

dx


 

           
 1 xnd

e
dx

 
 

           
xnn e  

 

 1
X  follows  negative exponential with parameter n . 



Conversely suppose it is given that 
 1

X  follows  negative exponential with 

parameter n  so that 

 
 

1
1 xn

XF x e  
 

Also, 
 
    

1
1 1

n

XF x F x  
 

Equating both we  have, 

  1 1 1
n n xF x e    

 

 1 xF x e    

  1 xF x e  
 

   
d

f x F x
dx

   

           
 1 xd

e
dx

 
 

           
xe  
 

which is negative exponential with parameter  . Hence, the common 

distribution of X‟s is negative exponential with parameter  . 

1.4 DISTRIBUTION OF r-th ORDER STATISTIC 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let ( )
rYF x  be 

the c. d. f. and   
rYf x  be the p. d. f.  of the thr order statistic rY

 
at the point x  is 

given by 

 
 

r

r

Y

Y

dF x
f x

dx
  



           
   

0
lim
h

F x h F x

h

 
  

          
   

0

Pr Pr
lim

r r

h

Y x h Y x

h

   
  

           
0

1
lim P r
h

x Y x h
h

   
 

1 's one  's >

__________________________ _______ _______________________

r X x X x h n r X x h
a x x h b

     

   

  
 

 
0

1
lim P 1of the ' ,  one in , ,   of the '
h

r X s x X x x h n r X s x h
h

        
 

Using multinomial law, we have 

 
   

       
1

0

1 !
lim P P P

1 ! !r

r n r

Y
h

n
f x X x x X x h X x h

h r n r

 


      

 
 

   
          

1

0

1 !
lim 1

1 ! !

r n r

h

n
F x F x h F x F x h

h r n r

 


    

 
 

   
  

   
  

1

0

!
lim 1

1 ! !

r n r

h

F x h F xn
F x F x

r n r h

 



  
  

   
 

   
       

1!
1     ;

1 ! !

0                                                                         ;otherwise

r n rn
F x F x f x a x b

r n r

 
  

  



 

Remark: It is interesting to note that the     
1

1 1
n

YF x F x    and 

    
n

n

YF x F x  are special cases of the general result of  
rYF x  given by 

   

 

   

           = at least  of the  are less than or equal to 

          1

rY r

i

n
n ii

i r

F x P Y x

P r X x

n
F x F x

i





 

 
     

 


 



since the summand is the binomial probability of getting exactly i of the 

1, , nX X  less than or equal to x.  Also, one more useful relationship that exists 

between the binomial sums and incomplete beta functions is  

     , 1
rY F x

F x I r n r    

where  ,pI a b  is an incomplete beta function defined as 

   
11

0
, 1   ; 0, 0

p ba

pI a b y y dy a b
     

Therefore,  
rYF x  can be calculated from the tables of  ,pI a b  and the 

percentage points of rY  can be obtained by inverse interpolation of these tables. 

Example: Obtain the upper 5% point of 4Y  in sample of 5 from standard normal 

distribution. 

Solution: We need to find x such that 

 

       
4

0.95

          4,5 4 1 4,2

Y

F x F x

F x

I I



   
 

so that  

   1
0.05 2,4

F x
I


  

thereby giving 

 0.0764 1 F x    

Hence, from normal tables, we have x = 1.43. 

Example: Let 1 2 3 4Y Y Y Y    denote the order statistics of the random sample of 

size 4 from the population with p. d. f.  



 
2 ;0 1

0 ;

x x
f x

otherwise

 
 


 

Obtain the p. d. f. of 3Y  and  31 2P Y  

Solution: It is given that n=4 and  

 
2 ;0 1

0 ;

x x
f x

otherwise

 
 


 

Hence, for 0x   

   Pr 0 0

x

F x X x dx


     

For 1x   

       
0

2

0

Pr

x

F x X x f x dx f x dx x


       

For 1x   

         
0 1

0 1

Pr 1

x

F x X x f x dx f x dx f x dx


         

Therefore,   2

0 ; 0

;0 1

1 ; 1

x

F x x x

x




  
 

 

Putting r=3 and n=4 in (1) we have, 

p. d. f. of 3Y =  3f Y  

                          
2

3 3 3

4!
1

2!1!
F y F y f y                ; 30 1y   

                   
2

2 2

3 3 312 1 2y y y                     ; 30 1y   

                  
5 2

3 324 1y y                                                              ; 30 1y   



so that 

 5 2

3 3 3

3

24 1 ;0 1
( )

0 ;

y y y
f Y

otherwise

   
 


 

Now,    3 3Pr 1/ 2 1 Pr 1/ 2Y Y     

                                
1/2

3 3

0

1 f y dy    

                               
1/2

2 5

3 3 3

0

1 24 1 y y dy    

Let 2

3y t  3 32y dy dt   

   
1/4

2 2

3

0

Pr 1/ 2 1 12 1Y t t dt     

                 
1/4

3 4

0
1 4 3t t    

1 3
1 4

64 4

 
   

 

13
1

256
   

                 
243

256


 

Example: Let  , 1/ ,0f x x      and 1 2 3, ,x x x  be a random sample of size 3 

from this parent distribution and let  1 2 3, ,Y Y Y be order statistic of this sample so 

that  1 1 2 3min , ,Y x x x  and  3 1 2 3max , ,Y x x x . Obtain  2Pr / 2Y  . 

Solution: Given   

   , 1/ ,0f x f x x       

Now for x   

      0

x

F x P X x f x dx


     



               
0

0

x

f x dx f x dx


  
0

1
0

x

dx


    

           
x


  

For x   

           
0

0

1

x x

F x P X x f x dx f x dx f x dx f x dx



 

           

Therefore,  

0 ; 0

/ ;0

1 ;

x

F x x x

x

 






  
 

 

Thus,    2

/2

Pr / 2Y f w dw





    

where  f w is the p. d. f. of second order statistic for n=3. So 

 
   

       
2 1 3 23!

1
2 1 ! 3 2 !

f w F w F w f w
 

 
 

 

         
       6 1F w F w f w         ;0 w    

So,         2

/2

Pr / 2 6 1Y F w F w f w dw





    

Let  F w t
 

 f w dw dt   and    / 2 1/ 2, 1F F    

so that 

   
1

2

1/2

Pr / 2 6 1Y t t dt    

                  

1
2 3

1/2

6
2 3

t t 
  

 

1
2 3

1/2
3 2t t   

3 1
3 2

4 4
     



                  
1

2
  

Example: Let 1 2 3 4Y Y Y Y   be the order statistics of the random sample of size 4 

from the distribution having probability density function  

 
;0

0 ;

xe x
f x

otherwise

   
 


 

Find  4Pr 3 Y . 

Solution: Given that  

 
;0

0 ;

xe x
f x

otherwise

   
 


 

Now for 0x     

       
0

0

Pr

x

F x X x f x dx f x dx


      

         0

0

x

xe dx    

         1 xe   

Therefore,  

   4Pr 3 Pr 3 4Y     

               
3

f w dw



   

where  f w is the p. d. f. of 4th order statistic 4Y  for n=4 

     
4 1

4f w F w f w dw


             ;0 w   

so that 



     
3

4

3

Pr 3 4Y F w f w dw



      

Putting  F w t
 

 f w dw dt  , we have  

   
 

 
3

4

3

Pr 3 4

F

F

Y t dt



  
( )

4

(3)

F

F
t



                           since   33 1F e     and    1F      

              
4

31 1 e  
 

1.5 JOINT DISTRIBUTION OF r-th AND s-th ORDER STATISTIC 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let ( , )rsF x y  be 

the joint c. d. f. and  ( , )rsf x y  be the joint p. d. f.  of the thr  and ths  ( r s ) order 

statistic rY  and sY
 
at the point  ,x y , x<y, is given by 

2 ( , )
( , ) rs

rs

d F x y
f x y

dxdy
  

           
 

0
0

P ,  
lim

r s

h
k

x Y x h y Y y k

hk


     
  

   

 0
0

1of the ' ,  one in , , 1 of the '  in , ,1
lim P

one in , ,   of the 'h
k

r X s x X x x h s r X s x h y

hk X y y k n s X s y k


      
  

     

 

1 's one 1 's one  's >

_________ _______ _________ _______ ____________

r X x X x h s r X y X y k n s X y k
a x x h y y k b

          

     

     
 

Using multinomial law, we have 

     

       

    

1 1

0
0

P P P1 !
lim

1 !1! 1 !1! ! P P

r s r

n sh
k

X x x X x h x h X yn

hk r s r n s y X y k X y k

  




       
 
          

 



     

            

       

1 1

0
0

1 !
lim

1 ! 1 ! ! 1

r s r

n sh
k

F x F x h F x F y F x hn

hk r s r n s F y k F y F y k

  




    
 
         

 

     
       

            

1 1

0 0
0

0 0 0

1 !
lim lim

1 ! 1 ! !

1 1
    lim 1 lim lim

r s r

h h
k

n s

k k h

n
F x F y F x h

hk r s r n s

F y k F y k F y F x h F x
k h

  

 




  

  
   

     

 

     
              

1 1!
1 ;

1 ! 1 ! !

0                                                                                                                      ;otherwise

r s r n sn
F x F y F x F y f x f y a x y b

r s r n s

   
    

   



 

Example: Let 1 2 3 4Y Y Y Y    be the order statistics of a random sample of size 4 

from the probability distribution function 

 
               ;0

0                  ;

xe x
f x

otherwise

   
 


 

Show that 2Y  and 4 2Y Y  are stochastically independent.  

Solution: For x   

     Pr

x

F x X x f x dx


     

        

   
0

0

x

f x dx f x dx


    

        0
0

x
xe      

        1 xe   

Hence,  
1 ;0

0 ;

xe x
F x

otherwise

    
 


 

Let 1 2Z Y  and 2 4 2Z Y Y   



Then, the joint p. d. f. of 2Y  and 4Y  is given by 

 
     

              
2 1 1 1

24 2 4 2 4 2 4 2 4

5!
, 1

5 9 ! 2 1 ! 9 2 1 !
g y y F y F y F y F y f y f y



  
   

                                                                                                

 ; 2 40 y y    

               
     2 4 2 4 2 4120 1 1 1 1 1

y y y y y y
e e e e e e
     

        

                   2 2 2 4 42
120 1

y y y y y
e e e e e
    

            2 4;0 y y     (1) 

For specific values we may write 

1 2z y  and 2 4 2z y y   

i.e. 2 1y z  and 4 2 1y z z   

The jacobian of transformation is 

 

 
2 4

1 2

1 0,
1

1 1,

y y
J

z z


  


 

Hence the joint p. d. f. of 1z  and 2z  is 

 1 2,f z z = (mod J)(put 2y and 4y in terms of 1z  and 2z  in  24 2 4,g y y ) 

                1 21 1 1 1 2
2

120 1
z zz z z z z

e e e e e
     

              1 20 ,0z z     

              1 1 2 24 2
120 1 1

z z z z
e e e e
   

    

Now,  

   1 1 2 2

0

,f z f z z dz



   

         

   1 1 2 24 2

2

0

120 1 1
z z z z

e e e e dz



   
                  ; 10 z   



Let 2ze t


  and 2

2

z
e dz dt


  so that  

      1 1

0

4

1

1

120 1 1
z z

f z e e t t dt
 

                          ; 10 z   

                     1 1

1

4 2

0

120 1
z z

e e t t dt
 

          ; 10 z   

                  1 1

1
2 3

4

0

120 1
2 3

z z t t
e e
   

   
 

                        ; 10 z   

                  1 14 1 1
120 1

2 3

z z
e e
   

   
 

                                 ; 10 z   

                  1 14
20 1

z z
e e
 

    ; 10 z                    (3) 

Similarly,   

   2 1 2 1

0

,f z f z z dz



   

            2 2 1 12 4

1

0

120 1 1
z z z z

e e e e dz



   
       ; 20 z   

Let 1ze t


  
1

1

z
e dz dt


    

     2 2

1

3

2

0

120 1 1
z z

f z e e t t dt
 

         ; 20 z   

         

 2 2

1
4 5

0

120 1
4 5

z z t t
e e
   

   
 

      ; 20 z   

          2 22
6 1

z z
e e
 

                               ; 20 z 
                             

(4) 

From (2), (3) and (4), we have,  

     1 2 1 2,f z z f z f z  



showing 1 2Z Y  and 2 2 4Z Y Y   are stochastically  independent. 

