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Block-1

Metric Spaces-I

Set theory has a great importance in the study of mathematics and computer sciences. A
German mathematician Georg Cantor (1845-1918) introduce the idea of set theory. The concept
of set theory has a great contribution in analysis. In this unit we shall discuss some basic concepts
of Sets such as subsets, multi set, empty set, singleton set, finite and infinite set, universal set,
comparable and non-comparable sets, set of sets, subset, power set, venn diagrams, operations
on sets, cardinality of a set, ordered pairs, cartesian product of sets and some algebraic properties.
In our daily life we usually use the word ‘set’ as set of natural numbers, set of real numbers, set
of integers, tea set, set of books of an author, set of an examination papers, set of authors of this
book, etc. In all of these, the meaning of the word ‘set’ is a collection of well-defined objects.In
the set theory of real numbers, R can be geometrically demonstrated through the points on a
straight line. Set theory and real number system are the fundamental of the Mathematics. The

key concept of analysis must be based on an exactly defined on the concept of number.

Metric spaces are essential in mathematics, especially in analysis and its practical
applications. Metric spaces have numerous applications in various fields, including physics,
computer science, and engineering. For example, they are used in algorithms for data analysis,
optimization, and machine learning.Metric spaces are crucial in the study of analysis, particularly
in real and complex analysis. They provide a framework for defining limits, continuity, and
convergence, which are central concepts in analysis. Metric spaces are the foundation of
topology, a branch of mathematics that deals with the properties of spaces that are preserved

under continuous transformations.

In the first unit, we shall discussed the Sets, subset, index set, power set, operations on set,
relations, functions, finite and infinite sets, Countable and uncountable sets.In the second unit
we shall discuss the Metric space, Pseudo Metric Space, Discrete Metric Space, Bounded and
Unbounded Metric Space, Usual and Quasi Metric Space, inequalities. Bounded and unbounded
metric space, Usual and Quasi Metric Space, inequalities with details are discussed in unit third.
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1.1 Introduction

In modern mathematics, the words set and element are very common and appear in most texts.
They are even overused. There are instances when it is not appropriate to use them. For example,
it is not good to use the word element as a replacement for other, more meaningful words. When
you call something an element, then the set whose element is this one should be clear. The word
element makes sense only in combination with the word set, unless we deal with a
nonmathematical term (like chemical element), or a rare old-fashioned exception from the
common mathematical terminology (sometimes the expression under the sign of integral is called
an infinitesimal element; lines, planes, and other geometric images are also called elements). In

dictionary the word set is defined as a collection, a group, a class or an assemblage etc.

Finite sets are very important for the study of combinatory theory of counting. George
Cantor (1874) discussed the term of countable set. Countable sets have great importance in real

and discrete mathematics.

1.2 Objectives

After reading this unit the learner should be able to understand about the:

e the introductory concepts about sets

e the subsets, superset, proper subsets and improper subsets
e the index set and power set

¢ the operations on set

e the relations and types of relations

e the functions and types of functions

e the finite and infinite sets

e the countable and uncountable sets



1.3 Set

A set is a well defined collection of objects. The objects in a set are known as members or
elements or points. Suppose A is a set and a is an element of A, then we write acA (a belongs

to A). If ais not an element of A, then we write ag A (a does not belongs to A).

Let A be the set

A={1,3,5,7,9 11} )

Here 1A, 3€A,5€A, 7€A, 9€A, 11eAbut 2¢A. The form of presentation of set A in

(1) is known as tabular method or roster method. Also the equation (i) can be written as
A= {x | x is an odd positive integer and x<13} ... (ii)

It means that A is the set of all odd positive integers which are less than 11. The form of

presentation of set A in (ii) is known as set-builder method or rule method.

For example: The set consisting of all the letters in the word “DELHI” can be written as
{D,E, L, H, 1}or
{x | X is a letter in the word “DELHI"}.

Sets are denoted by capital letters and their element by lower case letter. Some notations
o standard sets are given below:

e

25

C: the set of complex numbers.

K/
°e

R: the set of real number.

o0

Q: the set of rational numbers.

X4

I: the set of integers.

L)

e

25

N: the set of natural numbers.



For example:. The set consisting of all even positive integers is denoted by {2,4, 6,8, .......... }

or {x | X is an even positive integer}.
For example: The set consisting of fourth roots of unity is denoted by {1, -1, i, -i} or {x | x4 = 1}.
Empty Set

A set is said to be empty set or null set or void set if it contains no element. It is denoted by ¢ or
{}. Let A ={x | x is a real number and x2 =-1}, B ={x | x <x} and C = {x |xel and 1<x<2}. Here
A, B and C are empty set.

Singleton Set

A set is said to be singleton set or unit set if it contains only one element. Let A ={x |x is a

positive integer and x? = 4} and B = {0}. Here A and B are singleton set.

Comparable and Non-comparable Set

Let A and B be any two sets. Then A and B are said to be comparable if all the elements of A
belongs to B or all the elements of B belongs to A (i.e., AcB or BcA). But if A¢B or BZA,
then A and B are known as non-comparable set.

Note: Every set is comparable with itself, i.e., AcA, therefore A and A (itself) are comparable
sets.

For example: Let A={1,2,3,4,5,6,7,8},B={1,3,5,7tandC={2,5, 6, 7, 9}.

Here we see that all the elements of B belongs to A, i.e., BcA, therefore A and B are comparable
sets. Also CcA, therefore A and C are comparable sets. But CeB or B&C, therefore B and C
are non-comparable sets.

For example: Let A={a, m,a,r,j,e,e,t}andB={a, j, e, ¢, t}.

Here we see that all the elements of B belongs to A, i.e., BcA, therefore A and B both are

comparable sets.
Equality of Sets

Let A and B be any two sets. If all the elements of A belongs to B and all the elements of B belongs



to A, (i.e, AcBand B c A) then A and B are said to be equal set and written as A = B.
Considertwosets A={N, I, R, A, N, J, A,N}and B={N, I, R, A, J}. Here A and B are equal set,
ie, A=B.

Multi Set

A multi set is an unordered collection of objects in which an object can appear more than once. Let

A={a, a, b, b, b, c}. Here a appears two times, b appears three times and c appear one time.
Universal Set

A set under consideration in the problem is a fixed set in which includes each given set known
as universal set.

For example: For the sets of numbers, the set of complex number (C) will be the universal set.
It is denoted by U.

Disjoint Set

Let A and B be any two sets. Then A and B are said to be disjoint sets if they have no common

elements.

For example: Let A={1, 3,5, 7}and B={2, 4, 6, 8}. Here A and B have no common elements.
Therefore A and B are disjoint sets.

Venn Diagram

A venn diagram is a pictorial representation of sets in which it represented by a rectangle and

U

the sets with by circle.
For example: Let A ={1, 2, 3} and

U={1,2 34,586, 7,8}




1.4 Subset

Let A and B be any two sets. If all the elements of A belong to B, then A is said to be subset of
B. It is denoted as AcB, read as “A is a subset of B” or “A is contained in B”.

For example: Let A be the set A= {a, b, c}. Then ¢, {a}, {b}, {c}, {a, b}, {a, c}, {b,c}and A
are all subsets of A.

For example: If A={a, b, c}, then {b, d} is not a subset of A because dgA.

Superset

Let A and B be any two sets. AcB is also expressed by writing as BoA and is read as “B contains
A” or B is a super set of A.

For example: Let A={1, 2,3}and B={1, 2, 3, 4}.

Here we see that all elements of set A belong to set B, i.e., AcB, i.e., B contains A. Therefore B

is a super set of A.

Proper Subset

Let A and B be any two sets. Then A is said to be proper subset of B if AcB, A#¢d and A#B.
Improper Subset

Let A be any set then ¢ and itself A are improper subsets of A.
For example: Let A be the set A= {a, b, c}. Then the all subsets of A are ¢, {a}, {b}, {c}, {a,
b}, {a, c}, {b, c} and A. Here {a}, {b}, {c}, {a, b}, {a, c} and {b, c} are all subsets of A. ¢ and

A are improper subsets of A.

1.5 Index Set

Index set is a set whose elements are used as names. It is usually denoted by A. An index set may

be finite or infinite.

For example: Let A={a, b, c, ........ },.B={o, B, 7y, ........} and C={i, J, k, ........ } be any three



sets. Here we see that the all elements of A, B and C are used as names. Therefore A, B and C

are index sets.
Cardinality of a set

Let A be any finite sets. The number of distinct elements contained in A is known as cardinality

of the set A. It is denoted by n(A) or ‘A‘

For example: Let A be the set: A= {1, 2, 3, 4, 5}. Then n(A) = 5. For a empty set, n(¢) = 0.

1.6 Power Set

Let A be any set. The power set of A is the set of all subsets of A. It is denoted by P(A).
Let A ={a, b, c} be the set. Then the power set of A is
P(A) ={¢, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
The number of elements in a P(A) is 2 raised to the cardinality of A i.e.,
Number of P(A) = 2"®),
For example: If A = {a, b, ¢}, then number of P(A) = 23 = 8.
Set of Sets

If a set contains a number of sets as its elements then it is known as set of sets or family of sets
or class of sets.

For example: Let A = {{a}, {a, b}, {a, b, c}, {a, b, ¢, d}, {a, b, ¢, d, e}} and B = {{0}, {0, 1},
{0, 1, 2}}.

Here A and B are set of sets.



1.7 Operations on Set

Complement of a Set

Let U be the universal set. The complement of a set A with respect to U is the set of elements

which belong to U but do not belong to A. It is denoted by U-A or Aor A or A and is defined

as A ={x: xeUand xgA}.
For example: Let U={1, 2,3, 4,5,6,7,8,9+and A={1,3,5,7,9}. Then A ={2, 4,6, 8}.

For example: Let U= {x: x is a letter in English alphabet} and A = {x: x is a vowel}. Then A
= {x: x is a consonant}.
Union of Sets

Let A and B be any two sets. The union of A and B is the set of all elements which belong to A
or to B and is denoted by AUB. Thus AUB = {x: xeA or xeB}.

For example: Let A={1, 2, 3,4, 5} and B ={2, 4, 6, 8, 10}. Then the union of A and B is
AuB={1,2,3,4,5,6, 8, 10}.
Intersection of Sets

Let A and B be any two sets. The intersection of A and B is the set of elements which belong to
both A and B and is denoted by AnB. Thus AnB = {x: xeA and xeB}.

For example: Let A={1, 2, 3,4, 5} and B = {2, 4, 6, 8, 10}. Then the intersection of A and B is
AnB ={2, 4}.
Difference of Sets

Let A and B be any two sets. The difference of A and B is the set of elements which belong to A



but do not belong to B. It is denoted by A-B or A~B or A/B= {x: xeA and x¢B}.

For example: Let A={1, 2, 3,4,5,6}and B = {3, 4,5, 6, 7, 8}.Then the difference of A and
Bis

A-B={1, 2}
and the difference of B and A is
B-A={7, 8}.
Symmetric Difference of Sets

Let A and B be any two sets. The symmetric difference of A and B is the set of elements which

belong to A or B but do not belong to A and B. It is denoted by A®B and defined as
A®B={x: (xeA and x¢B) or (x¢A and xeB)} or A®B=(A-B)U(B-A).

For example:Let A={1, 2,3,4,5}and B={1, 3,5, 7}.Then A®B = {2, 4, 7}.

1.8 Relation

In our day to life, a word used relation means something like as marriage and friendship, etc. “Is
the mother of”, “is the father of”, “is the sister of”, is the brother of”, “is the friend of”, are all
relations over the set of men. Similarly, “is equal to”, is less than”, “is greater than”, “is the
divisor of” are relations on the set of numbers. In this book we study binary relations. A binary

relation is the relation between two objects.

For example, “is the son of” is a relation between two men a and b. Therefore the binary relation
involves certain ordered pair (a, b) in which the first element a is related to the second element
b.