JOINT DISTRIBUTION OF ORDER STATISTICS 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is  f x  and c .d. f. is  F x  for a x b  . Let 1( , , )nF y y  

be the joint c. d. f. and  1( , , )nf y y  be the joint p. d. f.  of all the  order 

statistics 1, , nY Y  at the point  1, , ny y  is given by 

 
 1

1

1

, ,
, ,

n

n

n

n

F y y
f y y

y y




 





 

           
 

1

1 1 1 1

0
1

0

P , ,
lim

n

n n n n

y
n

y

y Y y y y Y y y

y y 

 

     


 




  

 

 
1

1 1 1

0
1

0

P one  in ( , ], ,one  in ( , ]
lim

n

n n n

y
n

y

X y y y X y y y

y y 

 

 


 




  

1 1 1one  ... one 

_________ _______ _________ _______ __________
n n nX X

y y yy y ya b

   

    
 

Using multinomial law, we have 

   
1

1 1 1 1

0
1

0

P P!
lim ...

1!...1!
n

n n n n

y
n

y

y Y y y y Y y yn

y y 

 

     


 


 

       
1

1 1 1

0 0
1

!
lim ... lim

1!...1! n

n n n

y y
n

F y y F y F y y F yn

y y   

      
    

    
 

   1 1! ...         ; a< ...

0                    ;otherwise

n nn f y f y y y b   
 


 

 



UNIT 2: DISTRIBUTION FREE INTERVALS 

 

2.1 DISTRIBUTION OF RANGE FUNCTION OF ORDER STATISTICS 

Let  1,2,...,iY i n  be an ith order statistic of the random sample  1 2, ,..., nX X X

drawn from a continuous population whose c. d. f.  F x  and p. d. f. is  f x  for 

a x b  . We define the sample range as  

1nR Y Y  . 

In order to find the p. d. f. of R we first need to find the joint p. d. f. of 1Y
 
and nY  

is given by  

 
 

        
2

1 1 1

!
,

2 !

n

n n n

n
g y y F y F y f y f y

n



 


        1; na y y b    

          
2

1 11
n

n nn n F y F y f y f y


        1; na y y b    

Let us now consider the transformation 

1nR Y Y   

nU Y  

For specific values, we write  

1nr y y   

nu y  

Then, 

1y u r 
 
and ny u  



Thus, the transformation 1y u r   and ny u  maps   1 1, ;n ny y a y y b    onto 

  , ;r u a r u b    so that the joint p. d. f. of R and U is given by 

 ,RUf r u = (mod J){putting 1y
 
and ny

 
in terms of u  and r  in  1, ng y y } 

where J stands for the jacobian of transformation given by 

 

 

1 1

1

2 2

1 1,
1

0 1,

n

y y

y y r u
J

y yr u

r u

 

  
   

 

 

 

so the joint p. d. f. of R  and U takes form 

            
2

, 1
n

RUf r u n n F u F u r f u r f u


          ;a r u b    

In order to obtain the p. d. f. of R we integrate out U from the joint p. d. f. of R 

and U and get 

   ,

b

R RU

a

f r f r u du   

          
2

1   ; 

 0                                                                             ; otherwise

b
n

r

n n F u F u r f u r f u du a r b


     
 



  

Example: If   xf x e         ;0 x   

and   1 xF x e               ;0 x   

Find the distribution of sample range. 

Solution: We know distribution of sample range 

           
2

1
n

r

f r n n F u F u r f u r f u du




        



 
2

1 1 1
n

x u r u r u

r

n n e e e e du      



             

     
222 21 1

nu n r u r

r

n n e e e e du
   


       

   
2

21 1
n

r r un

r

n n e e e du  



      

     
2

21 1
un

n
r r

r

e
n n e e

n


 






  
     

 
 

   
2

1 1
n

r r nrn e e e  


     

   
2

1 1
n

r r nrn e e e  


             Q.E.D. 

Also  

   
2

0

1 1
n

r r n rn e e e dr  



    

     
22

1

1
1 1

n
nu n

n e t dt
t




   
   

 
                   ,r re t e dr dt    

   
2

2

1

1 1
1 1

n
n

n
n t dt

t t


  

   
 

  

Let 
1

1
t


 
  

 
 so that 

2

1
dt dv

t

 
 

 
 

   
1

2

0

1
n

I n dv


    

 
1

1

0

1
1

nu
n

n

 
   

 
 

1  



Hence,  

     
2

1 1
n

r nr rf r n e e e  


                     0 r   

 

2.2 DISTRIBUTION FREE CONFIDENCE INTERVALS FOR QUANTILES 

QUANTILES OF A DISTRIBUTION 

Let X be a continuous random variable with p. d. f.  f x  and c. d. f.  F x . Let 

p be a positive proper fraction and the equation  F x p  as a unique solution 

for x, this unique root is denoted by the symbol p  and is called the quantiles  

of order p. 

Thus,   

 Pr p pX F p          0 1p   

If  F x  is not strictly increasing,  F x p  may hold in some interval, in this 

case any point in the interval would serve as a quantile of order p.  

Example.  The quantile of order 1/2 is the median of the distribution and  

   0.5 0.5Pr 1/ 2X F     

Example: Let  1,2,...,ix i n  be i. i. d. random variable with p. d. f.  f x  of the 

continuous type. If m is the median of the distribution, find the probability that  

i) All exceed’s m 

ii) The maximum never exceeds m 

Solution: Since m is the median of the continuous distribution. Therefore 

   Pr 1/ 2F m X m  
 
and    Pr Pr 1/ 2X m X m     



Now,  

i)Pr(all exceed‟s m)= 
  1

Pr X m  

                                       
1

1
n

m

n F x f x dx




   

Let    1   F x t f x dx dt     

so that  

Pr (all exceed‟s m)
0

1

1/2

nnt dt   

                
1/2

1

0

nnt dt 
1/2

0

nt     

                

1

2

n

 
  
 

 

(ii) Pr (none of the X‟s exceeds median)= Pr( the maximum never exceeds m) 

                                                           
 

Pr
n

X m  
 

 

                                                              
1

0

m
n

n F x f x dx


     

Let        F x t f x dx dt                                                       

so that  

Pr (none of the X‟s exceeds m)
1/2

1

0

nnt dt 
1/2

0

nt     

                                              
1

2

n

 
  
 

                                                       Q.E.D. 

 



CONFIDENCE INTERVAL FOR DISTRIBUTION QUANTILES 

Let 1 2, ,..., nX X X  be a random sample of size n taken from a continuous 

distribution with distribution   function  F x . Let 1 2 ... nY Y Y    be the order 

statistics of the sample. Let  i jY Y , we consider the event i p jY Y  . For the ith 

order statistic iY  to be less than p  it must be true that at least i of the x values 

are less than p . Moreover, for the jth order statistic to be greater than p  fewer 

than j of the x values are less than p . That is, if we say that we have a 

“success” when an individual x value is less than p , then, in the n 

independent trials, there must be at least i success but fewer than j success for 

the event i p jY Y   to occur. But since the probability of success on each trial 

is  

 Pr p pX F p      ,  

the probability of this event is  

 
 

1 !
Pr 1

! !

j
n ww

i p j

w i

n
Y Y p p

w n w







      
  

The probability of having at least i, but less the j success. When particular 

values of n, i, and j are specified, this probability  can be computed. Let this 

probability be   

i.e.  Pr i p jY Y       

then we say that the probability is   that the random interval  ,i jY Y includes 

the quantile of order p. if the experimental values of iY  and jY are respectively, 



iy  and jy , the interval  ,i jy y  serves as 100 %  confidence interval for 
p , the 

quantile of order p. 

Example: Find the smallest value of n for which  1 0.5Pr 0.99nY Y   , where 

1 2 ... nY Y Y   , are order statistics of random sample of size n from a distribution 

of continuous type and p  is a quantile of order p. 

Solution: Consider 

 1 0.5Pr 0.99nY Y    

   
1

1

0.5 1 0.5 0.99
n

w n wn

w

w

C






    

so that 

 
1

1

1/ 2 0.99
n

nn

w

w

C




          (1) 

Also, we know that 

   
0

1/ 2 1 1/ 2 1/ 2
n

n nn

w

w

C


                     
0

n
n n sn r

r

r

q p C p q




  
 

     
1

1

1/ 2 1/ 2 1/ 2 1
n

n n nn

w

w

C




  
 

This gives 

   
1

1

1/ 2 1 1/ 2
n

n nn

w

w

C




                (2)  

From (1) and (2) we get 

 1 2 1/ 2 0.99
n

   

 1 0.99 2 1/ 2
n

   



 2 1/ 2 0.01
n
                (3) 

(3) holds for n=8, 9, …, hence smallest n is 8. 

 

TOLERANCE INTERVAL 

Let 1 2, ,..., nX X X denotes a random sample of size n taken from a distribution 

having a positive and continuous p. d. f.  f x  if and only if a<x<b. let  F x be 

its distribution function. Consider the random variables   1F X ,  2F X , … 

 nF X . These random variables are mutually stochastically independent and 

each follows  0,1U . 

Let 1 2, ... nZ Z Z    be the order statistics of the random sample  1F X ,  2F X

,…,  nF X . If 1 2 ... nY Y Y    are the order statistics of the original sample 

1 2, ,..., nX X X  then 

     1 1 2 2, ,... n nZ F Y Z F Y Z F Y    

Let us consider the difference    j i j iZ Z F Y F Y           for 

every i<j 

Now    Prj jF Y X Y   

And    Pri iF Y X Y   

But    Pr Pr 0j iX Y X Y         (as distribution is continuous) 

Thus  Prj i i jZ Z Y X Y     



Let p be a positive fraction if  

   j iF Y F Y p   

Then at least 100p% of the probability for the distribution of X is between iy  

and jy  

Let     Pr j iF Y F Y p    
 

 

           Pr j iZ Z p      

           
1 1

,

0 i

p

ij i j j i

p z

h Z Z dZ dZ





    

where  ,ij i jh Z Z  is joint p. d. f. of iZ  and jZ . 

Then, the random interval  ,i jY Y  has probability   of containing at least 

100p% of the probability for the distribution of x is the tolerance interval of 

100p% of the probability distribution of x. If now iy  and jy  denote respectively, 

experimental values of iY  and jY , the interval  ,i jy y  either does or does not 

contain at least 100p% of the probability for the distribution of x and iy  and jy  

are known as the tolerance limits for 100p% of the probability distribution of x. 

Example: Let 1Y  and nY  be the smallest (i.e. the first and the thn  order statistics of 

a random sample of size n from the continuous distribution  F x . Find the 

smallest n such that     1 0.5nP F Y F Y     
is at least 0.95. 

Solution: Consider 

    1 0.5 0.95nP F Y F Y      



     11 0.5 0.95nP F Y F Y       

     1 0.5 0.5nP F Y F Y      

  10 0.5 0.5nP Z Z     

  
0.5

1

0

0.5nr d    

but       
 

 11
1       ;0 1

1

0                                                                  ;elsewhere

n j ij i

j i

n

h j i n j i
  



  



 
  

    



  

therefore,  
   

 
121

1
1 1 1

n nn

n i

n
h

n n n
  

 




 

   
 

             
 

 
12!

1
2 !

nn

n
  


 

                21 1nn n    
 

Thus,  

   
0.5

2

0

1 1 0.05nn n d    
 

   
0.5

2 1

0

1 0.05n nn n d     
 

 
0.5

1

0

1 0.05
1

n n

n n
n n

  
   

 
 

 
     

 

1
0.5 0.5 1

1 0.05
1

n n
n n

n n
n n

  
  

 
 

 



1
1 2 1

0.05
2 2

n
n n


    

   
   

 

 
1

1 0.05
2

n

n
 

  
 

 

The smallest n satisfying the above equation in n=8. 

2.4 COVERAGES 

Let 1 2, ,..., nX X X denotes a random sample of size n taken from a distribution 

having a positive and continuous p. d. f.  f x  if and only if a<x<b. let  F x be 

its distribution function. Consider the random variables   1F X ,  2F X , … 

 nF X . These random variables are mutually stochastically independent and 

each follows  0,1U . Thus  1F X ,  2F X , …  nF X  is a random sample of size 

n from U(0,1). 

Let 1 2, ... nZ Z Z    be the order statistics of the random sample  1F X ,  2F X

,…,  nF X . If 1 2 ... nY Y Y    are the order statistics of the original sample 

1 2, ,..., nX X X  then 

     1 1 2 2, ,... n nZ F Y Z F Y Z F Y    

Now, consider the random variables 

 1 1 1 1C W F Y Z    

   2 2 2 1 2 1C W F Y F Y Z Z      

   3 3 3 2 3 2C W F Y F Y Z Z     . 

  



   1 1n n n n n nC W F Y F Y Z Z       

Then random variable 1W  or 1C  is called the coverage of the random interval 

 1;x x Y   and the random variable iW  or iC , i=1, 2,..., n is called a coverage 

of random interval  1; i ix Y x Y    

Joint p. d. f. of 1 2, ,..., nW W W  or 1 2, ,..., nC C C  

We have 

1 1 1C W Z   

2 2 2 1C W Z Z    

3 3 3 2C W Z Z   . 

  

1n n n nC W Z Z     

For specific values 

1 1 1c w z   

2 2 2 1c w z z    

3 3 3 2c w z z   . 


 

1n n n nc w z z     

The inverse function of this associated transformation are given by 

1 2 ....i iz w w w     

1 2 .... ic c c            for every i=1, 2, …, n 



Now jacobian of transformation 

 

 
1 2

1 2

, ,...,

, ,...,

n

n

z z z
J

w w w





 

1 1 1

1 2

2 2 2

1 2

1 2

...

           

n

n

n n n

n

z z z

w w w

z z z

w w w

z z z

w w w

  

  

  

  

  

  



  

 

1  

Therefore, mod(J) = 1 

Now  

   1 2 1 2, ,..., , ,...,n nh w w w r c c c  

= (mod J){put 1 2, ,..., nz z z in terms of 1 2, ,..., nw w w  in the joint p. d. f. of 1 2, ,..., nZ Z Z } 

But  1 2, ,..., !nh z z z n  

Thus,  1 2, ,..., !nh w w w n         ;0 , 1,2,...,iw i n  ; 1 2 ... 1nw w w     

                               =0          ;elsewhere 

Example: Show that each of the coverages has the beta p. d. f.  

 
 

1
1 ;0 1

0 ;

n
n w w

k w
elsewhere

   
 


 

Solution: Since the joint p. d. f. of the coverages  1 2, ,..., nk w w w is symmetric in 

1 2, ,..., nw w w  axis given by 



 1 2

1 2

! ;0

1,2,...,
, ,...,

... 1

0 ;

i

n

n

n w

i n
k w w w

w w w

elsewhere





 

   


 

it is evident that the distribution of every sum r , r n  of these coverages 

1 2, ,..., nw w w  is exactly the same for fixed value of r . 

Consider if i j  and r j i  , the distribution of any sum of j - i coverages 

    1 2 ...j i j i i i jZ Z F Y F Y w w w         

   1 2 1 2... ...j iw w w w w w         

1 2 ...i i jw w w                 i jw w  

is exactly the same as that of  

 1 1 2 ...j j i j iz F Y w w w        

but we know the p. d. f. of  

 
     

    
 

   
 

 

1

1

!
1

1 ! !

1
1          ;0 1

          1

           0                                                   ;

n j ij i

j i

n j ij i

n
h v v v

j i n j i

n
v v v

j i n j i

elsewhere

  



  

 
   

 
  

    



 

Consequently,    j i j iZ Z F Y F Y    has above mentioned p. d. f.  Putting r=1  

such that j=2 and i=1, we have p. d. f. of 1w  given by 

   

 

1

1 1

1

1

1
1

1

          = 1

n

n

n
k w w

n

n w






 



                                            10 1w   



But similarly if j=3 and i=2 

 
 

 

 

1

2 2

1

2

!
1

1! 1 !

          1

n

n

n
k w w

n

n w





 


 

                 20 1w                   

Therefore in general, we can say that each of the coverages has the beta p. d. f.  

 
 

1
1 ;0 1

0 ;

n
n w w

k w
elsewhere

   
 


 

Example: Let ic denote the thi  coverage, find expectation of ic . 

Solution: Since each of the coverage ic , i=1,2,…,n has the beta p. d. f. 

 
 

1
1  ;0 1

0 ;

n
n c c

k c
elsewhere

   
 


 

and  1 1 1c Z F Y  follows  0,1U . The expectation of each ic  is given by 

   
1

1

0

1
n

iE c nc c dc


   

           
1

1

0

1
n

n c c dc


   

          
     
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0
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1 1
n n
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n dc

n n

       
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1
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 
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 
  

 

              
1

1n



 

 



 

  



 

 

 

PGSTAT-11 / MASTAT-11 (Old) 

PGSTAT—15 / MASTAT- 15 (New) 

 

 

NON-PARAMETRICS 

 

 

 

BLOCK 2- NON- PARAMETRIC TESTS  

 

 

 

 

 

 

 

 

 

 

 



PGSTAT-11 / MASTAT-11 (Old) 

PGSTAT—15 / MASTAT- 15 (New) 

NON-PARAMETRICS 

Block 2- Non- Parametric Tests 

Unit 3: One- sample and Two Sample Location Non- Parametric Tests 

Structure 

3.1 Introduction of Non- Parametric Methods 

3.2 Objectives 

3.3  Advantages and Dis-advantages of Non- Parametric Methods  

3.4 Sign Test 

 3.4.1  Hypothesis and Assumptions 

 3.4.2  Test Procedure 

 3.4.3  Example 

 3.4.4  Merits and Demerits 

3.5 Wilcoxon Test 

 3.5.1  Hypothesis and Assumptions 

 3.5.2  Test Procedure 

 3.5.3  Example 

 3.5.4  Merits and Demerits 

3.6 Median Test 

 3.6.1  Hypothesis and Assumptions 

 3.6.2  Test Procedure 

 3.6.3  Example 



 3.6.4  Merits and Demerits of Median test  

Unit 4: Other non- parametric tests   

Structure 

4.1 Introduction 

4.2 Objectives 

4.3  One sample and two sample location test  

4.4 Mann- Whitney U- Test  

 4.4.1  Hypothesis and Assumptions 

 4.4.2  Test Procedure 

 4.4.3  Example 

 4.4.4  Merits and Demerits 

 4.4.5  Application of U-statistic to rank tests 

4.5 One sample Kolmogorov-Smirnov (K-S) Test 

 4.5.1  Hypothesis and Assumptions 

 4.5.2  Test Procedure 

 4.5.3  Example 

 4.5.4  Merits and Demerits of K-S Test 

4.6 Two sample Kolmogorov-Smirnov Test 

 4.6.1  Hypothesis and Assumptions 

 4.6.2  Test Procedure 

 4.6.3  Example 

 4.6.4  Merits and Demerits  

4.7 Run test 



4.7.1  Hypothesis and Assumptions 

 4.7.2  Test Procedure 

 4.7.3  Example 

 4.7.4  Merits and Demerits 

4.8 Pitman ARE. 

4.9  Contingency Table 

 4.9.1    THE 2 2 CONTINGENCY TABLE 

4.9.2      The chi-squared test for differences in probabilities, 2 2     

4.9.3     Fisher‟s Exact Test 

3.1 Introduction of Non- Parametric Methods 

The parametric inferential methods are based on stringent assumptions about 

the probability distribution of the parent population like the form of probability 

distribution is apriori available, availability of observations either on ratio scale 

or atleast on interval scale etc. However, these assumptions may not be 

satisfied in many practical situations. For instance, the measurement on the 

units under study is often made on nominal or ordinal scale owing to practical 

difficulties. Usually, we do not know the distribution characterizing the 

phenomena of the experiment. However, we can often choose a sufficiently 

large class of distributions   F x  invariably indexed by an unknown 

parameter  . The range of   is   which is called the parameter space. The 

statistician has to decide upon the particular probability distribution which 

explains most the phenomena of the experiment. That is, the statistician has to 

make a decision about the value of the parameter, by means of the observable 



random variable X. However, in many situations the outcome X is a 

complicated set of numbers. If at all feasible, he would like to condense his 

data and come out with a magic number which contains all the relevant 

information about the parameter  . In such situations where the stringent 

assumptions of the parametric inferential methods are not satisfied, we resort 

to non-parametric methods. The non-parametric methods rely on relatively 

mild assumptions about the probability distribution of the parent population.  

The statistical methods which are not concerned with estimation of testing for 

parameter(s) of probability distribution functions are known as NON-

PARAMETRIC METHODS. Nonparametric statistical procedures are widely 

used due to their simplicity, applicability under fairly general assumptions and 

robustness to outliers in the data. Hence they are popular statistical tools in 

industry, government and various other disciplines. Also, there an extensive 

amount of literature is available on nonparametric statistics ranging from 

theory to applications.  

The term non-parametric is sometimes synonymously used with distribution 

free methods as if both have the same meaning. There is a slight difference 

between the two methods. The statistical inferential procedures whose validity 

does not depend on the form of probability distribution of the population from 

which the sample has been drawn are known as DISTRIBUTION FREE 

METHODS. The distribution free procedures are primarily devised for non-

parametric problems; hence the two terms are used interchangeably. Also, the 

non-parametric methods are devised for no parameter problems.  



Non-parametric Inferences 

The classical statistical inference techniques are based on the assumptions 

regarding the nature of the population distribution from which the samples are 

drawn. i.e. form of the population distribution and the  parameters of the 

population distribution. The exact sample tests are based on the assumption 

that the parent population is normal. Most of the standard statistical 

techniques are based on the assumptions of normality, independence and 

homoscedasticity. 

Remark 

The statistical methods which remain valid under violation of assumptions of 

normality, independence & homoscedasticity are called „robust‟. 

Parametric Test 

The parametric tests are those tests in which certain conditions are imposed 

about the parameters of the population from which the samples are drawn. 

Ex- t-test, F-test.  

General assumption of parametric tests 

The parent population from which the samples are drawn is assumed to be 

normal. 

The form of the basic distribution is always known. 

Non-parametric Test 

The non-parametric test are those tests in which no assumption, regarding the 

test of the population from which the samples are drawn is made. 



The non-parametric tests are the tests for a hypothesis which is not a 

statement about the parameter values. Here, the hypothesis is concerned with 

either form of the population (e.g- goodness of fit) or with some characteristic of 

the probability distribution of the sample data (e.g- test of randomness). 

General assumption of non-parametric tests 

1. The parent population is continuous. 

2. The sample observations are independent. 

3. The distribution of the parent population is symmetrical. 

4. The lower order moments exist. 

3.2 Objectives of this Unit 

The objective of this unit is to understand the basic concepts of non-parametric 

methods and to apply these methods in practice. 

3.3  Advantages and Dis-advantages of Non- Parametric Methods  

Advantages of Non-parametric tests 

1. Non-parametric tests are quick and easy to apply and do not require 

complicated sample theory. 

2. No assumption is required about the form of the distribution of the parent 

population from which the samples are drawn. 

3. Non-parametric tests can be used even in the situations where actual 

measurements are unavailable and the data are obtained only as ranks. i.e. 

if measurements scale is nominal or ordinal, non-parametric methods can 

be used. 



4. The probability statements obtained from most of the non-parametric tests 

are exact probabilities. 

5. Non-parametric tests are used in the situation where sample data are 

taken from several different populations. 

6. With non-accurate and dirty data (e.g: contaminated observations, outliers  

etc.), many non-parametric methods are appropriate. 

7. Non-parametric tests requires no. of minimum sample size for valid and 

reliable results. 

8. Non-parametric tests requires minimal calculation. 

Disadvantages of Non-parametric tests 

1. If all the assumptions of a statistical model are satisfied by the data and if 

the observations are of required strength, then non-parametric tests are 

wasteful of time and data. 

2. Non-parametric tests are designed to test the statistical hypothesis only 

and not for estimating the parameters. 

3. Power efficiency on non-parametric tests are always less than parametric 

tests. 

4. No non-parametric test exists for testing interactions in the analysis of 

variance model unless specific assumptions about the additivity of the 

model are made. 

5. It is not possible to determine the actual power of non-parametric test due 

to want of actual situation or actual probability distribution. 

 



NON-PARAMETRIC TEST FOR LOCATION  

The following are the non-parametric test for location parameter of a 

population or the non-parametric tests for the location parameters of two 

populations. 

In non-parametric theory, the most frequently used measure of location is 

“population median” M or 
0.5K , which is the unique real solution of the 

equation. 

 
1

2
F M   or  0.5

1

2
F K   

3.4 Sign Test 

The sign test is a non-parametric test for the location parameter median M of a 

population. 

3.4.1 Hypothesis and Assumptions 

In this test, we make the assumption of independence and homoscedasticity 

but the assumption of normality for the parent population is not required. 

We wish to test the null hypothesis 

0 0: (a given value)H M M  

against 

(i) a one sided alternative 

1 0: (left tailed test)H M M  

1 0: (right tailed test)H M M  

(ii) a two sided alternative 

1 0:H M M  



1.4.2 Test Procedure 

Let 
(1) ( ), , nX X  be the order statistics corresponding to a random sample 

1, ... nX X  of size n  drawn from the population having distribution function F  

with unknown median M , where F is assumed to be continuous in the 

neighborhood of M  so that ( ) 0P X M  . 