Let A and B be any two sets. A relation R from a set A to set B is a subset of A x B and defined

as



XRy if and only if (x,y) €R,x eAandy B

or XRye(xy)eR

and xRye(x,Y) €R,
X Ry reads “x is R-related to y”.
Note: (i) If R is a relation from A to A then R is known as relation on A.
(i1) A binary relation on a set A is a subset of A x A.
For example: Let A={a, b, c} and B = {1, 2, 3} be any two sets.
ThenR ={(a, 1), (a, 2), (b, 2), (c, 3)} is a relation from A to B.

A B

Inverse Relation

Let R be a relation from a set A to a set B. Then R™* from B to A is known as the inverse relation

of Rif and only if
R™={(y, %) : (x,y)eR}.
For example: Let A={1, 2, 3} and B = {2, 4, 6} be any two sets.
ThenR={(1, 2), (1, 4), (2, 4), (3, 6)} is a relation from Ato B
and Rt ={(2, 1), (4, 1), (4, 2), (6, 3)} is an inverse relation from B to A.

Note: (i) Every relation has an inverse relation.



Identity Relation

Let A ={a, b, c} be any set. Then a relation R on a set A is known as an identity relation if R =

{(a, a) : acA}.

For example: Let A = {a, b, ¢, d} be any set. Then the relation R = {(a, a), (b, b), (c, ¢), (d, d)}

is an identity relation on A.

Universal Relation

Let A={a, b, c} be any set. Then a relation R on a set A is called as universal relation if
R=AxA

or R={(a, a), (a,b), (a, c), (b, a), (b,b), (b, c), (c,a), (c, b), (c, c)}isauniversal relation on A.

For example: Let A = {a, b} be any set. Then the relation R = {(a, a), (a, b), (b, @), (b, b)} isa

universal relation on A.

Note:(i) If R is a relation from A to A then R is known as relation on A.

(if) A binary relation on a set A is a subset of A x A.

(iii) Every relation has an inverse relation.

(iv) Let A={1, 2, 3, 4} and R be the relation > (is greater than). Then we have

R={(2,1), (3,2),(3,1),(4,3),(4,2), (4 1)}

1.9 Types of Relation

Some important types of relations are as follows:
(i) Reflexive Relation
A relation R on a set A is known as reflexive relation if and only if

aRa, VaeA.



(if) Symmetric Relation
A relation R on a set A is known as symmetric relation if and only if
aRb =bRa, V(a, b)eR.
(iif) Anti-symmetric Relation
A relation R on a set A is known as anti-symmetric relation if and only if
aRb, bRa = a=b, V(a, b)eR.
(iv) Transitive Relation
A relation R on a set A is known as transitive relation if and only if aRb, bRc =aRc, (a, b, ceA).
Note: (i) In R, the relation “is equal to” is reflexive, symmetric and transitive.
(i) In R, the relation “less than” is anti-symmetric and transitive.
(111) The relation “is the friend of” on the set of all human beings is reflexive.

(iv) The relation “less than”, “greater than”, “is the father of”, “is the wife of”” on the set of people

are not reflexive.

(v) The relation “a divides b” on set of natural numbers is anti-symmetric for a divides b and b

divides aif and only if a = b.

(vi) The relation “is the brother of” on any set of men is transitive for a is brother of b, b is

brother of ¢ then a is brother of c.

(vii) The relation “is the father of” is not transitive.

Example.1. Write a relation which is reflexive but neither symmetric nor transitive.
Solution: Let A = {a, b, c} be any set and the relation R on A defined as
R={(a a) (a c), (b, a) (b, b), (c, b), (c, 0)}.

Then (i) Reflexive: We have (a, a)eR, VacA.



Therefore R is reflexive on A, i.e.,(a, a), (b, b), (c, ¢)eR.

(if) Symmetric: We have (a, c)<R but (c, a)¢R.

Therefore R is not symmetric on A, i.e., (a, ¢), (b, a), (c, b)eR but (c, a), (a, b), (b, ¢)«R.
(iii) Transitive: We have (a, ¢), (c, b)eR but (a, b)¢R.

Therefore R is not transitive on A. Hence R is reflexive but neither symmetric nor transitive.
Equivalence Relation

Arelation R on a set A is known as an equivalence relation if and only if it is reflexive, symmetric

and transitive. Equivalence relation is denoted by ~.
Note: A universal relation R on any set A always satisfied the properties of equivalence relation.
For example: Let A = {a, b, c} and the relation R on a set A is defined as

R={(a a), (a, b), (a, c), (b, a), (b, b), (b, ¢), (c, a), (c, b), (c, )} is an equivalence relation.

Example.2. Let | be an integer set and R is a relation on | defined as

R ={(a, b): a<b and a, bel} is not an equivalence relation.

Solution: Let R = {(a, b): a<b and a, bel}.

Then (i) Reflexive: We have (a, a)¢R, i.e., a is not less than a,vVael.

Therefore R is not reflexive on I.

(ii) Symmetric: Suppose (a, b)eR i.e., a<b= (b, a)¢R, i.e., b is not less than a.

Therefore R is not symmetricon |, i.e., (a, b)eR =(b, a)¢R (because if a is less than b then b is

not less than a)
(iii) Transitive: We have (a, b), (b, c)eR = (a, ¢)eR i.e., a<b and b<c= a<c.

Therefore R is transitive on I. Hence R is transitive but neither reflexive nor symmetric.



Example.3. If R is an equivalence relation on a set A then show that R is also an equivalence

relation on A.

Solution: Let A ={a, b, c} be any set and the relation R on a set A. Suppose R is an equivalence

relation, i.e., R is reflexive, symmetric and transitive.To show that R is an equivalence relation.
Then (i) R is reflexive: We have (a, a)eR, VacA
= (a, a)eR?, VacA
Therefore R is reflexive on A.
(ii) R is symmetric: We have (a, b)eR = (b, a)eR.
Now we have (a, b)eR'= (b, a)eR
= (a,b)eR
= (b, a)eR™.
Therefore (a, b)eR*= (b, a)eR?, i.e., R is symmetric on A.
(iii) R is transitive: We have (a, b), (b, c)eR = (a, ¢)eR.
Now we have (a, b), (b, ¢)eR™= (b, a), (¢, b)eR
= (c, b), (b, a)eR
= (c,a)eR
= (a,c)eR?
Therefore (a, b), (b, c)eR*= (a, c)eR?, i.e., R is transitive on A.
Hence R is reflexive on A i.e., R is reflexive, symmetric and transitive.

Equivalence Classes

Let R be an equivalence relation on a set A. Let a be any arbitrary element of A. The set of all
element x €A such that xRa constitute a subset of A (say [a]). Thus subset [a] is known as

equivalence class of a with respect to R, denoted as



[a]={x : xeA and xRa}.
Order Relation
A relation which is transitive but not an equivalence relation is known as an order relation.
If R is an order relation on a set X, then
XRy and yRz = xRz, VX, y, z€ X.
Partial Order Relation
A relation R on a set X is said to be a partial order relation if it is at the same time
() Reflexive
(it) Anti-symmetric and
(ii) Transitive.

It is denoted by the symbol <. A set X together with a partial order relation defined on it, i.e.,(X,

<) is known as a partial ordered set.

For example: The relation “x divides y”” on the set of natural numbers is a partial order relation.

The relation “sub-set of” on the set of all sub-sets of a set is a partial order relation.

1.10 Function

Let A and B be any two non-empty sets. If there exists a rule or a correspondence f which
associate each element of A has a unique image in B then f is a function or mapping from A to B.

This mapping is denoted by
f: A—B

or A—f> B.

Here the set A is known as domain and the set B is known as co-domain of the function f.



For example: Let A={1,2,3},B={2,4,6,8}and f: A — B is defined as

A B
f
> 2
> 4
» 6
8
Domain Co-domain

Here range is {2, 4, 6}. We know that the range is a subset of co-domain.

Example.4. If A= {1, 2,3} and B = {a, b, ¢, d} then does
() {1, a), (2,¢), (3,d)}

(i) {(1,a), (2,b), (2,¢), (3,d)}

(i) {(1,a), (2, b)}

(iv) {(1, a), (2, b), (3, a)} represent a function from f : A — B.

Solution: (i) Here we see that f(1)=a, f(2)=c and f(3)=d. Therefore f is a function from A to B

because every element of A has a unique image in B.

(i1) Here we see that f(1)=a, f(2)=b, f(2)=c and f(3)=d. Therefore f is not a function from A to B
because every element of A has not a unique image in B, i.e., one element (2) of A has two

images (b, ¢) in B.

(iii) Here we see that f(1)=a and f(2)=b. Therefore f is not a function from A to B because every

element of A has not a unique image in B, i.e., one element (3) of A has not any image in B.

(iv) Here we see that f(1)=a, f(2)=b and f(3)=a. Therefore f is a function from A to B because

every element of A has a unique image in B.



Example.5. If A = {1, 2, 3, 4} and f(1)=2, f(2)=3, f(3)=4 and f(4)=2, then does f represent a

function.
Solution: (i) We have A={1, 2, 3,4}and B = {2, 3, 4}.

Here we see that every element of A has a unique image in B. Therefore f is a function from A

to B.

1.11 Types of Function

Here we discuss some types of functions which as follows:

(i) One-One Function

A function f: A—B is called one-one if x1, X2€A, we have
X1 = X2 = f(xt)=~f(x2)

or X1 X2 = f(x1) # T (x2).

For example: Let A={1,2,3},B={a, b, c,d}and f: A — B is defined as

A B
f
1 > g
2 » b
> C
d
Domain Co-domain

Here f is known as one-one function and range of fis {a, b, c}.



Example.6. If A ={1, 2, 3, 4, 5}, B = {a, b, c} and fis defined as f(1)=a, f(2)=b, f(3)=a,f(4)=a

and f(5)=c, then state whether f is a function from A to B or not, if yes write its type.
Solution: Here we see that f(1)=a, f(2)=b, f(3)=a,f(4)=a and f(5)=c,

therefore f is a function from A to B because every element of A has a unique image in B.
Hence f is a function from A to B.

Also we see that three elements (1, 3, 4) of A has same image (a) in B. Hence f is not one-one

function from A to B, i.e., one element (2) of A has two images (b, ¢) in B.
(i) Many-One Function

A function f : A — B is said to be many-one if at least one element of B has two or more than

two pre-image in A.

For example: LetA={1,2,3,4},B={a, b, c,d}and f: A — B is defined as

A B
f
1 > a
2 > b
3 c
4 d
Domain Co-domain

Here f is known as many-one function and range of f is {a, b, c}.
(iii) Into Function

A function f: A — B is said to be into if there is at least one element of B, has no pre-image in
A.

For example: Let A={1,2,3},B={a, b, c,d}and f: A — B is defined as



v

v Yy

o o o Q9

Domain Co-domain

Here one element d of the set B has no pre-image in the set A. Then f is known as into function

and range of fis {a, b, c}.
(iv) Onto Function

A function f : A — B is said to be onto if there is no element of B, which is not an image of some

element of A.

For example:Let A {1, 2,3},B={a, b,c}and f: A — B is defined as

A B
f
> a
> b
> ¢
Domain Co-domain

Here f is known as onto function and range of f is {a, b, c}.
Inverse of a Mapping
Let f : X—Y be a one-one ontomapping and f (x)=y, ¥xeX, YyeY.

Now we define a mapping f “*:y—X such that f “1(y)=x, ¥xeX, VyeY,



where f is called the inverse of f. Here f is inversible mapping because inverse of f is exists.

Example.7. Let f be a function f : R — R is defined as f(x)=x?, VxeR, where R is the set of real

numbers. Find the value of f (9).
Solution: It is given that f be a function f : R — R is defined as f(x)=x2, VxeR.
We have f1(9) = {xeR: f(x) = 9}= {xeR: x* = 9}

={xeR:x =3, -3}= {3, -3}.

Inclusion Mapping
Let X be any subset of Y. Then the mapping f:X — Y is said to be inclusion mapping if
f (X) = x, VxeX.

For example: Let A={1,2,3},B={1,2,3,4}and f: A — B is defined as

A B
f
1 > 1
2 > 2
,> 3
4
Domain Co-domain

Here f is known as inclusion mapping.
Identity Mapping

Let f: X — X be a mapping. Then f is said to be identity mapping if f (X) = x, YxeX.