By definition of median, we have 

1
( ) ( )

2
P X M P X M     

If the sample data are consistent with the hypothetical value of median 
0M , 

then on the average half of the sample observations will be greater than 
0M . 

We replace each observation greater than 
0M  by a plus sign (+) and each 

observation smaller than 
0M  by a minus sign (-). Further, we count the 

numbers of plus signs and the minus signs and denoted it by r  and s  

respectively, with r s n  . The number of plus signs ( r ) may be used to test 

0H . 

When the population is dichotomized, the sampling distribution of r  given 

 r s  is binomial with parameter 0

1
( )

2
p P X M   . Thus the testing of 

0H  

becomes an equivalent testing for the hypothesis that the binomial parameter 

p  has the value 
1

2
.i.e. 0

1
:

2
H p   

The critical region for  



0 0 0

1
: or :

2
H M M H p   

against  1 0 1

1
: or :

2
H M M H p   

for   level of significance is given by 

2 2

andr r r r   . 

where 
2

r  is the smallest integer such that 

2

.
2

r s
r s r s

k

k r

C p



 


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i.e. 
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1
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k
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C









 
 

 
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and 
'

2

r  is the largest integer such that 

'

2

0

.
2

r

r s r s

k

k

C p



 



  

i.e. 

'

2
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1
.

2 2
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k
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








 
 

 
  

For testing 0 0 0

1
: or :

2
H M M H p   

against 1 0 1

1
: or :

2
H M M H p   

the critical region for   level of significance is given by 

r r  



where r  is the smallest integer such that 

.
r s

r s r s
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


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In this alternative hypothesis the sample will have excess of plus signs. 

For testing 0 0 0

1
: or :

2
H M M H p   

against 1 0 1

1
: or :

2
H M M H p   

the critical region for   level of significance is given by 

'r r  

where 
'r  is the largest integer such that 

'

0

.
r
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In this alternative hypothesis the sample will have less plus signs. 

 

Large sample test 

If   25r s  , then we use the normal approximation to the binomial to 

perform the test. 



In this case, under 
0H  

 

 
(0,1)

r E r
Z N

V r


   

since  
 

2

r s
E r


  and  

 
4

r s
V r


  

Hence, under 
0H  

( )

2
(0,1)

( ) ( )

4

r s
r

r s
Z N

r s r s

 
      

 
 

3.4.3 Example 

Example1. Test the null hypothesis that the median length   of ear-head of a 

variety of wheat is 
0 9.9   cm. against the alternative that 

0 9.9   cm., with 

0.05  , on the basis of the following 25 ear-head measurements: 

9.5 8.9 10.5 11.5 8.5 9.4 10.6 8.8 11.7 10.5 

11.2 9.2 9.8 9.5 9.9 10.9 10.2 9.1 10.8 9.4 

11.6 8.7 8.3 11.3 8.1      

 

Solution: First, we determine the signs of all measurement and replace each 

measurement greater than 
0  by   sign and each measurement less than 

0  

by   sign. Measurement which is equal to 
0  is ignored. 

 



9.5

( )  

8.9

( )  

10.5

( )  

11.5

( )  

8.5  

( )  

9.4

( )  

10.6

( )  

8.8

( )  

11.7

( )  

10.5

( )  

11.2

( )  

9.2

( )  

9.8

( )  

9.5

( )  

9.9 

ignored 

10.9

( )  

10.2

( )  

9.1

( )  

10.8

( )  

9.4

( )  

11.6

( )  

8.7

( )  

8.3

( )  

11.3

( )  

8.1  

( )  

 

From the above table, we observe that no. of plus signs 11r   and the no. of 

minus signs 13s   and one observation is ignored. 

So we have to test whether 11r   support the hypothesis 
0 0: 9.9H   , or 

equivalently to judge how likely are  11 successes (the number of plus signs) to 

occur in 24 trials from a binomial distribution with 0.5p  . The critical region 

for the level   two-sided test is given by 

/2r r  and 
'

/2r r , 

where 
/2r  is the smallest and 

'

/2r  is the largest integer such that 
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

 
 

 
  

From binomial tables, we find that 
0.025 18r   and 

'

0.025 6r   for 24n   and 

0.5p  . Thus, for 11r   null hypothesis is to be accepted. 

Note: The critical region for one-sided test alternative 



2424
24 1

0.05
2

x

r

C


 
 

 
  

since under the alternative hypothesis the sample will have an excess of plus 

signs. In the case of the other one-sided alternative, viz. 

: 9.9H   cm. or : 0.5H p   

The critical region for the level   will be 
'r r , where 

'r  is the largest integer 

such that 

24

24

0

1

2

r

xC



 

 
 

  

 

 

Example. The weights of 12 persons before they are subjected to a change of 

diet and after a lapse of six months are recorded below: 

S. No.         Weight (in kg.) 

 Before    After 

1 57 62 

2 48 55 

3 55 62 

4 45 53 

5 62 59 

6 42 45 

7 49 45 



8 60 55 

9 65 64 

10 51 55 

11 46 50 

12 58 66 

 

Test whether there has been any significant gain in weight as a result of the 

change of diet. 

Solution: Let y  and x  be the weight of a person before and after the change of 

diet, then the hypothesis to be tested is 
0 : 0H    and the alternative is 

: 0H   , where   is the median of the distribution of differences 
id . The gain 

in weight  id  for 12 persons are: 

5, 7, 7, 8, 3, 3, 4, 5, 1, 4, 6, 8             

Here, the no. of plus signs 7  and the no. of minus signs 5 . Under the null 

hypothesis, the expected number of plus signs among the differences in a 

sample of 12 pairs is 6. The sampling distribution of the number of plus signs 

is the binomial distribution with probability of plus signs 0.5. From table, we 

find that the probability of 7 or more plus signs is 0.387. So the null 

hypothesis is accepted at the 5% level. 

3.4.4 Merits and Demerits 

Merits 

It is very simple to calculate. 



It requires minimum effort for calculation. 

Demerits: 

The disadvantage of the sign test is that, although it takes account of signs of 

the deviations, it makes no allowance for their magnitudes. 

 

3.5 Wilcoxon Test 

One sample Wilcoxon signed-rank test 

It is a non-parametric test for the location parameter (median) of a population.  

3.5.1 Hypothesis and Assumptions 

In this test, we make the assumption of independence and homoscedasticity 

but do not assume normality for the parent population. Also, if we assume that 

the parent population is continuous and symmetric, the Wilcoxon signed rank 

test is more efficient than the sign test for testing median of the population, 

since it takes into account both the magnitudes and signs of the deviations. 

We wish to test the null hypothesis 

0 0: (a given value)H M M  

against 

a: one sided alternative 

1 0: (left tailed test)H M M  

1 0: (right tailed test)H M M  

or b: two sided alternative 

1 0:H M M  



3.5.2 Test Procedure 

Let 
1 2, ,....., nx x x  be a random sample of size n  drawn from a population which 

is continuous and symmetric about median M. Then, under 
0H , the differences 

0, 1,2,....,i iD X M i n     are symmetrically distributed about zero, so that 

the positive and negative differences of the equal absolute value have the same 

probability of occurrence. Thus, 

   i iP D C P D C     

or    1i iP D C P D C     

Suppose we order these absolute differences 1 2, ,......, nD D D  from smallest to 

largest and assign them ranks 1,2,....,i n . Let T 
 be the sum of ranks of the 

positive 
iD  and T 

 be the sum of the ranks of the negative 
iD . 

If 
0H  is true (i.e. 

0M  is the true median of the symmetrical population), then 

expectation of T 
 equals the expectation of T 

. Since the sum of all the ranks 

is a constant given by 

 

1

1

2

n

i

n n
T T i 




    

The tests based on T 
, T 

 and T 
,T 

will be equivalent (since they are linearly 

related). In practice, the minimum of T 
 and T 

 is used as the test statistic. 

Let us define a new random variable: 

 

th

i i

th

i i

1 if D >0fori smallest D

0 if D <0fori smallest D
i

D


 


 



 i
D

 
are independent Bernoulli random variables but are not identically 

distribute such that 

  ii
E D p  
 

 

   1i ii
V D p p   
 

 

and 
   

cov , 0,
i j

D D i j   
 

 

We can write 

 
1

n

i
i

T iD



  and 
 

1

1
n

i
i

T i D



  
   

Thus 
 

1 1

n n

ii
i i

E T iE D ip

 

          

and 
   2 2

1 1

1
n n

i ii
i i

V T i V D i p p

 

           

under 
0H , i.e. when 

1

2
ip   

 

1 1

11 1

2 2 4

n n

i i

n n
E T i i

 

 
      

 
   

and 
  2 2

1 1

1 2 11 1 1
1

2 2 4 24

n n

i i

n n n
V T i i

 

   
        

  
   

Similarly for T 
, 

Let min ,T T T      and T  be such that  P T T   . 



Then the critical regions for   level of significance for testing 
0 0:H M M

against different types of alternative are given as 

Alternative Hypothesis Critical Region 

1 0:H M M  T T
   

1 0:H M M  T T
   

1 0:H M M  
2 2

orT T T T 

    

 

If 25n  , then distribution of T  is taken to be approximation normal i.e. under 

0H  we have 

 

 
 0,1

T E T
Z N

V T


   

where min ,T T T      
and  

 
 1

4

n n
E T


  

 
  1 2 1

24

n n n
V T

 
  

Also, the sample size n  is adjusted to include only non-zero differences. 

3.5.3 Example. Test the null hypothesis that the median length   of ear-head 

of a variety of wheat is 
0 9.9   cm. against the alternative that 

0 9.9   cm., 

with 0.05  , on the basis of the following 25 ear-head measurements: 

9.5 8.9 10.5 11.5 8.5 9.4 10.6 8.8 11.7 10.5 



11.2 9.2 9.8 9.5 9.9 10.9 10.2 9.1 10.8 9.4 

11.6 8.7 8.3 11.3 8.1      

 

 

Solution: First, we determine 

S.no.   
ix  

0i id x    Rank of id  

1 9.5 -0.4 3.5 

2 8.9 -1 13.5 

3 10.5 0.6 7.5 

4 11.5 1.6 20.5 

5 8.5 -1.4 18.5 

6 9.4 -0.5 5.5 

7 10.6 0.7 9.5 

8 8.8 -1.1 15 

9 11.7 1.8 23.5 

10 10.5 0.6 7.5 

11 11.2 1.3 17 

12 9.2 -0.7 9.5 

13 9.8 -0.1 1 

14 9.5 -0.4 3.5 

15 9.9 0  

16 10.9 1 13.5 



17 10.2 0.3 2 

18 9.1 -0.8 11 

19 10.8 0.9 12 

20 9.4 -0.5 5.5 

21 11.6 1.7 22 

22 8.7 -1.2 16 

23 8.3 -1.6 20.5 

24 11.3 1.4 18.5 

25 8.1 -1.8 23.5 

 

Here 153.5T   , 146.5T   , so that 150T  From table, for 24n   and 0.05 

, we have 81T  . Since T 
 and T 

are both greater than T , there is not 

sufficient evidence to reject 
0H . 

In the case of the one-sided alternative : 9.9H   cm. ( : 9.9H   cm.), we shall 

compare 153.5T     146.5T   with the critical value 81T  , at 0.025  , 

and arrive at same conclusion that there is no ground for rejecting 
0H  (in 

favour if the appropriate on-sided alternative) since T T . 

Example4. The weights of 12 persons before they are subjected to a change of 

diet and after a lapse of six months are recorded below: 

S.no.         Weight (in kg.) 

 Before    After 



1 57 62 

2 48 55 

3 55 62 

4 45 53 

5 62 59 

6 42 45 

7 49 45 

8 60 55 

9 65 64 

10 51 55 

11 46 50 

12 58 66 

 

Test whether there has been any significant gain in weight as a result of the 

change of diet. 