For example: Let A={1, 2, 3}and f: A — Ais defined as

A A
f
1 > 1
2 > 2
3 » 3
Domain Co-domain

Here f is known as identity mapping.

Constant Function
Let f:X — Y be a function. Then f is said to be constant function if f (x) = a, YxeX

i.e., a function f :X — Y is known as constant function if each element of X is mapped onto a
single element of Y.

For example: Let A={1, 2, 3}, B={a, b, c} and f : A — B is defined as

A B

Domain Co-domain

Here f is known as constant function, i.e., f (1) = b, f(2) =b, f(3) =b.



Real Valued Mapping
A mapping f : X — R, where R is the set of real numbers, is known as real valued mapping.
Characteristic Function

Let U be the universal set and A be a subset of U. Then the real valued function f: U— {0, 1}

such that fA(X) = {1’ T xe A is known as characteristic function of A.
0, if xgA

Zero Function

The function f : X — Y is known as zero function if the image of each element of X under f is
zero i.e.,f(x) = 0.

Injective (or Injection) Mapping

A mapping f is said to be injective (or injection) which is either one-one into or one-one onto.
Bijective (or Bijection) Mapping

A mapping f is said to be bijective (or bijection) which is both one-one and onto.

Equality of Mapping

Letf: X — and g : X — Y be two mapping. Then the mapping f and g are said to be equal
mapping if and only if f (x) = g(x) YxeX.

In case of equal mappings, the domains of mappings must be the same.
Composition of Functions or Product of Functions

Letf: X —»Y and g : Y— Z be any two mapping. Then a function gof : X — Z is defined as



gof = g[ f (X)], vxeX is known as composition of functions.
Example.8. Let f(x)=x?, g(x)=x+3, ¥xeR. Find gof and fog.
Solution:Here gof=g[f(x)]= g(x?)= x> + 3
and fog = f[g(x)]= f(x + 3)= (x + 3)>= x% + 6x + 9.

Example.9. Let f: X —>Y and g : Y— Z be any two mapping such that f(x)=log (1+x), g(x)=¢€*,
then find the value of gof (x) and fog (x).

Solution: Here we have gof : X —Z is a mapping such that
gof (x) = g[f(x)] = gllog(1+x)] = 't = (1+x),
Now we have fog (x)=flg(x)] =f(e*) =log(1+ €¥).

Example.10. Let f: R —R and g : R— R be any two mapping such that f(x)=x2, g(x)= x3, ¥xeR.
Find the values of gof (x) and fog (x).

Solution: Here we have gof : R —R is a mapping such that

gof (x) = gIf(X)] =g(x*) =(x*)° =x°

and fog = flg(x)]= f(x*)= (x°)* = x°.

1.12 Finite and Infinite Sets

A set is said to be finite set if it contains finite number of elements, otherwise it is infinite. Let A
be the set of all students of an engineering college, B is the set of vowels and N is the set of

natural numbers. Here A and B are finite set and N is infinite set.



1.13 Contable and Uncountable Sets

A set which is either finite of denumerable is called a countable set. An infinite set is said to be
denumerable or enumerable if it equivalent to the set N, the set of all natural number. For

example, Let A= {1,2,3,4,5,6}. Then A is finite so that by definition A is countable. A set A

is called on uncountable set if A is an infinite set and A is not cardinally equivalent to N. Here

we state the following theorem without proof:

1. Every infinite set contains an enumerable set.
2. The open interval (0, 1) is not enumerable.

3. The set of all irrational numbers is uncountable.

Note: 1. R and C are uncountable sets.

1.14 Summary

A set is a well-defined collection of objects. The objects in a set are known as members or
elements or points. A multi set is an unordered collection of objects in which an object can appear
more than once. A set is said to be empty set or null set or void set if it contains no element. It
is denoted by ¢ or {}. Let A and B be any two sets. If all the element of A belongs to B, then A
is said to be subset of B. If a set contains a number of sets as its elements then it is known as set
of sets or family of sets or class of sets. Two sets A and B are said to be disjoint sets if they have

no common elements.

A set is said to be finite set if it contains finite number of elements, otherwise it is infinite.Let A
be any set. The power set of A is the set of all subsets of A.Index set is a set whose elements are
used as names. The difference of A and B is the set of elements which belong to A but do not
belong to B. The symmetric difference of A and B is the set of elements which belong to A or B
but do not belong to A and B.

The Cartesian products of A and B is the set of all ordered pairs (a, b) such that a€A and beB



i.e.,AxB ={(a, b) : a€A, beB} and B xA ={(b, a) : beB, a€A}. Let R be a relation from a set A to
a set B. Then R from B to A is known as the inverse relation of R if and only if R™* ={(y, X) : (x,
y)eR}. Let A= {a, b, c} be any set. Then a relation R on a set A is known as an identity relation
if R ={(a, a) : acA}.

A relation R on a set A is known as reflexive relation if and only if aRa, vacA. A relation R on
a set A is known as symmetric relation if and only if aRb =bRa Vv(a, b)eR. A relation R on a set
A is known as anti-symmetric relation if and only if aRb, bRa =a =b v(a, b)eR. A relation R on
a set A is known as transitive relation if and only if aRb, bRc =aRc, (a, b, ceA). A relation R on

a set A is known as an equivalence relation if and only if it is reflexive, symmetric and transitive.

A relation which is transitive but not an equivalence relation is known as an order relation. If R
is an order relation on a set X, then xRy and yRz=xRz, VX, y, z€ X. A relation R on a set X is said
to be a partial order relation if it is at the same time (i) Reflexive (ii) Anti-symmetric and (ii)
Transitive. A set X together with a partial order relation defined on it, i.e.,(X, <) is known as a

partial ordered set.

Let A and B be any two non-empty sets. If there exists a rule or a correspondence f which
associate each element of A has a unique image in B then f is a function or mapping from A to B.
A function f: A—B is called one-one if xi, Xo€A, we have x1 = Xo=f (X1 ) = f (X2 ) or X1 X2=f (X1)
+f (x2).

A function f: A — B is said to be many-one if at least one element of B has two or more than
two pre-image in A. A function f: A — B is said to be many-one if at least one element of B has
two or more than two pre-image in A. A function f : A — B is said to be into if there is at least

one element of B, has no pre-image in A.

A function f: A — B is said to be onto if there is no element of B, which is not an image of some
element of A. Let f:X—Y be a one-one onto mapping and f (x)=y, VxeX, YyeY. Now we define

amapping f liy—X such that f “}(y)=x, VxeX, VyeY, where f* is called the inverse of f.



1.15 Terminal Questions

Q.1. List of elements of the following sets:
(@) {x: x €l, x<11} (b) {x : x €N, x is even and x <17}
(c) {x:x €N, xis prime and x < 21} (d) {x : x is a solution of x? + 3x + 2 = 0}

Q2LetU=1{1,2,3,....,9, 10} be the universal set and A = {1, 2, 3,4}, B={3,4,7.9},C =
{2, 5, 6, 8}. Find

(a) A, B', C’ (b) AUB, B UC, and AUC
(c) AN B, B NC, ANC (d)A-B,B-A,B-C,C-B,A-CandC—A.
(e) A@B, B @C, and A@C
Q.3 Which of the sets are equal?
(@) {x: x s a letter in the word ‘wolf ’} (b) {x : x is a letter in the word ‘follow’}
(c) The lettters f, I, 0, w. (d) The letters which appear in the word ‘flow’.
Q.4 Is a set A comparable with itself?
Q.5. Find the power set of {1, 2}
Q.6.LetA={a,b,ctandB={c,d, e, f}. Findthe A—B,B—-Aand A @B.
Q.7. Prove that AN(B — C) = AN B) — (ANC)

Q.8. If A={a, b, c}. find all the subsets of A.



Q9. LetA={1,2}andB={3,4}. Find AxBand B x A.

Q.10. Give an example of a relation which is symmetric and transitive but not reflexive.
Q.11. Give an example of a relation that is reflexive but neither symmetric nor transitive.
Q.12. Give an example of a relation which is transitive but not reflexive or symmetric.
Q.13. If the function f : R — R be defined by f(x) = x?, find f*(g) and f*(-g).

Q.14. If the function f : R — R be defined by f(x) = x? — 1 then find f1(-2) and f* {8, 15}.

Answers
1.{a){-3,-2,-1,0,1,2, 3} (b) {2, 4,6,8, 10,12, 14, 16}
(©{2,3,5,711,13, 17,19} (d) {-1, -2}

2.(a)A'=1{5,6,7,8,9,10},B'=1,2,5,6,8, 10}, C'= {1,3,4,7,9, 10}

(b) AUB={1, 2, 3, 4, 7, 9}, BUC={2, 3, 4, 5, 6, 7, 8, 9} and AUC={1, 2, 3, 4, 5, 6, 8}

(©)ANB={3,4},BNC=¢pandANC={2}.

()A-B={1,2},B-A={7,9},B-C={3,4,7,9}, C-B={256, 8},

A-C={1,3, 4} andC—A={5,6,8}.

€ ADB={1,279},BdC={2 34,56, 78, 9}and A®C = {1, 3, 4, 5, 6, 8}.

3. All the given sets are equal.



4,Yes

5.¢, {1}, {2}, {1, 2}.

6.{a, b}, (d,e, f}and {a, b, d, e, f}

8. A ¢, {a}, {b}, {c}, {a, b}, {b,c} {a c} {a b, c}

9. AxB={(1,3} (1,4),(23), (2 4Hrand BxA={@3,1),{3 2} (4 1), 4 2)}

10. A={a, b,c}and R={(a, a), {b, b), (a, b), {b, a)}.

11. A={a, b, c}andR ={(a, a), (b, b), (c, ¢), (a, b), (b, )}

12. A={a, b,c,d}and R={(a, b), (b, ¢), (a, )}

13{3,-3} ¢

14. ¢, {3, -3, 4, — 4}.
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2.1 Introduction

Metric spaces play a crucial role in the realms of topology and analysis. In mathematics, a metric
space consists of a set endowed with a metric, a function that establishes the distance between
each pair of elements within the set. These spaces serve as a foundation for defining key concepts
like convergence, continuity, and completeness, which are essential in both analysis and
topology. By providing a framework for studying properties of spaces broader than Euclidean
realms, metric spaces allow mathematicians to extend classical geometric ideas to more abstract
settings. While the most familiar example is Euclidean space, where distance is measured by the
Euclidean metric, numerous other examples exist. These include spaces of real numbers, where
the metric is the absolute difference, as well as more abstract spaces like function spaces, where

the metric is defined through integrals or other methods.

2.2 Objectives

After studying this unit, the learner will be able to understand the :

e Metric spaces and Pseudo Metric Space

e Discrete Metric Space or Trivial Metric Space

e Metrizable and Usual Metric and Norm

e Inequality, Triangular Inequality and An Auxilary Inequality
e Holder Inequality and Cauchy Schwarz-Inequality

e Minkowski’s Inequality and Minkowski’s Inequality in terms of norms



2.3 Metric Spaces

Metric spaces are fundamental in the study of topology and analysis. In mathematics, a metric

space is a set equipped with a metric, which is a function that defines a distance between each

pair of elements in the set. Let X be a non-empty setand d (x, y) , VX, y € X is adistance function.

A real valued function d : X x X — R® which satisfies the following axioms:

(i) d(x,y)=0,vx,ye X .

(i) d(x,y)=d(y,X),VX,y e X (symmetric property)

(i) d (x,y)<d(x,z)+d(z,y), VX,y,ze X (Triangular in equality)
(iv)If x=y = d(x,y)=0

W) Ifd(xy)=0 = x=y.

Then d is said to be metric on X and the pair (X,d) is called a metric space. The real number

d(x,y)is called the distance of xto Y.

The first axiom means that the distance between any two points xand y of X is a non-negative

real number.The second axiom means that the distance does not depend on the order of the points

xand Y. The third axiom means that in the triangle, the sum of the length of two sides is greater

than the length of the third side and equal sign shows that three points are in a straight line.The

fourth axiom means that if two points xand y are the same then the distance between xand yis

equal to zero.

The fifth axiom means that if the distance between two points xand y is equal to zero then the

points xand Y is equal to zero then the points x and y are the same.



Examples

Example.1. Let R be the set of real numbers and let d be the function d : RxR — Rdefined

by d(xy)=[x-y,vx,yeR.
Then show that d is a metric on R.

Solution: Itis given that d : Rx R — Rdefined by

d(x,y)=|x-y|, ¥x,yeR (D)
To show that d is a metric on R if it satisfies all the following five axioms:
(i d(x,y)=0, VxyeR

= |x — y| = O'is always a non-negative real number.

(i) d(x,y)=d(y,x), ¥x,yeR

We have
d(xy)=[x-y|
=|-(y—x)|
=]y —x|

=d(y,x), ¥x,yeR
(i) d(x,y)<d(x,z)+d(z,y), Vxy,zeR

We have



d(xy)=[x=y|
=[(x=2)+(z-v)|
<|x—z|+|z-y]|
ie,d(x,y)<d(x,z)+d(z,y), VxyzeR
(iv) If x=y = d(x,y)=0, ¥x,yeR

We have

x=y = x-y=0
=  |x-y|=0
= d(xy)=0, Vx,yeR

W Ifd(xy)=0 = x=y, Vx,yeR

We have
d(x,y)=0
= |x-y|=0

= X=Y, vX,yeR

Hence d is a metric on R. Also the above metric d (X, y)=|x—y|,¥x,y € R is known as

usual metric for reals.



2.4 Pseudometric Space

A pseudometric space is a generalization of the concept of a metric space, where the distance
function (called a pseudometric) satisfies all the properties of a metric except possibly the
requirement that the distance between distinct points must be positive.The key difference
between a pseudometric and a metric is that in a pseudometric space, the distance between
distinct points can be zero. This means that two different points can be "infinitesimally close” to

each other, but not necessarily equal.

Pseudometric spaces are particularly useful in situations where a notion of distance that allows
for such "coincidence" is desirable, such as in certain areas of analysis, geometry, and topology.
Let us consider X be a non-empty set. If a real valued function d: X x X — Rsatisfies the

following axioms:

(i) d(x,y)=0, vx,yeX.

(i) d(x,y)=d(x,y), VX,yeX (symmetric property)

(i) d(x,y)<d(x,z)+d(z,y), Vx,y,ze X (Triangular inequality)

(ivyIf x=y = d(x,y)=0

then d is known as pseudometric on X and the pair (X .d ) is known as a pseudometric space.

Note: Every metric on X is pseudometric on X but a pseudometric on X is not necessarily a

metricon X .

Examples

Example.2. Give an example of a pseudo metric which is not metric,

Solution: Consider a mapping d : Rx R — Rdefined by



d(x,y)=‘x2—y2‘, vX,y €R ..(1)
To show that d is a metric on R if it satisfies all the following five axioms:
() d(x,y)=0, Vx,yeR
= ‘xz—yz‘ZOis always a non-negative real number.
(i) d(x,y)=d(y,x), Vx,yeR
We have
d(x,y)z‘xz—yz‘
)
e
=d(y,x), Vx,yeR
(i) d(x,y)<d(x,z)+d(z,y), VxyzeR
We have
d(x,y):‘xz—yz‘
o -2)o( )
|

s‘x2—22‘+‘22—y , VX, y,zeR

ie,d(x,y)<d(x,z)+d(z,y), VxyzeR



(v If x=y = d(x,y)=0, Vx,yeR

We have

= ‘xz—yz‘:o
= d(xy)=0, Vx,yeR

MIfd(x,y)=0 = x=y, ¥Vx,yeR

We have
d(x,y)=0
= ‘xz—yz‘ 0

= X ==Y, i.e., property is not hold good.
Therefore d (X, y)=0does not necessarily imply that x = y.
For example, we have

=0while 2 #-2.

d(2,-2)=[(2)" ~(-2)

Hence d is not a metricon R.



2.5 Discrete Metric Space or Trivial Metric Space

In mathematics, a discrete metric space is a metric space in which the distance between any two

distinct points is either 0 or 1. This metric essentially measures whether two points are the same

(distance 0) or different (distance 1). The discrete metric induces the discrete topology on the

set, where every subset is open, making the space a particularly simple and well-behaved
example in topology. Let X be any non-empty set and d be the function defined by

d(x,y)={0’ ?fx=y

1 ifx=y

Then d is said to be metric on X and (X, d )is called discrete metric space or trivial metric

space.

Examples

Example.3. Let Xbe a non-empty set and let d:XxX —>Rbe defined by

1, ifxzy
d(x,y):{o if x=y

Then show that d is a metric on X.

Solution: Using definition of d, we have

() d(x,y)=0, ¥x,y e X

= Oor 1, i.e., always a non-negative real number.
(i) d(x,y)=d(y,x) Vx,yeX.

When x=y



= d(x,y)=0=d(y,x)

and when x =y

= d(x,y)=1=d(y,x), Vx,yeX

(i) d(x,y)<d(x,z)+d(z,y), VX, y,zeX

If zy=zthen we have
d(x,y)=d(x,z)=d(z,y)=1

ie,d(x,y)<d(x,z)+d(z,Yy).

Butif X =Y = Z = Othen we have

d(x,y)=d(x,z)+d(z,y)=0

ie,d(x,y)<d(x,z)+d(z,y).
(iv)If x=y = d(x,y)=0, Vx,yeX

. 1, ifx=zy
It is given that d (X, y) = 0 ifx—y

v) d(x,y)=0 = x=y ¥x,yeX

L 1, ifx=zy
Itis given that d (x,y) = 0. ifx—y

Hence, d is a metric on X . The space (X,d) is known as discrete metric space.



2.6 Metrizable and Usual Metric

Metrizable metrics are significant because they allow us to use the tools and concepts of metric
spaces in the study of topological spaces, providing a bridge between the more concrete world
of distances and the more abstract world of topologies.A set X is said to be metrizable if and

only if a metric can be defined on X .

The term "usual metric space” typically refers to a specific metric space that is commonly
associated with a particular set.The metric defined on a real line is called usual metric or

euclidean metricon R.

For example: 1.The usual metric space on the set of real numbers R is the space where the

metric is the absolute difference, given byd (X, y)=|x—y|,vx,yeR.

2.The usual metric space on the set of complex numbers C is the space where the metric is the
modulus of the difference, given by

d(z,w)=|z—w|, vz,weC.

2.7 Norm

The size of an element X is a real number denoted by || || and is called as norm (which is

distance d (x, 0)) if satisfies the following properties:
() [[x]|=0
(i) || x|| = Oif and only if x=0

(i) [[rex] = [Pl L= = 1III}



) [x+y[<[Xx|+[lvl
Now we define a metric d for a set X with the help of norm as follows:
d(x,y)=[x=y||, vxyex

This metric is known as metric induced by the norm. Let f and g be two real bounded functions

defined on the closed interval [O,1]. Define the norms of f and g by
1
I£]l=[ | f (>)dx and
1
lall=f,lo ()| ax vxe[0,1]

The induced metric is defined by

d(f,g)=|f-d

:j:|f (x)—g(x)|dx.

2.8 Inequality

Suppose a number p > 1then we say that a number g is known as conjugate index of p if

q
i+£:1for l<p<o
q

q=c for p=1

q=1 for g=oo — :

The graph of



)
pq

For 1< p, q < o, the first condition in the above combination can be put in any one of the form

—+—_—=1
P 4
= (p—l)(q—l):l,where p:iand q:L
q-1 p-1
= P+dq=pq

Hence only 2 is number which has it own conjugate 1 and coare considered to be conjugate

index.

2.9 Triangular Inequality

If X,and X, are two real numbers, then we have
[ %[ <Pl x|
If z,and z, are two complex numbers, then we have
|2, + 25| < |z,] + |2,
In general, we have
2, + 2, + .ot 2, | <z | + |2, |+ |2,

where Z,,2Z,,Z5,........ » Z,, are complex numbers.



Note: If z,and z,are two complex numbers, then we have

e A PR A EI AN

1+|z, +z,| 1+]|z| 1+|z,|

2.10 An Auxilary Inequality

a’ b’ .
If 1< p<ow and l+1 =1then ab <—+—,where a,bare two non-negative real number.
P q

Proof: Suppose if a=00rb =0, the result is obvious. Now let us consider a case, when

a=0,b=0.
Suppose f(t)=1-2+At—t*for 0<A<1 (1)
Then fr(t)=2-at"* ..(2)
For minimum, we have
f'(t)=0

= A— At =0where 2, 1—1=#0
= t=1 ...(3)
From equation (2), we have
fr(t)=-A(A-t*? ...(4)

At t =1, we have



fr(t)=-2(2-1)(1)"°
=—/1(l—1)
=/1(1—/”L)
= Positiveas 0< A <1
Hence, f'(t)=0,f"(t)>0at t=1
Thus, f(t)is minimum at t=1,
f(1)<f(t)
This implies 1-A+A-1<1-A+ At —t*
or 1-A+At-t*>0

(1-2)+at>t* ...(5)

Putting 4 :l in the equation (5), we get
p

(1—%j+%tzt”p ...(6)
But l+1:1
P q
= —-1-=
p q

Substituting these value in equation (6) we get



(1—1+1j+£t > tYP
q p

1
q

1

S 1

p

p
Put t= Z—q in the equation (7), we get

1/p
qg b* p b
1 p
or a+ quzt);i/p
q p q
o oL
q P -9
or b—+a—zabqp
q p
q p
or b—+a—2ab
q p
1 1
4=
P q
= 1—
p q
or a—+b—2ab
p q

Where a,b are two non-negative real number.

=1 = p+g=pq

=1

...(8)

(7



2.11 Holder Inequality

n n 1/ p n 1/q
If &. b are non-negative real numbers, then > a,b, < [z aP j [Z b/ j
i=1 i=1

i=1

where l+1=1and p>1.
P Q

Proof: To prove this inequality, first we prove an auxilary inequality follows as:

p q
AL B e (1)
P q
a b, . .
Now put A=———-and B =———inequation (1), we get,
Z) (o)
1 af 1 b ab.

(o] " o o]

Taking sum of the result from i=1to n.

1 2¥ a2
e o T

+12 Z;:aibi
() (3w)

or

S|P
o



Zaibi 1 1
= 1> = {'.'—+—=1}
P qQ

1/ p 1/q
() (3)
n 1/ p n 1/q n
Hence, [Z aipj [z bﬂ) >>"ab,
i=1 i—1 i—1
Note: 1. Holder’s inequality for complex numbers, we have
n n 1/p n 1/q
San<(Sar] (T
i=1 i=1 i—1
2. Holder inequality for integrals, we have

[ fgdx s(jb f de)up (I:qux)llq

3. Ifwe put p=2(i.e., g=2) in holder inequality, we get

Where 8,0, are non-negative real numbers. This inequality known as cauchy’s inequality.

2.12 Cauchy Schwarz-Inequality

If a. b (i=12,3,....., n) are real or complex numbers, then



or 2_lab ] =|lalo]

Proof: Here we have

()

Jaff = > Jaf
' .2
and ||| —Zlbl

If we take a =0o0r b =0then the inequality reduces to equality. So we let a = 0and b = 0.we
know that

Geometric mean < Arithmetic mean

X+Yy

=N \/Esz
Jy

Putting ~/x H =% then we get
& ||| - & |” +|bi|2

- 2
[afliiell— flaf® el

or zi [alb| _ > lal” Z|b|

2l fal® o]

&b ] _ - :
or =1+1 {using equation (2)}
22 A



n

or 2_lallb ] = lal.[lb]

i=1

n n 1/2 n 1/2
2 2

2.13 Minkowski’s Inequality

If p>1and a,,b, (i =1,2,3,...,n) are non-negative real numbers, then

i=1

Proof: We know that the holder inequality is
n n 1/p n 1/q
S ab, S[Zaipj [be‘j ()
i=1 i=1 i=1

Where 1+1=1and p>1

P q
For i+£=1
P q
= g+ pP=pq

q(p-1)=p ...(2)

Now, we have

n n

>(a+h)" =3 (a +b)(a +h)""

i=1 i=1



~Sa(arn)Sn(arn)”

By equation (1), we have

izl:(a +b )" <(I2nl:alpju (Z(a ) N 1)jl’q
+( :1 bipjllp (Z(ai +b )q(P—l)jllq

By equation (2), we have

Sy <(Ea] (Baenr]

i=1

o(B) (Bnr)

n 1/q
Dividing by (Z(ai +h, )pj both sides, we get

i=1

3

or [iz::(ai+bi)pj/p£(in ailefij[ian:bip]lfp

Note: Minkowski’s inequality for integrals

(J.(f+g) ) (prdx) (I:gpdx)ﬂp

Where f and g are non-negative real valued function defined on [a,b]and p>1.