Solution: Let y  and x  be the weight of a person before and after the change of 

diet, then the hypothesis to be tested is 
0 : 0H    and the alternative is 

: 0H   , where   is the median of the distribution of differences 
id . The gain 

in weight  id  and the absolute rank for 12 persons are: 

S.no.         Weight (in kg.)  
0i i id x y     Rank of id  

 
iy    

ix  



1 57 62 +5 6.5 

2 48 55 +7 9.5 

3 55 62 +7 9.5 

4 45 53 +8 11.5 

5 62 59 -3 2.5 

6 42 45 +3 2.5 

7 49 45 -4 4.5 

8 60 55 -5 6.5 

9 65 64 -1 1 

10 51 55 +4 4.5 

11 46 50 +6 8 

12 58 66 -8 11.5 

 

Here, 52T    and 26T   ; here T 
 will be used. From table, we have, for 

12n   and 0.01  (one-sided), 10T  . Since T T
  , therefore we conclude 

that there is no sufficient evidence to reject the null hypothesis that there is no 

effect of diet in favour of the alternative hypothesis at the 1% level. 

3.5.4  Merits and Demerits 

The Wilcoxon Signed rank test takes into account the magnitude of the 

deviations. 



As one of the assumption made here is that intendance of observations 

continuity everywhere and symmetry which is not practically possible all the 

time.    

Comparision of Sign test and Wilcoxon signed rank test 

1. In sign test, the assumptions required are independence of observations and 

the population is continuous at media. In Wilcoxon signed rank test, the 

assumptions required are the population is continuous everywhere and it is 

symmetric about median. 

2. In sign test, we consider only the directions of the deviations while in 

Wilcoxon signed rank test, we consider directions of the deviations as well 

as the magnitudes of the directions. Thus Wilcoxon signed rank test is more 

efficient than the sign test.  

3. Both the tests are useful generally for the same type of problem. But only 

Wilcoxon signed test is suitable for a test of symmetry as well. 

3.6 Median Test 

If N m n   is even then 

Median   any number between 
2

N
th and 

2

2

N  
 
 

th order statistic 

Let U  be the number of X sample observations that are less than the sample 

median for the combined sample. 

The test based on U , the number of observations from X sample median 

which are less than the combined sample median, is called the sample median. 

Then 



1
, f Nisodd

2

, f Niseven
2

N
i

t
N

i




 



 

The probability distribution of U  for fixed t  is 

  ; 0,1,2,........,
m n

u t u

m n

t

C C
f u u t

C




   

where 
2

N
t  . 

If 
0H  is true, then    ;P X M P X M M     and here M  is combined 

sample median. i.e. the two populations have a common median which is 

estimated by M . 

3.6.1  Hypothesis and Assumptions  

The general location alternative is  

   : ; for some & 0L X YH F x F x x     

if U  is too large, then  

   : ; if 0 andL X YH F x F x x    

i.e.    : ; if 0 and for someL X YH F x F x x   

i.e. the median of the X  population is smaller than the median of Y  

population. 

If U  is too small, then  

   : ; if 0 andL X YH F x F x x    



i.e.    : ; if 0 and for someL X YH F x F x x   

i.e. the median of the X  population is greater than the median of Y  

population. 

The critical region for   level of significance is given as 

Alternative Hypothesis Critical Region 

0   or 
X YM M  'u c  

0   or 
X YM M  u c  

0   or 
X YM M  '

2 2

oru c u c    

 

  3.6.2  Test Procedure 

1. Consider the observations in the order in which they are obtained. 

2. Determine the median of those observations i.e. determine the sample 

median M. 

3. For each observation note that whether it is above or below the sample 

median. Denote the observation below the sample median M by B or (-) 

sign and observations above the sample median M by A or (+) sign . The 

zero values will be ignored. 

4. Denote the number of minus signs or the numbers by B‟s by n1 and 

the number of plus signs or the number of A‟s by n2 . 

5. Count the number of runs and denote this number by R. 

6. Reject the null hypothesis H0 the sample is random if  

1R R  or uR R . 



where 1R  and uR are critical of R to be determined from the distribution 

of R n1 and n2. The critical values of R required for significance have 

been have been tabulated.  

 3.6.3  Example  

Suppose in a random sample of size 30, there 12 runs above and below the 

sample median where n1=number of minus (-) sings=10 

n2= number of minus (+) sings= 20 

Test the hypothesis the sample is random. 

Solution  

R= Number of runs above and below the sample median =12 

n1=number of minus (-) sings=10 

n2= number of minus (+) sings= 20 

from table the lower critical value of R, R1=9 

the upper critical values of R, Ru=20 

since  9 20R    

the hypothesis of randomness is accepted at 5% level of signifance. i.e. sample is 

random. 

 3.6.4  Merits and Demerits of Median test 

Median test when the sample observations are divided into two types on the 

basis of deviations from sample median.   

  



 

UNIT 4: OTHER NON- PARAMETRIC TESTS 

ONE SAMPLE AND TWO SAMPLE LOCATION TEST 

4.4 Mann-Whitney U Test 

4.4.1  Introduction and Assumptions 

Mann Whitney U  test is a non-parametric test for testing that the two 

populations differ in their location. It is useful to the t -test, if the assumption 

of t -test are violated, we use Mann Whitney U  test. We assume that the two 

samples are drawn from continuous populations. 

Let we have two populations X  and Y  with cumulative distribution functions 

XF  and 
YF  respectively. A random sample of size m  is drawn from the X  

population and another random sample of size n  is drawn from the Y  

population, denoted as 

1 2, ,.... mX X X  and 
1 2, ,.... nY Y Y  

These N m n   observations drawn from two populations are arranged in 

order of magnitude from smallest to largest. 

Like run test, this test is based on the idea that the particular pattern is 

exhibited when m  observations of X  random variable and n  observations of 

Y random variables are arranged together in increasing order of magnitude.  

The test criterion is based on the positions of Y ‟s in the combined ordered 

sequence. A sample pattern where most of the Y ‟s are greater than the most of 



the X ‟s or vice-versa can be used as statistical criteria for rejection of null 

hypothesis of identical distribution. 

Since, in this case, we see that there is no random missing in the sample 

observation. The Mann Whitney U  statistic is defined as the number of times 

Y  proceeds X  in the combined ordered arrangement of two independent 

random samples. 

4.4.2 Test Procedure 

If mn  random variable are defined as 

1 ; 1,2,.....,

0 ; 1,2,.....,

j i

ij

j i

if Y X i m
D

if Y X j n

  
 

  

 

Thus Mann-Whitney U  statistic is defined as 

1 1

m n

ij

i j

U D
 

  

We wish to test the null hypothesis 

   0 : ;X YH F x F x x   

i.e. two samples are drawn from the identical populations. 

The general location alternative is  

   : ; for some & 0L X YH F x F x x     

If U  is too large, then 

   ; and if 0X YF x F x x     

i.e.    ; for some if 0X YF x F x x    

If U  is too large, then 



   ; and if 0X YF x F x x     

i.e.    ;for some if 0X YF x F x x    

We define, 

   1ijP D P Y X      

    ,P X Y X      

      
x

f y f x dydx



 

    

   YF x f x dx




   

Under
0H , i.e.    0 : X YH F x F x  

Then  

   XF x f x dx




   

For solving above integration, let  XF x v  and differentiate this equation w.r.t 

x , we get  f x dv . Also, the limits changes as   0x F v      and 

  1x F v     

Therefore, integral reduces to 

1

0

v dv  
1

2

0

1

2 2

v 
  
 

 

Hence    0 : X YH F x F x or 0

1
:

2
H    



Also    : ;L Y XH F x F x x   

Is equivalent to 
1

: ;
2

LH x    

i.e.    : ; for someL Y XH F x F x x  

is equivalent to 
1

: ; for some
2

LH x   

and    : ;L Y XH F x F x x   

is equivalent to 
1

: ;
2

LH x    

i.e.    : ; for someL Y XH F x F x x  

is equivalent to 
1

: ; for some
2

LH x   

The mn  random variables 
ijD  are Bernoulli variables, with parameter  . i.e. 

2

ij ijE D E D          

 1ijV D        

We define the parameters 
1  and 

2 as, 

     
2

1 j i k i YP Y X Y X F x f x dx




        

and  

     
2

2 1i j h j YP X Y X X F x f y dy




        



Since 
1 1

m n

ij

i j

U D
 

  

Therefore mean and variance of U  are defined as 

 
1 1

m n

ij

i j

E U E D
 

   
1 1

m n

i j


 

  

 E U mn  

and  

 
1 1

m n

ij

i j

V U V D
 

 
  

 
  

               2 2

1 21 1 1mn mn n mn m              

             2 2 2

1 21 1mn n m             
 

 

             2

1 21 1 1mn m n n m               

       2

1 21 1 1V U mn N n m              

as ,m n  

 /E U mn   and  / 0V U mn   

Hence /U mn  is a consistent estimator of  . 

If we define the another random variable  

 '

1 1

1
m n

ij

i j

U D
 

   

The critical region for   level of significance is given as 



Alternative hypothesis Critical region 

   
1

or
2

Y XF x F x    
U C  

   
1

or
2

Y XF x F x    
'U C  

   
1

or
2

Y XF x F x    
2 2

or 'U C U C    

 

Under
0H , i.e.    0 : X YH F x F x  

Then 
1

2
   

and 
1 2

1

3
    

Thus  
2

mn
E U   

   
   1 11 1

1
2 4 3 3

n m
V U mn N

  
     

 
  

   
1 1

12 4 3

N
V U mn n m

 
    

 
 

         
1

12 4 3

N N
mn

 
   

 
 

 
 1

12

mn N
V U


  

If N  is large, then under 
0H  



 

   
 2 0,1

1

12

mn
UU E U

Z N
mn NV U


  


 

  

4.4.3 Example. The following are the marks secured by two batches of 

salesmen in the final test taken after completion of training. Use the U -test 

with 0.02   for the null hypothesis that the samples are drawn from 

identical distributions against the alternative that the distributions differ in 

location only. 

Batch A: 28, 25, 27, 29, 25, 19, 23, 26, 30, 22, 21, 28 

Batch B: 20, 24, 25, 26, 18, 28, 23 

Solution: Here 
1 7n  , 

2 12n   and 
1 2 12N n n    

51U  , 
' 26U    

where U  is the number of times 
ix  precedes 

jy  among all  ,i jx y pairs and 
'U  

is the number of times 
jy  precedes 

ix  among all  ,i jx y pairs assuming no 

x y ties. From table, we find that for two-tail test 
1 7n   and 

2 12n 
 
at the 

level 0.02, the critical value is 14. Since 20(the smaller of U and 
'U ) is greater 

than 14, so we have no reason to believe that the samples are not drawn from 

identical distribution. 

 

4.4.4 Merits and Demerits 



It is a good substitute for t-test when the conditions imposed on parent   

populations are not met . 

4.4.5 Application of U-statistic to rank tests 

TEST OF GOODNESS OF FIT 

This type of test are designed for a null hypothesis which is a statement about 

the form of the cumulative distribution function or probability function of the 

parent population from which the sample is drawn. 

Let a random sample of size n is drawn from a population with unknown 

cumulative distribution function say F. We want to test the null hypothesis 

   0 0: ;H F x F x x   

against the alternative hypothesis 

   1 0: ; for someH F x F x x  

If 
0F  is specified with all its parameters, then 

0H  is a simple hypothesis. If 
0F  

is not completely specified, then 
0H  is a composite hypothesis and the 

unknown parameters are to be estimated from the sample data in order to 

perform any test. The alternative hypothesis in both the cases will be 

composite therefore rejection of 
0H  does not provide any result. 

 

 

 

 

4.5 One sample Kolmogorov-Smirnov (K-S) Test 



Goodness of fit tests are used when only the form of the population is in 

question, with the hope that the null hypothesis will be found accepted. The 

two types of goodness of fit tests are: 

1. Chi Square goodness of fit test 

2. Kolmogrov Siminirov test 

Chi Square goodness of fit test 

4.5.1  Hypothesis and Assumptions 

If a random sample of size n is drawn from a population with unknown 

cumulative distribution function F. 

We wish to test the null hypothesis 

   0 0: ;H F x F x x   

against the alternative hypothesis 

   1 0: ; for someH F x F x x  

In order to apply the chi-square test in continuous distribution, the sample 

data must be grouped according to some scheme in order to form a frequency 

distribution. 

Assuming that the population distribution 
0F  is completely specified by the 

null hypothesis
0H , we can obtain the probability 

ip  that a random 

observation will be classified in the 
thi  category ( 1,2,...., )i k . 

These probabilities multiplied by n, the sample size, give the expected 

frequencies under
0H . i.e. 

i iE np , ( 1,2,...., )i k  



Let the n  observations have been grouped into k  mutually exclusive 

categories, 
iO  and 

iE  are the observed and expected frequencies respectively, 

for the 
thi  group ( 1,2,...., )i k . 