=}

i=1



2.14 Minkowski’s Inequality in terms of norms

Let a;.b; (i =1,2,3,....,n) be two n—tuples of real or complex numbers, then
n 1/2 n 1/2 n 1/2
(Saor | =[S «(Shr]
i=1 i=1 i=1
or [a-+bll<afl+]j]

Proof: We know that
Ja+blf = a +b
i=1

n
=> |a, +b|.]a; + b
i=1

IA

> Jay +b].(Ja| o)

E! +bi|.|ai|+24|ai +b.|.|b,|
i=1

n
i=1

Using cauchy-Suchwarz inequality, we have
n 1/2 n 1/2
Joeof < 3o +oi | (e
i=1 i=1
n 1/2 n 1/2
(Zanr) (Shr]
i=1 i=1
or la+b|* <||a~+b]. [al| + []a+b]. o]

or la+bj<]ja]+[a+b]



Examples

Example.4: Let R”Dbe the set of all ordered pairs of real numbers and let d : R>xR? — R°

defined by d(x,y)= \/(X1 —v,) +(x,—,)" then show that d is a metric on R?.
Solution : Using definition of d, we have

(i) d(x,y)=0, Vx,yeR* where Xx=(X,X,)and y=(Yi,Y,)

d(x, y)\/(x1 V) (% - Y, )2 > 0is always a non- negative real number.

(i) d(x,y)=d(y,x), Vx,yeR?

We have

d(xy)= \/(><1 )+ (%)

=\/(yl—x1)2+(y2—x2)2
=d(y,x), vxyeR?
(iiiyd (x,y)<d(x,z)+d(z,y), Vxy,zeR?

We have

d(xy)=J(x =) +(% —¥,)



:\/{(X1—21)+(21_y1)}2 +{(X2_Zz)+(22 _yZ)}z

<J(x-2) +(z-%,) +y(x% -2, +(z,—v,)’ (Using Minkowski’s inequality)
ie,d(xy)<d(x,z)+d(z,y), VX y,zeR®
(iv)If x=y = d(x,y)=0, Vx,yeR?
We have
x=y = (ax)=(nY.)
=  (x-y,)=0and (x,-y,)=0
= (x,—y,) =0and (x,~y,) =0

= (Xi_Y1)2+(X2_YZ)2:O

= \/(xl—yl)2+(x2—y2)2 =0
= d(xy)=0, vx,yeR?
V) IfFd(xy)=0 = x=y, Vx,yeR’
We have

d(x,y)=0

= (4= y.) +(%,—,)’ =0

= (Xi_Y1)2+(X2_y2)2=O



= (xl—yl)Z:Oand (x,—,)" =0
=  X%-Y,=0and (x,—-,)=0

= (ax)=(%Y.)

=  X=Y.

Hence, d is a metric on R?.The metric space (Rz,d) is known as the Euclidean metric space.

Example.5: The usual metric for R® is defined by

3

d(x, Y)=\/{(X1—yl)2 +(%-Y,) +(X3—y3)2} or d(x, y)=\/{2(xr —yr)z}

r=1
Where X=(X,%,%),Y=(Y1,¥,,¥s) € R®. To show that d is metric on R®.
Solution: Using definition of d, we have

(i) d(x,y)=0, vx,yeR®

= \/{(xl v ) (% =Y, ) (% - y3)2} > Ois always a non-negative real number.

(ii)d(x,y)=d(y,x), vx,yeR®

We have

d (X, Y):\/{(X1_y1)2 +(X2 _3/2)2 +(X3_y3)2}




=d(y,x), vx,yeR®
(iii) d(x,y)<d(x,z)+d(z,y), VX, y,zeR®

We have

d (X' Y):\/{(X1_y1)2 +(X2 _yz)2 +(X3_y3)2}

o T R R P Y LR A

s\/(xl—zl)z+(x2—22)2+(x3—23)2Jr\/(zl—yl)z+(22—y2)2+(23—y3)2
VX, Y, Z € R® (Using minkowski’s enequality)
ie,d(x,y)<d(x,z)+d(z,y), VX y,zeR®
(iv)If x=y = d(xy)=0, vx,yeR’
We have
X=y = (XX X)=(Y0 Y2 Vs)
= Xx—-Y,=0, X,-y,=0and X,-y,=0
= (%Y%) =0,(%-Y,) =0,(x-y;) =0

= (Xi_yl)z+(X2_y2)2+(X3_Y3)2:O

= \/(Xl_yl)z+(X2_Y2)2+(X3—y3)2 =0

= d(x,y)=0, Vx,yeR’®



V) Ifd(x,y)=0 = x=y, Vvx,yeR’
We have

d(x,y)=0

:\/(Xl_yl)z_'_(XZ_y2)2+(x3_y3)2 =0

= (=Y) (%Y ) +(%-Yy:) =0

= (4=%) =0,(x-y,) =0and (x,-y,)’ =0
=  X-¥%=0, X,—-y,=0and X,—y,=0

= (0% %)= (Y0 Yo Vs)

= X=Y.

Hence, d is ba metric on R®. The metric space (RS,d ) is known as the Euclidean plane space.

2.15 Summary

Let X be a non-empty set and d(X,y),Vx,y € X is a distance function. A real valued function

d: X x X — R which satisfies the following axioms:

(1) d(x,y)=0,vx,yeX.
2 d(x,y)=d(y,x),Vx,ye X . (symmetric property)

(3) d(x,y)<d(x,z)+d(z,y),Vx,y,ze X.(Triangular in equality)



@) If x=y=d(x,y)=0.
(5) Ifd(x,y)=0=x=y.

Every metric on X is pseudo metric on X but a pseudo metric on X is not necessarily a metric

onX.

0,ifx=y
Let X be any non-empty setand d be the function defined by d (X, y) = 1, ifx=y then

d is said to be metric on X and (X,d)is called discrete metric space or trivial metric space. A

set X is said to be metrizable if and only if a metric can be defined on X . The metric defined on

areal line is called usual metric or Euclidean metricon R .

The size of an element X is a real number denoted by ||X|| and is called norm (which is distance

d(x,0))if satisfies the following properties.

@ [x|[=0

) |x|=0ifandonlyif x=0

@) kol =[]l L=<l = I}

@ [x+yl<[x|+[yl

Now we define a metric d for a set X with the help of norm as follows:
d(x,y)=|x=y|, vxyeX

This metric is known as metric induced by the norm.

If Z,and Z, are two complex numbers, then we have



|2, + 2, |2,] |2, ..
Ti|z vz, 1+|z] 1+|z)| Uz + 2ol =[z]+ |zl

a” b .
Ifl<p<o and 1 + 1 =1then ab < — +—, where a, b are two non-negative real number.
P q P

n n 1/ p n 1/q
If &,b. are non-negative real numbers, then Z ab, < [Z aipj [Z b j
i=1 i=1

i=1
where 1+1 =land p>1.

P q

If a.b, (i =1,2,3,.....,n)are real or complex numbers, then

n n 1/2 n 1/2 n
Slani=(Slal ] () o lab]<[allo]
i—1 i=1 i=1 =

If p>1and a.b, (i =1,2,3,...,n) are non-negative real numbers, then

2.16 Terminal Questions

Q.1.Explain the metric spaces.

Q.2. What do you mean by Pseudo metric space.

Q.3. Give an example of a pseudometric which is not a metric. Is every metric a pseudo-metric?

Q.4.State and prove Holder’s ineuality.



Q.5. State and prove Minkowski’s inequality.

Q.6. State and prove Cauchy-schwarz inequality.

Q.7.Does d(x,y)=(x— y)2 define a metric on the set of the real numbers? Give reason for your

answer.

Q.8. Show that d(x,y) =, /|x— y| defines a metric on the set of all real numbers.

Q.9. Let R[0,1] denotes the class of all Reimann integrable function f from f [0,1]into R
_Letamapping d : R[0,1]xR[0,1] >R defined by d(f,g)=[ |f —g|(x)dx

= _[:| f (x)—g(x)|dx. Then to show that d is pseudometric but not metric on R.

Answers

3. A function d:RxR—> Rdefined by d(x,y)=|x*-y?|Vvx,yeRis a pseudometric on R but

not metric on R . Yes, every metric is a pseudometric but converse is not true.

12. d(x,y)=(x—y) not define a matric on the set of all real number because triangular

inequality is not satisfied as:
d(xy)=(x-y)’
—(x-z+z-y)
=(x=2)" +(z-y) +2(x~2)(z~y)
> (x-2) +(2-y)

Hence d(x,y)>d(x,z)+d(zy), which is not true.
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3.1 Introduction

In mathematics, the concepts of bounded and unbounded metric spaces are related to the behavior
of distances within the space.A metric space is said to be bounded if there exists a real number

M such that the distance between any two points in the space is less than or equal to M. Formally,

a metric space (X,d) is bounded if there exists a real number M such that for all

d (x, y) <k, VX, y e X.Conversely, a metric space is said to be unbounded if it is not

bounded, meaning that there is no such real number M that satisfies the above condition for all

pairs of points in the space.

For example, the real line R with the usual metric is an unbounded metric space, as there is no
finite value of M that bounds the distances between all pairs of points on the real line. On the
other hand, the closed interval [0,1] in R with the usual metric is a bounded metric space, as the

distances between any two points in the interval are always less than or equal to 1.

In this unit we shall discuss about the bounded and unbounded metric spaces, and Quasi metric

with their applications in details.

3.2 Objectives

After studying this unit the learner will be able to understand the:

. Bounded and unbounded metric spaces

. Quasi Metric and their applications



3.3 Bounded and Unbounded Metric Space

The concepts of boundedness and unboundedness in metric spaces relate directly to the distances
between points in the space. In a bounded metric space, there is a finite upper bound on the
distances between any two points, meaning that no two points are "too far apart.” In contrast, an
unbounded metric space lacks such a finite bound, allowing for the possibility of arbitrarily large

distances between points.

Let (X,d)be a metric space and let k be a positive real number. If there exists a number such

that

d(x,y)<k,Vx,yeX

Then (X, d)is known as bounded metric space.A metric space which is not bounded known as

unbounded metric space.

Examples

Example.1. Let (X,d)be a metric space and consider d” (x, y) = %(y)) vx,y e X.
+d(x,y
Show thatd”is a bounded metric on X.
Solution: Consider (X,d) a metric space and d” (x,y)= M VX, y e X.
1+d(x,y)

Using definition of d, we have

(i) d"(x,¥)=0, Vx,y e X

d : :
—(X’ y) > 0 is always a non-negative real number.
1+d(xy)



(i) d"(x,y)=d"(y,x) ¥vx,y e X

d(x,y)

_ 4
1+d(y,x)

=d"(y,x) vx,ye X

(i) d"(x,y)<d"(x,z)+d " (z,y), Vx,y,ze X

o have d(x,y) - d(x,z)+d(z,y)
weh 1+d(x,y) 1+d(x,z)+d(z,y)

- d(x,2) N d(z,y)
C1+d(x,z)+d(z,y) 1+d(xz)+d(z,y)

d(x,2) N d(z,y)

T 1+d(x,z) 1+d(z,y) Xy, zeX
ie,d (x,y)<d (x,2)+d"(z,y), VX, y,zeX
(ivIfx=y = d(xy)=0, vx,yeX
We have x=y = d(xy)=0

= %:o, VX, y e X

W Ifd(xy)=0 = X=Yy

We have 1d(x,y) =0




= d(xy)=0
= X=Yy Vx,yeX

Hence d”is a metric on X.

Now we have

d(x.y)

d"(xy)= 1+d(x,y)

<1 vVx,yeX

Hence the given metric d”is bounded metric on X .

3.4 Quasi Metric

A quasi-metric (or semimetric) is a generalization of the concept of a metric that relaxes the
requirement that the distance between distinct points must be positive.Consider X be a non-
empty set and supposeX,Y,z € X be arbitrary. A mapping d: X x X —[0,) satisfies the

following axioms:
(i) d(x,x)=0
(i) d(x,y)=d(y.x)

(iii) d(x,y)<d(x,z)+d(zy)



is known as quasi-metric on X.The set X together with the quasi-metric d is called auasi-

metric space denoted by (X,d). The quasi-metric is said to be finite if and only if

d(x y)<owo,Vx,yeX.

Hence the key difference between a quasi-metric and a metric is that in a quasi-metric space, the
distance between distinct points can be zero, meaning that two different points can be
"infinitesimally close” to each other but not necessarily equal. Quasi-metrics are used in
situations where a notion of distance that allows for such "coincidence" is desirable, such as in

certain areas of analysis, geometry, and topology.

Examples

Example.2. Let (X,d)be a metric space and let x, y, z be any three points of X . Then

show that
d(x, y)2|d (x,z)—d(z, y)|

Solution: Using definition of d, we have

d(x,z)<d(xy)+d(y,z) (Using triangular inequality)
=d(x,y)+d(z,y) (Using symmetric property)
Thus we have d(x,y)>d(x,z)-d(z,y) (1)
Now we have
d(z,y)<d(z,x)+d(xY) (Using triangular inequality)

=d(x,z)+d(xy) (Using symmetric property)



d(x,y)>d(z,y)-d(x2z)

i.e. d(x,y)z-[d(x,2)-d(z,y)]
From theequations (1) and (2), we have

d(x,y)z[d(x,z)-d(z,Y)

Example.3. Let ( X,d)be a metric space and let d, be defined by
d, (x,y)=min{d(x,y).1},vx,y e X

Show that (X, d, ) is a metric space.

Solution: Using definition of d, we have

1. d(xy)=0, vx,yeX
= min {d (X, y),l} > 0 is always a non-negative real number.

2. dy(xy)=d(y,x), ¥x,yeX
= min{d(x,y),l}:min{d(y,x),l}, VX, Y,z e X

3. d(xy)<d(x,z)+d,(z,y), VX, y,zeX

Suppose if d, (X, y)=min{d(x,y),1} =1then we get

1<1+1

If d, (x,y)=min{d(x,y),1} =d(x,y)then we get

.(2)



d(x,y)<d(xz)+d(zy), ¥x,y,ze X
4. lf x=y = d(xy)=0wx,yeX
We have x=y = d(xy)=0
= min{d(x,y),1} =min{0,1} =0
= dy(xy)=0VxyeX,
5. 1f d,(x,y)=0then x=y
=  min{d(xy),1}=0
= d(x,y)=0 = X=y Vx,yeX

Hence d, is a metric on X and ( X, d, ) is a metric space.

Example.4. Suppose d metric on X. Determine the all constant k such that:

(i) kd (x,y) (ii) x(x,y)+kisametricon X .

Solution: Given that (X,d) is a metric space i.e., it satisfies all the axioms of metric. To

determine all constants k, we have

d,(x,y)=kd(x,y)

1. Using first axiom of metric, we have

d(x,y)=0

= kd(x,y)=0



= k>0
Now we let d”(X,y)=d(x,y)+k
2. Using fifth axiom of metric, we have
d"(x,y)=0if x=y
= d(xy)+k=0if x=y

=  k=0.

Example.5. Let R*denote the set of all ordered pairs of real numbers. Show that the

mapping (function) d:R*xR?* — R° defined by
d(X, y)=|x1—y1|+|X2—y2|,where X=(X1’X2)’y:(y11y2)e R?

Is a metric on RZ.

Solution: Using definition of d, we have
1. d(x,y)20 Vx,yeR*=|x —y;|+|x, — ¥,| 2 Ois always a non-negative real number.
2. d(x,y)=d(y,x), VX yeR*=|x —y|+[% = V| = |y, = X|+|y, = %,| ¥X,yeR?
3. d(x,y)<d(x,z)+d(z,y), ¥x,y,zeR?

b=yl b = ol =06 = 2) + (2= )|+ = 22) + (2= )|

S{|X1_Zl|"'|zl_3/1|}'"{|X2 _Zz|+|zz _Y2|}

(Using triangular inequality)



={Px =zl 2|} +{z = il + [z - v}
ie, d(xy)<d(xz)+d(zy) Vxy,zeR?
4. 1f x=y=d(x,y)=0Vx,yeR?
= (X, %) =(Y1¥,) =% —Yy,=0and X,—y,=0
=[x —y,|=0and |X, = Y,| = 0%, — y;|+]X, = ¥,| =0, VX, y € R?
5. Ifd(X,y)=0=x=yVX,yeR* =[x —y,|+|X,— y,|=0=|x —y,/=0and
X, —¥,|=0
=X -Y,=0and X,-y,=0
= X =Yand X, =Y,
= (3,)= (1= ) 0 y <R

Hence, d is a metric on R2.

Example.6. Let R?be the set of all ordered pairs of real numbers and let d : R? x R? — R°be

defined by d (x, y)=max.{[x — y,|:[, = v, }

Where X=(X,%,),Y =(Y.,¥,) e R?

Is a metric on RZ.

Solution: Using definition of d, we have



1. d(xYy)20, VxyeR*= max.{jx —y]||x —y,|}>0is always a non-negative real

number.

2. d(x,y)=d(y,x),vx,yeR?

= max.{|x = Y,[.[%, = .|} = max.{|y, = x|.]y, = %[}, ¥x,yeR?

3. d(x,y)<d(x,z)+d(z,y)vxy,zeR?

= max.{|x1 = Vol %, = yz|} = max'{[xl_zl)+(zl_ y1)|:H:1(X2 ~2,)+(2,~ Y, )H}

<max.{|x, - z|.|z, - y,|} + max.{|x, — z,| +|z, - y,|} {since |x+ y|<|x|+|y|therefore

|x+y|£max.{|x1|.|x2|+max{|yl|.|y2|}
ie, d(xy)<d(xz)+d(z,y), ¥xy,zeR’

4. 1f x=y=d(x,y)=0, vx,y e R?
= (%% )=(Y,¥,) =% -y, =0and x,—y,=0
= | —Y,|=0and |x,-y,|=0
= {l =il =y, =0
:>max.{|x1—y1|.|x2—y2|=0, X,y € R?

5 Ifd(x,y)=0=x=y, Vx,yeR’

= max. {[x, =y, [, = ¥, =0

= % =wl-x. = y,[} =0



= X, —y,|=0and |x, - y,|=0
= X —Y,and X, -,
> (% =%) = (Y21 ¥2), WX YR

Hence, d is a metric on R?.

Example.7: The usual metric for R"is defined by d: R" xR" — R such that

o(x9)= [ S5

r=1

Where X=(X, Xy, X, ), Y = (V1 Yoo ¥y ) €R”

To show that d is metric on R".

Solution: Using definition of d, we have

(1) d(x,y)=0VxyeR"

= \/(Z(xr -y, )2] > 0is always a non-negative real number.

r=1

2 d(xy)=d(y,x), ¥x,y,zeR"

= B

(@) d(xy)<d(x,z)+d(zy), Vxy,zeR"

\/[Zn:(y, —xr)z}, X,y eR"

r=1



(4)

(5)

(Using Minkowski’s inequality)

If x=y = d(xy)=0 VxyeR

\/(Xl_yl)z +(% =Y, ) et (X, —y, ) =0

3% -w) -

r=1

If d(x,y)=0=>x=y Vx,yeR"



Hence, d is a metric on R".The metric space (R“, d ) is called the real Euclidean space.

Example.8. Let X =X ,xX,,where X,and X, are metric spaces with metrics d,and d,

respectively. Show that a metric d is defined by d (X, y)=d,(x,y,)+d,(X,,,)

Where X = (xl, xz)and y =(yl, yz) is a product metric space.
Solution: Using definition of d, we have

1. d(xy)=0, Vx,ye X =d,(x,¥;)+d,(Xy,)>0is always a non-negative real number.

2. d(x,y)=d(y,x),vx,yeX

=d, (%, Y1) +d, (%, ¥, ) =d; (Vi %) +d, (Y5, %), VX, y e X

3. d(x,y)<d(x,z)+d(z,y), ¥x,y,ze X

d(xy)=d, (%, y,)+d, (X, Y,) <d; (X, ¥,)+d, (2, ¥,)+d,(%,,2,)+d,(2,,,)
ie, d(x,y)<d(x,2)+d(z,y) vx,y,ze X

4. If x=y=d(x,y)=0,vx,yez
=>X=y=(X,%)=(¥¥,)=d (X, y,)=0and d,(x,,y,)=0

=d, (%, ¥,)+d,(%,y,)=0=d(x,y)=0, ¥,y € X

5. If d(x,y)=0=>x=y, ¥x,ye X



=d, (%, ¥;)+d,(%,,y,)=0
= d, (%, y,)=0and d,(x,,y,)=0
=X =Yyand X, =Y,
= (%%) = (Y1 ¥2)
=>X=Y, VX,ye X.

Hence, d isametricon X and (X,d) is a product metric space.

3.7 Summary

Let (X, d)be a metric space and let k be a positive real number. If there exists a number such

that d (X, y) <k, VX, y e X then (X,d)is said to be a bounded metric space. A metric said

which is not bounded known as unbounded metric space.

Consider X be a non-empty set and suppose X, Y,z < X be arbitrary. A mapping

d: X x X —[0,00) satisfies the following axioms:
(i) d(x,x)=0

(if) d(x,y) =d(y.x)

(iii) d(x,y)<d(x2z)+d(z,y)

is known as quasi-metric on X.The set X together with the quasi-metric d is called quasi-

metric space denoted by (X,d). The quasi-metric is said to be finite if and only if



d(x,y)<owo, VX yeX.

3.8 Terminal Questions

Q.1. What do you mean by Bounded and Unbounded Metric Spaces.

Q.2. Explain the Quasi metric space.

Q3. Let (X,d)be a metric space and let X, X,,Y;, Y, € X . Then show that

|d (%, ¥,)—d (X, y2)| <d(%,%)+d (Y., Y,)-
Q.4. Give two different matrices for the set R of real numbers.

Q.5. Let b be a metric for a non-empty set X . Show that d, defined as d, (x,y)=2d(x,y)is

also a metric for X .

Q.6. Let X be a non-empty set and let d be a real valued function of ordered pairs of elements

of X which satisfies the following conditions:
(i) d(x,y)ifand only if x=y
(i) d(x,y)<d(x,z)+d(y,z),Vx,y,z e X . Show that d is a metricon X .

Q.7. Let (X ,d ) be any metric space and let K be a positive number, then there exists a metric d,

for X such that the metric space (X,d, ) is bounded with §(X)<k.

Q.8. If dis a metric for a non-empty set X , then show that the function d,defined by

d, (x,y)=min{2,|x—y|} is a metric for X .



Q.9. Let (X,d)be a metric space and let X, Y, Z, Whe any point of X . Then

|d(x, y)—d(z,w)|sd(x,z)+d (y,w).

Answer

4. (i) Consider a functiond : RxR — R defined by d(x,y)=|x-y|, VxyeR.

0,ifx=y

(ii) Consider a functiond : Rx R — R defined by d (x, y) = {1’ i xy
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Metric spaces are used in engineering for tasks such as optimization, control theory, and signal
processing. They provide a mathematical framework for analyzing and solving problems in these
areas. Many important concepts in topology, such as convergence, compactness, and
connectedness, are defined using the notion of a metric. Metric spaces play a crucial role in
modern mathematics, providing a framework for studying the properties of spaces and their

relationships in a precise and rigorous manner.