We use the test statistic 

                                              
 

2

2

1

k
i i

i i

O E

E





                                           (1) 

with 
1 1

k k

i i

i i

O E
 

   

The exact sampling distribution of this test statistic is complicated. But for 

large samples, it has 
2  distribution with ( 1)k   degree of freedom. This 

approximation is good for every 5iE  . 

For 5iE  , we combine the adjacent categories till the expected frequency in 

the combined category is at least 5. 

If  

2 2

,( 1)kcal tab     

then 
0H  is rejected at   level of significance. 

If 
0F  is completely specified, then 

0H  is a composite hypothesis and the 

unknown parameters are to be estimated from the sample data in order to 

perform the test. 



In this case, the test statistic described by (1) has 
2  distribution with 

( 1)k r   degree of freedom, where r  is the number of independent 

parameters of 
0F  estimated from the sample data. 

Thus  mmS x  is the number of X sample observations that are less than or 

equal to x . And  nnT x  is the number of Y sample observations that are less 

than or equal to x . 

For large m and n , the deviations between two empirical distribution 

functions,    m nS x T x  should be small for all values of x . 

Thus the test statistic 

   , maxm n m n
x

D S x T x   

is called Kolmogrov-Smirnov two sample test statistic. 

The probability distribution of 
,m nD  does not depend upon 

XF  and 
YF  as long 

as 
XF  and 

YF  are continuous. 

Therefore, 
,m nD  may be called a distribution free statistic. 

The directional deviations are defined as 

   , maxm n m n
x

D S x T x    

   , maxm n n m
x

D T x S x    

,m nD
 and ,m nD

 are called one-sided kolmogrov-smirnov statistic. These are also 

distribution free. 



We wish to test the null hypothesis 

   0 : ;X YH F x F x x   

i.e. under 
0H , the population distributions are identical and we have two 

samples from the sample population. 

against 

(i) One sided alternative 

   1 : ; (right tailed test)X YH F x F x x   

The appropriate test statistic is  

   , maxm n m n
x

D S x T x    

or 

   1 : ; (left tailed test)X YH F x F x x   

The appropriate test statistic is  

   , maxm n n m
x

D T x S x    

  

 

 

 

 

 

 



Comparison of Chi-square test with Kolmogrov-Siminirov test for 

goodness of fit  

1. Both types of tests are distribution free because the sampling distribution 

of the test statistic does not depend on the cumulative distribution 

function. 

2. The chi-square tests are specially designed for use with categorical data, 

while K-S tests are for random samples from the continuous populations. 

3. The chi-square test is sensitive to vertical deviations between the observed 

and expected histograms, whereas the K-S test is based on vertical 

deviations between the observed and expected cumulative distribution 

functions. 

4. K-S test can be applied for any sample size, while chi-square test can be 

applied for large sample size when each expected cell frequency is not too 

small. 

5. The advantage of K-S test is that the exact sampling distribution of K-S test 

statistic is known and tabulated, whereas the sampling distribution of chi-

square test statistic is approximately chi-square for finite sample size. 

6. When 
0H  is composite, the chi-square test is easily modified by reducing 

the number of degrees of freedom (as some parameters are estimated) while 

K-S test can‟t be modified in the situation. 

7. The K-S test is more powerful and more flexible than the chi-square test. 

8. The chi-square test also comes in the category of parametric tests whereas K-S 

test is only a non-parametric. 



9. In K-S test, we can use one side test also which is not possible chi-square test. 

4.6 Two sample Kolmogorov-Smirnov Test 

 4.6.1  Hypothesis and Assumptions 

Suppose a random variable is continuously distributed in each of two 

populations, the distribution functions being denoted by F  and G . Further, 

suppose that independent random samples, say 

1 2 3, , ,........, mx x x x  and 
1 2 3, , ,........, ny y y y have been drawn from the two 

continuous distribution 
mF  and 

nG  respectively. 

Here our problem is to test the hypothesis that the to distribution are identical 

i.e.  

                                         0 :H F G   

against                                1 :H F G  ;                                  t  

Then an appropriate test criterion for testing hypothesis is K-S statistic which 

is as follows 

   maxmn m n
t

D F G 
 

   

If the hypothesis is true , one expects the value of 
mnD  to be small, while a large 

value of 
mnD  may be taken as an indication that the parent distributions are 

not identical. 

 

   

4.7 Run test 

Runs 



If we are given an ordered sequence of two or more types of symbols, a run is 

defined to be a succession of one or more identical symbol which are followed 

and proceed by a different symbol or no symbol at all. 

In any situation, if the sample observations may not behave random, it is 

necessary to test the randomness of the sequence before the usual statistical 

methods based on randomness are applied. 

Too few runs, too many runs, a run of excessive length or too many runs of 

excessive length etc. can be used as statistical criteria for rejection of the null 

hypothesis of randomness, since these situations should occur rarely in a 

truly random sequence. 

A null hypothesis of randomness would be rejected if the total number of runs 

is either too small or too large. 

Advantages 

1. Test of randomness are an important addition to the statistical theory, 

because almost all the classical statistical techniques are based on the 

assumption of a random sample. 

2. The run tests are applicable to either qualitative or quantitative data. 

Distribution of Runs 

Let us suppose an ordered sequence of n elements of two types, 
1n  of the first 

type i.e. values of x  and 
2n  of the second type i.e. the values of y  such that 

1 2n n n  . 

If 
1 numberof runsof type1stelementsi.e.X'sr   



   
2 numberof runsof type2ndelementsi.e.Y'sr   

The total number of runs in this sequence is 

1 2 ;r r r r n    

The probability distribution of the random variable „R‟ is obtained as follows: 

We can select 
1n  positions for the 

1n  values of X  from 
1 2( )n n  positions in 

1 2

1

n n

nC
 ways. 

The probability of each arrangement 
1 2

1

1
n n

nC
  

Now, we have to determine how many of these arrangements yield R r . Here, 

two cases arise: 

Case (i):- When r is odd i.e. 2 1 ;r k k I     i.e. there are ( 1)k   runs of 

ordered values of X and k  runs of ordered values of Y  or vice-versa. 

First we consider the number of ways of obtaining ( 1)k   runs of 
1n  values of

X . This can be done in 1 1n

kC
 ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
2n  values of 

Y . This can be done in 2 1

1

n

kC


 ways. 

The joint operation can be performed in   1 21 1

1

n n

k kC C 

 ways. 

Secondly, considering the number of ways of obtaining ( 1)k   runs of 
2n  

values of Y . This can be done in 2 1n

kC
 ways. 



Similarly, we consider the number of ways of obtaining k  runs of 
1n  values of

X . This can be done in 1 1

1

n

kC


 ways. 

The joint operation can be performed in   1 21 1

1

n n

k kC C 

  ways. 

Thus, 

 
     

 

1 2 1 2

1 2

1

1 1 1 1

1 1
2 1

n n n n

k k k k

n n

n

C C C C
P r k

C

   

 




    

Case (ii):- When r is even i.e. 2 ;r k k I    i.e. there are k  runs of ordered 

values of X and k  runs of ordered values of Y  or vice-versa. 

First we consider the number of ways of obtaining k
 
runs of 

1n  values of X . 

This can be done in 1 1

1

n

kC


 ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
2n  values of 

Y . This can be done in 2 1

1

n

kC

  ways. 

The joint operation can be performed in   1 21 1

1 1

n n

k kC C 

   ways. 

Secondly, considering the number of ways of obtaining k
 
runs of 

2n  values of 

Y . This can be done in 2 1

1

n

kC


 ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
1n  values of

X . This can be done in 1 1

1

n

kC

  ways. 

The joint operation can be performed in   1 21 1

1 1

n n

k kC C 

   ways. 



Thus,  
  

 

1 2

1 2

1

1 1

1 12
2

n n

k k

n n

n

C C
P r k

C

 

 


   

Thus the probability distribution of R, the total number of runs of 
1 2n n n   

objects, 
1n  of type 1st and 

2n  of type 2nd, is given as: 

 

  
 

     
 

1 2

1 2

1

1 2 1 2

1 2

1

1 1

1 1
2 2

1 1 1 1

1 3 3 1
2 22 2

2
        ; if  is even

; if  is odd

n n

r r

n n

n

n n n n

r r r r

n n

n

C C
r

C
f x

C C C C
r

C

 

 



   

   








 
 




 

where 
1 22,3,...,r n n 

 
 

Test of Randomness 

Sometimes, it is desirable to test whether the sample observations can be 

regarded as random or not. To test the randomness of the sample 

observations, we use run test. 

Let 
1 2, ,...., nX X X  be a random sample of size n taken from continuous 

distribution. In the given sequence 
1 2, ,...., nX X X  for each observation we note 

whether it is above or below the sample median. 

 

4.7.1 Hypothesis and Assumptions 

Run test is used for examining whether or not a set of observations constitutes 

a random sample from an infinite population. Test for randomness is of major 

importance because the assumption of randomness underlies statistical 



inference. In addition, tests for randomness are important for time series 

analysis. Departure from randomness can take many forms. 

0H : Sample values come from a random sequence 

1H : Sample values come from a non-random sequence. 

4.7.2 Test Procedure 

Let r be the number of runs (a run is a sequence of signs of same kind 

bounded by signs of other kind). For finding the number of runs, the 

observations are listed in their order of occurrence. Each observation is 

denoted by a „+‟ sign if it is more than the previous observation and by a „-„ 

sign if it is less than the previous observation. Total number of runs up (+) 

and down (-) is counted. Too few runs indicate that the sequence is not 

random (has persistency) and too many runs also indicate that the 

sequence is not random (is zigzag). 

Critical Value: Critical value for the test is obtained from the table for a given 

value of n and at desired level of significance ( ). Let this value be cr . 

Decision Rule: If cr  (lower)  r    cr  (upper), accept 0H . Otherwise reject 0H . 

Tied Values: If an observation is equal to its preceding observation denote it by 

zero. While counting the number of runs ignore it and reduce the value of n 

accordingly. 

Large Sample Sizes: When sample size is greater than 25 the critical value cr  

can be obtained using a normal distribution approximation. 

The critical values for two-sided test at 5% level of significance are 



cr (lower) 1.96    

cr (upper) 1.96    

For one-sided tests, these are 

cr  (left tailed) 1.65   , if cr r  , reject 0H  

cr  (right tailed) 1.65   , if cr r , reject 0H , 

where 

2 1

3

n


 
  
 

 and 
16 29

90

n


 
  

 
 

 

4.7.3 Example 

Data on value of imports of selected agricultural production inputs from 

U.K. by a county (in million dollars) during recent 12 years is given below: Is 

the sequence random? 

5.2  5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 

 

Solution: 

0H : the sequence is random. 

1H : the sequence is not random. 

5.2  5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 

 + - - + - - + 0 - + + 



Here n = 11, the number of runs r  = 7. Critical n values for  = 5% (two sided 

test) from the table are cr  (lower) = 4 and cr  (upper) = 10.  

Since cr  (lower) r   cr  (upper), i.e., observed r  lies between 4 and 10, 0H  is 

accepted. The sequence is random. 

 

 4.7.4  Merits and Demerits 

The number of runs a sequence indicative of randomness. 

any set patterns of symbols in a sequence shows lack of randomness . 

Too many or too less runs show lack of randomness.  

4.8  Pitman ARE. (Asymptotic Relative Efficiency) 

The Relative efficiency depends on the choice of  , the choice of   and the 

particular being considered if 1H is composite. In order to provide an overall 

comparison of one test with another it is clear that relative efficiency leaves 

much to be desired. We would prefer a comparison test that does not depend 

on our choice of  ,  or a particular alternative possible under 1H  if 1H  is 

composite, which it usually is. One way this sometimes may be accomplished 

is described briefly as follows, 

Consider a sequence of tests , all with the same fixed  . If the sequence of tests 

is consistent ,   will become smaller as the sample size 1n gets larger. Instead 

of allowing   to become smaller, we would consider a different alternative each 

time (under the composite alternative hypothesis) for each different value of 1n

where, each time, the alternative considered is one that allows   to remain 



constant from test to test. Thus, as 1n  becomes larger,   and   remain fixed 

and the alternative being considered varies. 

For each value of 1n  a value of 2n is calculated so the second test has the same 

  and   under the alternative considered. Then there is a sequence of values 

of relative efficiency 2 1n n , one for each test in the original sequence of tests.  If 

1 2n n  approaches a constant as 1n  becomes large, and if that constant is the 

same no matter which values of   and    are being used, then that constant 

is called the Asymptotic Relative Efficiency of the first test to be second test or 

more correctly the first sequence of tests to the second sequence of tests. 

Sometimes the name Pitman‟s efficiency is used for this definition of 

asymptotic relative efficiency to distinguish it from other definitions of 

asymptotic relative efficiency.  

Definition:  Let 1n  and 2n be the sample sizes required for two tests 1T  and 2T to 

have the same power under the same level of significance. If   and   remain 

fixed, the limit of 2 1n n  as 1n  approaches infinity is called the asymptotic 

relative efficiency (A.R.E.) of the first test to the second test, if that limit is 

independent of   and  . 

A book by Noether (1976 a) contains many of the more important results of 

studies of A.R.E. See also Stuart (1954) and Ruist (1955) for further 

discussions.  

Thus A.R.E. often provides a compact summary of the relative summary of the 

relative efficiency between two tests. 



Two Sample Problem 

In two sample problem, we are concerned with the data which consists of two 

independent random samples; i.e. random samples are drawn independently 

from each of two populations. Not only the elements within each sample are 

independent, but also every element in the first sample is independent of every 

element in the second sample. 

We have two populations called as X  and Y  populations, with cumulative 

distribution functions 
XF  and 

YF  respectively. 

A random sample 
1 2, ,.... mX X X  of size m  is drawn from the population X  and 

another random sample 
1 2, ,.... nY Y Y of size n  is drawn from the population Y . 

Generally the hypothesis of interest in two sample problem is that the two 

samples are drawn from the identical populations. i.e.  

   0 : ;X YH F x F x x   

We shall discuss three types of alternatives:- 

(a) In the first type of alternative, we consider the alternative hypothesis that 

the two populations differ in any manner i.e. the two populations may differ 

in location or in dispersion or in skewness or in kurtosis etc. 

(i) The two sided alternative is 

   1 : ; for someX YH F x F x x  

(ii) A one sided alternative is 

   1 : ;X YH F x F x x   



i.e.    1 : ; for someX YH F x F x x  

i.e. the variable is stochastically larger than the variable Y . 

or  

   1 : ;X YH F x F x x 
 

   1 : ; for someX YH F x F x x  

i.e. the variable is stochastically smaller than the variable Y . 

For this type of problem, we shall discuss the following tests:- 

1. Wald-Wolfowitz Run Test 

2. Kolmogrov-simirnov two sample Test 

(b) In the second type of alternatives, we consider the alternative hypothesis 

that the two populations differ in location only, this type of alternative is 

called the location alternative. 

   : ; for some & 0L X YH F x F x x     

i.e. the cumulative distribution function of Y  is shifted to left if 0   

i.e.    ;X YF x F x x   or    ;for someX YF x F x x  

and  

the cumulative distribution function of Y  is shifted to right if 0   

i.e.    ;X YF x F x x   or    ; for someX YF x F x x  

For this type of problem, we shall discuss the following tests:- 

1. Median Test 

2. Mann-Whitney U Test 



3. Wilcoxon Test 

(c)  In the third type of alternative hypothesis, we consider the alternative 

hypothesis that the two populations differ in scale parameter only, this type 

of alternative is called the scale alternative. 

   : ; for some & 1S X YH F x F x x    

i.e. the cumulative distribution function of Y  is with compressed scale if 1    

and the cumulative distribution function of Y  is with enlarged scale if 1  . 

For this type of problem, we shall discuss the following tests:- 

1. Mood Test 

2. Sukhatme Test 

Wald-Wolfowitz Run Test 

This two sample test is based on the assumption that the populations under 

consideration are continuous. 

We wish to test the hypothesis that the two independent samples have been 

drawn from the identical populations against the alternative that the two 

populations differ in any manner i.e. in location, in dispersion, in skewness or 

in kurtosis etc. 

Let 
1 2, ,.... mX X X

 
and 

1 2, ,.... nY Y Y  be two random samples of sizes m  and n  

respectively drawn from two populations. These N m n   observations drawn 

from two populations are arranged in order of magnitude from smallest to 

largest, keeping in view which of the observations correspond to the X  sample 

and which to Y  sample. 



For example, with 4 & 5m n  , the arrangements might be 

 X YY X X Y X YY , 9m n  . 

We have 6 runs, 3 runs of 'X s and 'Y s . 

The total number of runs in the ordered pooled sample is indicative of the 

degree of random mixing. We wish to test the null hypothesis 

   0 : ;X YH F x F x x   

against    1 : ; for someX YH F x F x x  

where 
XF  & 

YF  are the cumulative distribution functions of the populations. 

Let r  be the total number of runs in the group of N  observations. 

A run is defined to be a succession of one or more identical symbols which are 

followed and proceed by a different symbol or no symbol at all. 

Under 
0H , the two samples are drawn from the same population. i.e. Under 

0H

, the two samples are expected to be well mixed and r  is expected to be large. 

But r  is small, if the two samples come from the different populations. i. e. if 

0H  is fase. 

If all the values of Y  are greater than all the values of X  (or vice-versa), then 

there will be only two runs. 

Since too few runs will provide the critical region (or rejection region for null 

hypothesis
0H ). 

The Wald-Wolfowitz run test for   level of significance has the critical region 

r r  



where r  is the largest integer such that 

 0/P r r H    

If 
0H  is true, then all the 

m n m n

n mC C   different possible arrangements of m  

'X s and n  'Y s  in a line are equally likely. 

When r  is odd i.e. 2 1r k  ; k I  .i.e. there are ( 1)k  runs of ordered values 

of X  and k  runs of ordered values of Y  or vice-versa. Then, 

 
     1 1 1 1

1 1

02 1/

m n m n

k k k k

m n

m

C C C C
P r k H

C

   

 




    

When r  is even i.e. 2r k ; k I  . 

i.e. there are k  runs of ordered values of  X  and k  runs of ordered values of 

Y  or vice-versa. Then, 

 
  1 1

1

0

2
2 /

m n

k k

m n

n

C C
P r k H

C

 




   

Under 
0H , the mean and variance of r  are given as 

 
2

1
mn

E r
m n

 


 

 
 

   
2

2 2

1

mn mn m n
V r

m n m n

 


  
 

For large ,m n  under 
0H  

 

 
 0,1

r E r
Z N

V r


   



Note: It is the test for equality of distributions based on runs. 

Rank Order Statistics 

If the rank order statistics of a random sample 
1 2, ,....., nX X X  are denoted by 

     1 2, ,....., nr x r x r x . 

The 
thi  rank order statistic  ir x  is called the rank of the 

thi  observation in the 

unordered sample. 

Ex:  ir x i  

The functional definition of the rank of any 
ix  in a set of n  observations is 

given as, 

   
1

n

i i j

j

r x S x x


   

where  
1 ;if 0

0 ;if 0

u
S u

u


 


 

Linear Rank Statistics 

If the two independent random samples 
1 2, ,....., mX X X  and 

1 2, ,....., nY Y Y  are 

drawn from the two populations with cumulative distribution functions 
XF  and 

YF  respectively. 

We consider the null hypothesis 

   0 : ; , unknownX YH F x F x x F   

The set of m n N   observations are assigned ranks 1,2,....., N . 



The functional definition of the rank of observations in the combined sample 

(with no ties) is given as, 

     
1 1

m n

i i j i j

j j

r x S x x S x y
 

      

     
1 1

n n

i i j i j

j j

r y S y y S y x
 

      

where  
1 ;if 0

0 ;if 0

u
S u

u


 


 

we denote the combined ordered sample by a vector of indicator random 

variables as follows- 

Let  1 2, ,....., NZ z z z  be the combined ordered sample. Then we describe 

th

th

1 ;if i randomvariablein thecombinedorderedsampleisX

0 ;if i randomvariablein thecombinedorderedsampleis
iz

Y


 


; 1,2,.....,i N   

The vector Z  indicates the rank order statistics of the combined samples. The 

linear rank order statistics is defined as 

1

N

N i i

i

T a z


  

Where 
ia  are given numbers or weights. 

Note: under 
0H  

 i
m

E z
N

  

  2i

mn
V z

N
  



 
 2

cov ,
1

i j

mn
z z

N N





   , , 1,2,.....,i j N   

Mood Test for Dispersion 

If we have two populations called as X  and Y  with cumulative distribution 

functions 
XF  and 

YF  respectively. A random sample of size m  is drawn from 

X  population and another random sample of size n  is drawn from Y  

population denoted as: 

1 2, ,....., mX X X  and 
1 2, ,....., nY Y Y  

These m n N   observations drawn from the two populations are arranged in 

order of magnitude from smallest to largest. 

In this combined ordered sample of N  observations (with no ties), the average 

rank is the mean of first N  integer. i.e. 
1

2

N  
 
 

. 

The deviation of the 
thi  ordered variable about its mean rank is 

1
1

2

N   
   
  

. 

The amount of deviation is an indication of the relative spread. 

In linear rank statistic, we may take weights either the absolute value of the 

deviations or the squared values of the deviations to measure the relative 

spread. 

In Mood test, we take weights as the squared values of the deviations. We 

define the Mood Test Statistic as 

2

1

1

2

N

N i

i

N
M i z



 
  

 
  



It gives the sum of squares of the deviations of the X  ranks from the average 

combined rank. 

We wish to test the null hypothesis that the two samples are drawn from the 

identical populations. 

   0 : ;Y XH F x F x x   

The general scale alternative is 

   : ; and 1s Y XH F x F x x     

If 
NM  is too small, then 

   : ; and 1s Y XH F x F x x     

i.e.    : ; and 1s Y XH F x F x x     

If 
NM  is too large, then 

   : ; and 1s Y XH F x F x x     

   : ; and 1s Y XH F x F x x     

Since,  

2

1

1

2

N

N i

i

N
M i z



 
  

 
  

Then mean and variance of Mood‟s test statistic is  

 
 2 1

12
N

m N
E M


  

Also variance is obtained as 

   
2

N N NV M E M E M     



By solving it, we get 

 
  21 4

180
N

mn N N
V M

 
  

When ,m n  are large, then under 
0H  

 

 
(0,1)N N

N

M E M
Z N

V M


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Sukhatme Test for Dispersion 

If we have two populations called as X  and Y  with cumulative distribution 

functions 
XF  and 

YF  respectively. A random sample of size m  is drawn from 

X  population and another random sample of size n  is drawn from Y  

population denoted as: 

1 2, ,..., mX X X  and 
1 2, ,....., nY Y Y  

These m n N   observations drawn from the two populations are arranged in 

order of magnitude from smallest to largest. 

Here the X  and Y  populations have or can be adjusted to have equal 

medians, without loss of generality we assume that this common median is 

zero. 

In this case, we arrange the observations such that most of the negative Y ‟s 

should proceed negative  X ‟s, and most of the positive Y ‟s should follow 

positive X ‟s, if Y ‟s have a larger spread than X ‟s. 

If mn  indicator random variables are defined as 



1 if 0 0 ; 1,2,.....,

0 otherwise; 1,2,.....,

j i i j

ij

Y X or X Y i m
D

j n

     
 

 
 

Thus Sukhatme test statistic is defined as 

1 1

m n

ij

i j

T D
 

  

i.e.  

       
0

0

( ) ( )Y X X YF x F x f x dx F x F x f x dx




            

                                       
0

0 0

( ) ( ) ( )X XF x f x dx F x f x dx f x dx

 



      

       
0

0

1
( ) ( )

4
Y X X YF x F x f x dx F x F x f x dx





             

Under 
0H , 

1

4
   

Hence    0 : Y XH F x F x or 0

1
:

4
H    

The mn  random variable 
ijD  are Bernoulli variables, with parameter  .i.e. 

2

ij ijE D E D          

 1ijV D        

We define the parameters 
1  and 

2  as 

   1 0 0 0 0j i i j k i i kP Y X or X Y Y X or X Y          
 

  



       0 0 0 0j i k i i j i kP Y X Y X X Y X Y          
 

   

   
0

2 2

1

0

( ) 1 ( )Y YF x f x dx F x f x dx




           

and 

   2 0 0 0 0j i i j j h h jP Y X or X Y Y X or X Y          
 

  

       0 0 0 0j i j hi i j h jP Y X Y X X Y X Y          
 

   

   
2 20

2

0

1 1
( ) ( )

2 2
X XF y f y dy F y f y dy





   
      

   
   

Since    
1 1

m n

ij

i j

T D
 

  

Then mean and variance of T  is defined as 

   
1 1 1 1

m n m n

ij

i j i j

E T E D mn 
   

     

and  
1 1

m n

ij

i j

V T V D
 

 
  

 
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       2

1 21 1 1V T mn N n m             

As ,m n  

 /E T mn   

 / 0V T mn   

Hence /T mn  is an unbiased ad consistent estimator of  . 