Metric spaces play a foundational role in mathematics, especially in analysis and its applications.
They provide a generalization of the concept of distance beyond Euclidean spaces, enabling
mathematicians to explore properties of spaces in more abstract settings. Metric spaces are
valuable in geometry, offering a framework to study geometric properties of spaces that cannot
be described by traditional Euclidean geometry.

In the fourth unit, we shall discussed Sequence spaces I, Function space, sequence space IP,
Hilbert sequence space 12, Open and closed ball, sphere, neighbourhood of a point, limit point,
equivalent Metrics.

In the fifth unit we shall discuss the Sequence in a Metric Space, Convergent Sequence in a
Metric Space, Bounded Set, Cauchy Sequence, Continuity and Homeomorphism of metric
spaces, Homeomorphic Spaces.

Complete Metric Space, Incomplete Metric Space, Contor’ Intersection theorem, Completeness

of Care discussed in details in the unit sixth.
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4.1 Introduction

Sequence spaces are a specific type of metric space that is particularly useful in analysis and
functional analysis. In sequence spaces, the elements are sequences of real or complex numbers,
and the metric is often defined in terms of a norm. Sequence spaces and their properties are
important in the study of functional analysis, especially in the context of studying the

convergence and properties of sequences of functions.

Function spaces in the context of metric spaces refer to spaces where the elements are functions
and the metric is used to define distances between these functions. These spaces are fundamental

in various areas of mathematics, especially in analysis and functional analysis.

4.2  Objectives

After reading this unit the learner should be able to understand about:

. Sequence spaces I and Function Spaces C [A, B]

= Sequence Spaces [S or F (Frechet Space)]

. Space B(A) or Bounded Function

. Sequence space IP
. Hilbert sequence space I2
. Open Ball, closed ball and sphere

. Neighbourhood of a point, limit point of A Set

. Equivalent matrices



4.3 Sequence Spaces [~

Sequence spaces are a significant concept in functional analysis and various branches of
mathematics. Let X be a non-empty set. Then a sequence in a set X is any mapping from the set
of natural numbers into X . Here we shall discuss some examples of metric sequence spaces

which are following:

Sequence Spaces (~

Let X be the set of all bounded sequences of complex number i.e., every element of X is a

complex sequence

X=(X, X5, e, x=(%)
For all i=1,23,..., wehave

[x|<C,

WhereC, is a real number which may depend on x but does not depend on i then the metric

dfined by
d (x,y)=sup[x —y|
Where y=(y;)e Xand N={1,2,3,,...}
Now we shall show that the function d satisfies all the five axioms of a metricon X .
1. d(x,y)=0, Vx,yeX

=> sup|x, — y;| = 0is always a non-negative real number.

ieN

2. d(xy)=d(y,x), Vx,yeX



:>sig§>|xi—yi|:si,g£)|yi—xi|, VX, y e X
3. d(xy)<d(xz)+d(z,y), VX, y,zeX
=>sup|x, ¥, =sup|(% 2 )+(z )
gsighf)|xi—zi|+sig£|zi—yi|, VX, Y,z e X
4. If x=y=d(x,y)=0, Vx,yeX
=>X=y=>X=Y,=>Xx -y, =0
:>|xi—yi|=0:>sil:£)|xi—yi|=0, X,y e X
5 1fd(x,y)=0=>x=y, ¥VxyeX
:>sit€Jh|?|xi—yi|=O:>|xi—yi|=0:>xi—yi=O
=X =Y, =>X=Y, VX,yeX

Hence, d is a metric on X and (X,d)is called metric space. This metric space is denoted by

(*.Thus, (”is a sequence space because each element of X is a sequence.

4.4 Function Spaces C[A,B]

Sequence spaces are fundamental in the study of linear operators and functional spaces. Let X

be the set of all real valued functions X, Y, Z,...., which are functions of independent real
variable tand are defined and continuous on a given closed interval | =[a,b]. Then the metric

defined by



d(x, y)=rrt]3x

X(t)=y(t)
Now we shall show that the function d satisfies all the five axioms of a metric on X .

. d(x,y)=0, Vx,yeX

= max
tel

x(t)- y(t)| > 0 is always a non-negative real number.

. d(xy)=d(y,x) Vx,ye X

max x (t) -y (t)| = max

y(t)—x(t)| vx,yeX.
o d(xy)<d(x,z)+d(z,y), ¥xy,zeX
= max|x(t) -y (t)] = max|{y (t) - z(t)} + {z(1) -y (1)}

< max
tel

x(t)—z(t)|+max

tel

z(t)-y(t), vx,yeX.
I x=y=d(x,y)=0, Vx,yeX
=>x=y=x(t)=y(t)=x(t)-y(t)=0

|x(t)—y(t)|=0= max

tel

X(t)-y() =0 VxyeX
I d(xy)=0=>x=y Vx,yeX

= max|x(t) -y (t)| =0 =[x (t) - y(1)| =0
=X(t)-y(t)=0=x-y=0

=>Xx=Yy VX,yeX



Hence, dis metric on X and (X,d)is called metric space. This metric space is denoted by

Cla,b].

Note: C[a,b]is also known as function space because every point of C[a,b]is a function,

4.5 Sequence Spaces | S or F (Frechet Space) |

Let X be the set of all (bounded or unbounded) sequences of complex numbers and the metric
d is defined by

d(X y) Zzl—yl|

1+|x — y,|
Where x=(x )and y=(Y,)
Now we shall show that the function d satisfies all the five axioms of a metric on X.

1. d(xy)=0, VxyeX

o X
1 & > Ois always a non-negative real number.
i=1 2I 1+ |X - yl |

2. d(xy)=d(y,x), Vx,yeX

= 1 |Xi_yi| > 1 |yi_xi|
= 570 = TR gy ye x
= 2' 1+ % — V| ;2' 1+]y; — x| X“ye

3. d(xy)<d(xz)+d(z,y), VXxy,zeX

=1 x-vl &1 |(x-z)+(z-v)

j e -
=2 1+(x _y-| = 1+|(Xi —2,)+(z, _yi)|




el |(x-2) $1 [a-yl

TS 14|(x - 7)+ (g, —yi)‘Jr 2 1t |x —z]+[z, - vi|

SEN L 1 |z -y
—_—— —— VXY, X
7' 1+|(% —z) lez'1+zi—yi xYze

4. If x=y=d(x,y)=0, Vx,yeX

=>X=y=>%-Y,=0=|x—-y|=0

% = Yl _o= 1L % =Yl _
L+[% -yl 2" 1+|% —yi]

1%y

———=0 WxYy, X.
Il2'1+|x—y,| %Y.z€

5 Ifd(xy)=0=>x=y VxyeX

N | )| 1 |-y % = Vil
0= TN g, TN
Zl | x—y|)| — 1+]% -y :1+|xi—yi|

=0
=X -y|=0=x-y,=0=>x=y,=>x=y VxyeX.

Hence, d is metric on X and (X,d) is called metric space. This metric space is denoted by S

or F (Frechet space).

4.6 Space B(A) or Bounded Function

The space B(A) or the space of bounded functions on a set A is a fundamental concept in

functional analysis. Let X be a non-empty set and A be a subset of R . Each element X € B(A)



is a function defined and bounded on a given set A and the metric defined by

d(x,y)=sup|x(t)-y(t)

teA
If in a case of an interval A[a,b]c R, we write B[a,b]in place of B(A).

Now we shall show that the function d satisfies all the five axioms of a metric on X .

1. d(xy)=0, vx,yeX

= sup|x(t) - y(t)| > 0is always a non-negative real number
teA

2. d(xy)=d(x,y), ¥x,yeX
d(x,y)=d(xy), ¥x,yeX

3. d(x,y)<d(x,z)+d(z,y) Vx,y,zeX

= sup|x(t) - y (0] =supl{x(t) ~2()} +{2(6) -y (1)
=< sup|x(t)~2(t) =supl{z(t) -y (1)}] Wy, zeX.
4. If x=y=d(x,y)=0, Vx,yeX
=x=y=x(t)=y(t)=(x(t)-y(t)=0
= [x(t)=y(t) =0=>sup|x(t) =y (1)) =0, VxyeX.

5 Ifd(xy)=0=>x=y, Vx,yeX

= sup|x(t) -y (1) =0= [x(t) - (1) =0

teA



=x(t)-y(t)=0=>xy=y(t)
=>X=yVX,yeX.

This show that x — yis bounded on A. Hence d is metric on X and (X,d)is called metric

space. This metric space is denoted by B(A) .

4.7 Sequence Space |°

I° Space is also Banach space. Suppose p =1is a fixed real number and each element in the
pace I”is a sequence X = (X, X,,...) of numbers such that |%,|” +|X,|” +........ converges.
Thus,

S Ix [P <o (p>1 fixed)

i=1

The metric defined by

d(x, y)=@lxi - yil"]ﬂp

Where y=(y,), > |y’ <wand VX, y e X
Now we shall show that the function d satisfies all the five axioms:

(i) d(x,y)=0, Vx,ye X

o 1/p
= (Z]xi ~v, |pj > 1lis always a non-negative real number for p>1.
i=1



() d(x,y)=d(y,x)vx,yeX

© 1/p o 1Up
:{Z|xi—yi|pj :(Z|xi—yi|pj vx,yeX.
i=1 i=1

(i) d(x,y)<d(x,z)+d(z,y)vx,y,ze X

Up

= (S-u | =[Sl -2+ta -

(Using Minkowski inequality)

s(i|xi —zi|pJﬂp +(§\(zi -y, )\pjﬂpw, y,zeX.

i=1
(iv) If x=y=d(xy)=0VxyeX
szy:’Xinin_yi:O

:>|Xi_yi|=0:>|xi_yi|p:0

w - Up
:>Z|xi—yi|p:0:>(2|xi—yi|pj =0(p=1) Vx,yeX.
i=1 i=1

(v) Ifd(x,y)=0=x=y, Vx,yeX.

= (3x - |=0= Sl -yl 0= [x - =0
i=1

i1
:>|Xi_yi|:0:>Xi_yi:0:>Xi =Y

=X=y Vx,yeX.



Hence, I” is a metric space.

4.8 Hilbert-Sequence Space |

The Hilbert-sequence space 1° is a fundamental example of a Hilbert space, which is a complete

inner product space. If we put p =2, in sequence space |” then the metric becomes

d(x, y)=(iz::|xi—yi|2], X,y e X.

This is known as Hilbert-sequence space 1>. Now we shall show that the function d satisfies all

the following axioms of a metric on X .

(1) d(x,y)=0, ¥x,yeX

1/2
2 . .
= (Z|xi ~yi| J > Ois always a non-negative real number.
i=1

2 d(x,y)=d(y.x), ¥x,yeX

. 1/2 »
=[Sh-uf | =[Sh-xl] wyex.
i=1 i

i=1

(3) d(x,y)<d(x,z)+d(z,y)vx,y,ze X

:(2|Xi _yiﬂm :(i‘(xi ~7,)+(z, -y, )‘ZJM

i=1

(Using Minkowski inequality)



OO 12 © 1/2
S[Z|Xi_zi|2j +[Z|Zi_yi|2] vX.y,ze X
i=1 i=1
@) If x=y=d(x,y)=0 ¥x,yeX

>X=y=>x=y,=>Xx-Y,=0
o 1/2
:>|xi—yi|:0:>|xi—yi|2:O:[Z|xi—yi|2] =0 Vx,yeX
i=1
W I d(xy)=0=>x=y ¥X,yeX
3(Z|Xi—yi|2j :0:>Z|Xi_yi|220
i=1 i=1

:>|Xi_Yi|2=OZ>|Xi_Yi|:0
=>X-Y,=0=>Xx=y,=>x=y VXxyeX

Hence 1%is a Hilbert space.

4.9 Open Ball, Closed Ball and Sphere

Let (X,d)be a metric space. Let X, € X and r >0 the B(X,r)={xe X :d(xX)<r} isan

open ball centered at X, with radius I . It is also denoted by S, (X,).