If we define 
'T  as  

' '

1 1

m n

ij

i j

T D
 

  

where  

'
1 if 0 0

0 otherwise

i j j i

ij

X Y or Y X
D

   
 
  

The critical region for   level of significance is given as 

Alternative Hypothesis Critical Region 

 
1

1
4

    
T C  

 
1

1
4

    
' 'T C  

 
1

1
4

    
' '

2 2

T C or T C    

 

Under
0H , i.e.    0 : Y XH F x F x  

Then 
1

4
   

and 1 2

1

12
    

Thus  
4

mn
E T   

   
   1 11 1

1
2 4 3 3

n m
V U mn N

  
     

 
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mn N
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
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If N  is large, then under 
0H  

 

 
 0,1
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Z N

V T


   

i.e. 
 

 4 0,1
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
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4.9 CONTINGENCY TABLE 

 

A contingency table is an array of natural numbers in matrix from where those 

natural numbers represent counts, or frequencies. For example, an 

entomologist observing insects may say he observed 37 insects, or he may say 

he observed  

 

 

 

                   Moths               Grasshoppers     others          Total  

12 22 3 37 

  



using 1 3  (one by three) contingency table. This is one way contingency table 

because it has only one row. 

The entomologist may wish to be more specific and use a 2 3 contingency 

table, as follows. 

                   

                                      Moths          Grasshoppers        others            Total 

Alive 3 21 3 27 

Dead 9 1 0 10 

Total 12 22 3 37 

 

The totals, consisting of two row totals, three column totals, and grand total. It 

is a two way contingency table and may be extended to include several rows (r ) 

and several columns (c ) as an r s  contingency table. 

  

 

 

 

4.9.1    THE 2 2 CONTINGENCY TABLE 

 

In general r c contingency table is an array of natural numbers arranged in to 

r rows and c columns and thus has rc  cells or places for the numbers. This 

section is concerned only with the case where r = 2 and c = 2, the 2 2  



contingency table, because there are four cells, 2 2  contingency table is also 

called the fourfold contingency table. 

 One application of the 2 2  contingency table arise when N objects (or 

persons), possible selected at random from some population, are classified in to 

one of two categories before a treatment is applied or an event takes place. 

After the treatment is applied the same N object are again examined and 

classified in to two categories. The question to be answered is, “Does the 

treatment significantly alter the proportion of object in each of two categories?” 

The appropriate statistical procedure was seen to be a variation of the sign test 

known as the McNemar test. The McNemar test is often able to detect subtle 

differences, primarily because the same sample is used in the two situations 

(such as “before” and “after”). Another way of testing the same hypothesis 

tested with the McNemar test is by drawing a random sample from the 

population before the treatment and then comparing it with another random 

sample drawn from the population after the treatment. The additional 

variability introduced by using to different random sample is undesirable 

because it tends to obscure the changes in the population caused by the 

treatment. However, there are times when it is not practical, or even possible, 

to use the same sample twice. Then the procedures to be described in the 

section may be used. 

 In the first procedure, two random samples are drown, one from each of 

two populations, two test the null hypothesis that the probability of event A 

(some specified event)is the same for both populations. The null hypothesis 



may also be stated as “the proportion of the population with characteristic A is 

same for both populations.” 

4.9.2      The chi-squared test for differences in probabilities, 2 2      

Data: A random sample of 
1

n  observations is drawn from one population (or 

before a treatment is applied) and each observation is classified in to either 

class 1 or class 2, the total numbers in the two classes being 
11

o  and 
12

o  

respectively,  

Where
11 12 1

o o n  . A second random sample of 
2

n  observations is drawn from a 

second population (or the first population after some treatment is applied) and 

the number of population in class 1 or class 2 is 
21

o or 
22

o  respectively, where 

21 22 2
o o n  . The data are arranged in to the following 2 2  contingency table.                                                                                              

Assumptions 

1. Each sample is a random sample. 

2. The two sample are mutually independent. 

3. Each observation may be categorized in to class 1 or class 2. 

Test Statistic:    If any column total is zero, the test statistic is define as  

1
0T  . Otherwise, 

                                                                                           

11 22 12 21

1

1 2 1 2

( )
(1)

N O O O O
T

n n C C


                                                            

Null distribution the exact distribution of 
1

T  is difficult to tabulate because of 

all the different combination of values possible for 
11

o ,
12

o ,
21

o and 
22

o . Therefore 



the large sample approximation is used, which is the standard normal 

distribution whose quintiles are given in Table. 

Hypothesis:   Let the probability that a randomly selected element will be in 

class 1 be denoted by 
1

p in population 1 and 
2

p in population 2. Note that it is 

not necessary for
1

p and 
2

p  to be known. The hypotheses merely specify a 

relationship between them. 

A. (Two-Tailed Test) 

                                                                       
0 1 2
:H p p  

                                                                       
1 1 2
:H p p  

Reject 
0

H  at the approximate level   if 
1

T  is less than the / 2 quintile of a 

standard normal random variable Z, or if 
1

T  is grater then the 1- / 2  quintile 

of Z, where the quintiles of Z are given in table. 

      The p-value is twice the smaller of the probabilities that Z is less then the 

observed value of 
1

T  or grater then the observed value of
1

T , from table. 

     Note that for the above hypotheses, 
2

1
T  is often use instead of 

1
T  as the test 

statistic. Then the rejection region is the upper tail of the chi-squared 

distribution with 1 degree of freedom given in table. 

B. (Lower-Tailed Test) 

 
0 1 2
:H p p  

 
1 1 2
:H p p  



 Reject 
0

H  at the approximate level   if 
1

T  is less than the   quintile of a 

standard normal random variable Z, where the quintiles of Z are given in table. 

    The p-value is the probability that Z is less than the observed value of  
1

T , 

obtained from table. 

C. (Upper-Tailed Test) 

 
0 1 2
:H p p  

 
1 1 2
:H p p  

Reject 
0

H  at the approximate level   if 
1

T  is greater than the 1   quintile of a 

standard normal random variable Z, where the quintiles of Z are given in table. 

    The p-value is the probability that Z is greater than the observed value of  
1

T , 

obtained from table. 

EXAMPLE   1  

       Two Carloads of manufactured items are sampled randomly to determine if 

the proportion of defective items is different for the two carloads. From the first 

carload 13 of the 86 items were defective. From the second carload 17 of the 74 

items were considered defective. 

                                       Defective                Non defective          Totals 

Carload 1 13 73 86 

Carload 2 17 57 74 

Totals 30 130 160 

 

The assumptions are met, and so the two-tailed test is use to test  



0
H : The proportion of defective is equal in two carloads using the test statistic                                               

                              11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C


  

                              
160((13)(57) (73)(17))

(86)(74)(30)(130)


  

                             1.2695   

The 0.975 quintile of a standard normal random variable is found from Table 

A1 to be 1.9600. therefore the rejection region of approximate size 0.05 consist 

of all value of  
1

T  grater then 1.9600, or less then -1.9600. The observed value 

is -1.2695, so the null hypothesis is accepted at the 0.05  level of 

significance.      

        The p-value is twice the probability of Z being less then the observed value 

-1.2695, which is found from the table as 0.102, so the p-value is 

approximately 0.204.Therefore the decision to accept 
0

H  seems to be a fairly 

safe one.  

The following example illustrates the use of one-tailed test.  

 EXAMPLE  2  

At the U.S. Naval Academy a new lighting system was installed throughout the 

midshipmen‟s living quarters. It was claimed that the new lighting system 

resulted in poor eyesight due to continual strain on the eyes of the 

midshipmen. Consider a (fictitious) study to test the null hypothesis,  

0
H : The probability of good vision is less now then it was  



Let
1

p   be the probability that a randomly selected graduating midshipman had 

good vision under the old lighting system and let
2

p  be the corresponding 

probability with the new light. Then the preceding hypotheses may be restated 

as                              

 
0 1 2
:H p p  

 
1 1 2
:H p p  

Which matches the set C of hypotheses. The random sample are  taken to be 

the entire graduation class just prior to the installation class to spend 4 years 

using the new light system for population 2. it is hoped that these sample will 

behave the same as would random samples from the entire population of 

graduating seniors, real and potential.  

               Suppose the results were as fallows.  

                                                      Good vision         Poor vision  

Old lights 
11

O =714 
12

O =111 
1

n =825 

New Lights  
21

O =662 
22

O =154 
2

n =816 

Totals  1376 265 1641 

 

         Decision rule C defines the critical region 0.05  to be all values of 
1

T

greater than 1.6449 from table. Computation of 
1

T  gives   

 11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C


  



 
1641((714)(154) (111)(662))

(825)(816)(1376)(265)


  

 2.982  

So the null hypotheses is clearly rejected. From Table we see that the null 

hypotheses could have been rejected at a level of significance as small as about 

0.002, so that p-value is 0.002. 

       We may there for conclude that the population represented by the two 

graduation classes do differ with respect to the proportions having poor 

eyesight, and the direction predicted. That is, population 2 (with the new light) 

has poor eyesight then population 1 (with the old light). Whether the poorer 

eyesight is result of the new lights has not been shown. However, an 

association of poor eyesight with the new lights has been shown in this 

hypothetical example. 

4.9.3     Fisher’s Exact Test 

Data: The N observations in the data are summarized in a 2 2  contingency 

table as previously both of the row totals, r and N-r and both of the column 

totals, c and N-c, are determined beforehand and are therefore fixed not 

random. 

                                                   Col 1               Col 2 

Row 1 x  r x  r  

Row 2 c x  N r c x    N r  

Total c  N c  N  

 



Assumptions : 

1. Each observation is classified into exactly one cell. 

2. The row and column totals are fixed, not random.(However see the 

comment at the end for random totals in rows, columns, or both.) 

Test Statistic: 

 The test statistic 
2

T  is the number of observations in the cell in row 1, column 

1. 

Null Distribution: 

The exact distribution of  
2

T  when 
0

H  is true is given by the hyper geometric 

distribution  

                    

2
( ) 0,1...........,min( , )

0 (1)

r N r

x c x
P T x x r c

N

c

for all other values of x

  
  

  
  

 
 
 



 

 

For a large approximation use  

                                        
3

2

( )( )

( 1)

rc
x

NT
rc N r N c

N N




 



 



which has the standard normal distribution given in table as an 

approximation. If row totals or column totals, or both, are random it is more 

accurate to use 
1

T   given by                      11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C


  

in the large sample approximation. 

Hypotheses : 

Let 
1

p  be the probability of an observation in row 1 being classified into 

column 1. Let 
2

p  be the probability of an observation in row 2 being classified 

in column 1.Let 
obs

t  be the observed value of 
2

T . 

A. (Two-tailed test)  

                                                    
0 1 2

1 1 2

:

:

H p p

H p p




 

First find the p- value using equation (1) . The  p-value is twice the smaller of 

2
( )

obs
P T t  or 

2
( )

obs
P T t . Reject 

0
H  at the level of significance   if the p-

value is less than or equal to  . 

B.  (Lower-tailed test)  

                                             
0 1 2

1 1 2

:

:

H p p

H p p




 

 Find the p- value 
2

( )
obs

P T t  using equation (1). Reject 
0

H  at the level of 

significance   if 
2

( )
obs

P T t  is less than or equal to  . 

C. (Upper-tailed test) 



                                                
0 1 2

1 1 2

:

:

H p p

H p p




  

Find the p- value 
2

( )
obs

P T t  using equation (1). Reject 
0

H  at the level of 

significance   if 
2

( )
obs

P T t  is less than or equal to  . 

Example  

Fourteen newly hired business majors, 10 males and 4 females, all equally 

qualified, are being assigned by the bank president to their new jobs. Ten of  

the new jobs are as tellers , and four are as account representatives. The null 

hypothesis is that males and females have equal chances at getting the more 

desirable account representative jobs. The one-sided alternative of interest is 

that females are more likely than males to get the account representative jobs. 

 Only one  female is assigned a teller position. Can the null hypothesis be 

rejected? The information given is sufficient to fill in the following  2 2   

contingency table, because the row totals and column totals are already 

known.                         

 Account  

                                     representative           Teller 

Males 1 9 10 

Females 3 1 4 

Total 4 10 N =14 

                                                                            
0 1 2

1 1 2

:

:

H p p

H p p




 

 The exact lower-tailed p-value is given by Equation (1) as 



                                
2 2 2

( 1) ( 0) ( 1)P T P T P T      

                                           
2

10 4 10 4

0 4 1 3
( )

14 14

4 4

P T x

     
     
     

  
   
   
   

 

                                                            
1 40

0.041
1001 1001

    

 The null hypothesis is rejected at 0.05  . 

 

 