Let (X,d)be a metric space. Let X, € X and r>0then B(%,X)={xe X :d(x,x,)<r}is a

closed ball centered at X, with radius I . It is also denoted by s, (X, )or B(%,,r).



Let (X,d)be ametric space. Let X, € X and r > 0then S(X,,r)={x:X :d(x,x)<r}
is a shpere centered at X, with radius r.
Distance Between Sets

Let Aand B is two non-empty subset of a metric space (X, d ). The distance between Aand B

denoted by d (A, B)and defined as
d(AB)=inf {d(a,b):acAbeB}
Obviously,
(i) d(AB)>0
(ii)d (A B)=0if AnB=¢

However, it is not necssary that if d (A, B) =0 then AnB = ¢. For example, let a metric space
(R,d), where dis a usual metric on Rand let A=(0,1)and B =(1,2). We have

d(AB)=0 but AnB=4¢
Distance of a point from a given set

Let (X, d)be ametric space and Ac X . Let x € X be arbitrary. Then the distance between X

and the set A is denoted by d(x, A) and defined as
d(x,A)=inf {d (x,a):ae A}

ie., d (x, A) is the greatest lower bound of the distance between X and point of A. Obviously,



(i) d(x,A)>0
(i) d(x, A)=ifxe A

However, it is not necessary that if d(x, A)=0then xe A. For example, let a metric space

(R,d), where d is usual metricon Rand let A={xeR:0<x<1}. We have d (0, A)=0but

0gA.

Diameter of A set

Let (X,d)be a metric space. Let Abe a non-empty subset of X . Then the diameter of Ais

denoted by d (A) and defined as
d(A)=sup{d(a,a,):a,a, A}
Obviously,(i) d(A)>0

(ii) If d(A)is finite then Ais said to be bounded otherwise unbounded.

Examples

Example.l. Let X ={0,1,2,3,4,5}and A={2,3,4}. Find the distance between 1

and A.

Solution: We know that d (X, A) = inf {d (x,a):ae A},Vx e X

Here d(12)=[2-1=1d(13)=[3-14=2,d(L4)=|4-1]=3



d(1,A)=inf {d(1,2),d(1,3),d(14)}
=inf {1,2,3}
=1.
Example.2: Let d be the usual metric defined on d i.e.,
d(x y)=|x-y|, vx,yeR’
If A=[1,2]and B =[3,5], find the diameters of Aand B .
Solution: Given that A=[1,2] and B =[3,5]
d(A)=sup{d(a,a,):a,a, c A}
=sup{d(aa,):a,a, €[1,2]}
=1
d(B)=sup{d(b,b,):b,b, e B}
=sup{d(b,,b,):b,b, €[3,5]}

=2.

4.10 Neighbourhood of a point

Let (X,d)be a metric space. Let xe X . A subset N of x is said to be a neighbourhood of X if



there exist an open set G such that

xeGc N

or

Let xe X then N is said be a neighbourhood of X, if r >0and s, (xo)is an open set such that

xeS, (%) N

4.11 Limit point of aset

Let Abe a subset of a metric space (X,d). Then a point x of X (which may be on may not be

a point A) is called an limit point of A if each open ball centered at X contains at least one

point of A different from X .

Derived set

The collection of all limit points of a set Ais called derived set of A. It is denoted by D(A)or

A'.
Isolated set

Let A be a subset of a metric space (X,d). A point x e Ais said to be an isolated point of A if

and only if it is not an limit point of A.

Discrete set

Let A be a subset of a metric space (X,d). Aset Ais said to be a discrete set if each point of



A is an isolated point of A.

Dense-In-Itself

Let Abe a subset of a metric space (X,d). Ais said to be dense-in-itself if and only if every

point of A is a limit point of A.

Perfect Set

Let A be a subset of a metric space (X ,d ) Then Aiis said to be perfect set if and only if
A=A'{or D(A)}

Closure

Let Abe a subset of a metric space (X,d)the closure of A, is the union of A and all its limit
points, i.e.,
A=AUA' or AUD(A)

Note:

1. A= {ofall closed set containing A}
2. A isclosed if and only if A=A
3. A=A

4. Adis the set of all adherent points of a given subset Aof X .

5. Ais the smallest closed set containing A.



Interior Point

Let Abe a subset of a metric space (X,d). The interior of A is the union of all open sets

contained in A, i.e.,
A =u {of all open sets contained in A}

Note:

1. Aisopensetifandonlyif A"=A.

2. (A) =A.

Exterior Point

Let Abe a subset of a metric space (X,d). The exterior point of A, is the interior of the

complement of A, i.e.,

ext(A)=(X~A)
or ext(A)=X~A.

Boundary point

Let Abe a subset of a metric space (X, d ). The boundary point of A, is the set of all those

elements of A which neither belong to A" or nor to exterior.

Dense set and Separable Space

Let Abe asubset of a metric space. Then A is said to be dense in X if A= X .And X is said to



be separable if it has a countable subset which is dense in X .

Examples

Example.3: Show that the closure B (x,, r) of an open ball B(X,, ) in a metric space can

differ from the closed ball B[ x,,r].

Solution: We know that the distance of a point x e X from a set Ais given by
d(x,A)=inf{d(x,a):ac A}
=d(x,A)=0if xe A

Let (X,d)be a discrete metric space

1if x=y
0 if x=y

d(x, y)={
Suppose X, € X if r >0, r <lwe have
B(Xo,r)={X€ X id (% %)< r}
i.e.,d(Xx,)=0 or 1 for each of whichis <r

=xeX =>xeB(x,r),r<1



(%, %)=0 <r
d(X%,x)=1 Vrifx=x,
To show that closure B(x,,r) of an open ball B(X,,r)in a metric space can differ from the

closed ball B[x,,r]. Let (X, d)be a discrete metric space and X, € X then

B(L %) ={X%} ..(1)

But the closed ball B[1, x, ] = X

= B(1x,) # B[1 %]

Also consider any other metric space ( X, d;)

Let xeB(x,,r) (2
Then d(x,B(%,r))=0
This implies that there exist any e>0and Yy € B(X,,r)such that
d(xy)<e
=d(x,%)<d(x,y)+d(y,%)

<e+r

=d(xX)<r

= xeB[x, I] ©)



= B(%,,r) = B[X,,r]

This implies closure of an open ball B(x,, r) is subset of closed ball but not both are equal.

4.12 Equivalent Metrics

Two metricsd, and d, on the same set X are said to be equivalent metrics if and only if every

d, —open set is d, —open and every d,—open set is d, —open.
For example: Let ( X, d)be a metric space and let

d(xy)

B ety)

VX, ye X

Then d, is also a metric on X and the two metrics d and d, are equivalent.

Examples

Example.4: The space |I” is not separable.

Solution: Let y = (yl, Yo Yas ) be a sequence of zeros and ones. They Yy el”with y, we

Ra3

associate a real number Y, whose binary representation is + > >

el
2
consider the set of points in interval [O,1]is uncountable each Yy, < [0,1] has a binary

representation and different y,'s have different binary representation. Hence, there are

uncountably many sequences of zeros and ones. The metric on |I° shows that any two of them



which are not equal must be of distance 1 apart. If we let each of these sequences be the center

of a small ball say, of radius 1/3, these balls do not interest and we have uncountable many of

them. If M is any dense set in |”each of these non-intersecting balls must contains an element

of M .

Hence, M cannot be countable. Since M was an arbitrary dense set, this show that |” cannot

have dense subsets which are countable consequently, 1”is not separable.

Example.5: The space |I” with 1 < p < +oois separable.

Solution: Let S be a set of all sequencesY of the form
Y =(Y1 Y20 Yareee0s ¥0: 0,0,..0)

Where nis a positive integer and the Y;’s are rational. Let M is countable. To show that M is

densein I”. Let X (%) 1" be arbitrary.

Then for every e>0there is an n (depends on €) such that

Since the rationals are dense in R, for each X; there is a rational Y;close to it. Hence, we can

find y; € M satisfies.

n _ p E_p
;|Xi yi| < 2

It follows that



[d ()] = -yl + 3 | <<’

i=n+1

Thus, we obtained d (X, y)<eand M is dense in 1" .

4.13 Summary

Let (X,d)be a metric space. Let X, € X and r >0 the B(x,,r)={xe X :d(xX)<r} isan

open ball centered at X,with radius . It is also denoted by S, (xo).

Let (X,d)be a metric space. Let X, € X and r>0then B(%,X)={xe X :d(xX,)<r}isa

closed ball centered at X, with radius I . It is also denoted by s, (X, )or B(%,,r).

Let (X,d)be a metric space. Let X, € X and r>0then S(%,r)={x:X:d(x,x)<r} is a

shpere centered at X, with radius I .

Let Aand B is two non-empty subset of a metric space (X, d ). The distance between Aand B

denoted by d (A B)and defined as d (A, B) =inf {d(a,b):ac AbeB|

Let (X, d)be ametric space and Ac X . Let x e X be arbitrary. Then the distance between X

and the set A is denoted by d (X, A) and defined as d (x, A)=inf{d(x,a):a < A}

Let (X,d)be a metric space. Let Abe a non-empty subset of X . Then the diameter of Ais

denoted by d (A) and defined as d (A)=sup{d(a,,a,):a,a, € A}

Let (X,d)be a metric space. Let x e X . A subset N of X is said to be a neighborhood of X if



there exist an open set G suchthat xeGc< N.

Let Abe asubset of a metric space (X,d). Then a point x of X (which may be on may not be

apoint A) is called an limit point of A if each open ball centered at X contains at least one point

of A different from Xx.

The collection of all limit points of a set Ais called derived set of A. It is denoted by D(A)or

A"

Let A be a subset of a metric space (X ,d ) . A point x € Ais said to be an isolated point of A if

and only if it is not an limit point of A.

Let A be a subset of a metric space (X,d). Aset Ais said to be a discrete set if each point of

A is an isolated point of A.

Let Abe a subset of a metric space (X ,d ) Ais said to be dense-in-itself if and only if every

point of A is a limit point of A.

Let A be a subset of a metric space (X ,d ) Then Aiis said to be perfect set if and only if
A= A'{or D(A)}

Let Abe a subset of a metric space (X,d)the closure of A, is the union of A and all its limit

points, i.e, A=AUA'or AU D(A)

Let Abe a subset of a metric space (X,d). The interior of Ais the union of all open sets

contained is A i.e, A =u {of all open set contained in A}

Let Abe a subset of a metric space (X,d). The exterior point of A, is the interior of the



complement of A, i.e., ext(A)=(X~A) or ext(A)=X~A.

Let Abe a subset of a metric space (X,d). The boundary point of A, is the set of all those

elements of A which neither belong to A" or nor to exterior.

Let A be a subset of a metric space. Then A is said to be dense in X if A= X . And X is said to

be separable if it has a countable subset which is dense in X .

Two metricsd, and d,on the same set X are said to be equivalent metrics if and only if every

d, —open set is d, —open and every d, —open set is d, —open.

4.14 Terminal Questions

Q.1. To show that 1”is a metric space.

Q.2. Define Hilbert-sequence space.

Q.3. Show that another metric d,on the setX in d (x,y)=max|x(t)—y(t)|,1 =[a,b] is

tel

defined by d, (x,y) = j'|x(t)— y(t)|dt

Q.4. Let C[0,1]denote the family of all Riemann integrable function from [0,1]into R.show that

the mappingd : C[0,1]xC[0,1] — R defined by

d(f,g)=:[|f —g|(x)dx =_:”(f (x)—g(x)|dx

Where f,g e CJ[0,1] is a pseudometric on C [0O,1]but not a metric on C[0,1].



Q.5. Show that the set C of all complex numbers is a metric space under

|2, — 2,

(1+|Zl|2)1/2 (1+|22|2 )1/2

d(z,z,)=

Q.6. Prove that the sequence space |7 is a metric space.
Q.7. Define open and closed balls.
Q.8. In a metric space, every open ball is an open set.

Q.9. Show that a finite set in a metric space has no limit point.

Q.10. Let (X, d) be a metric space. Let d, (X, y)=min{1,d(x,y)}. Show that d,is a metric

for X . Also show that the two metrics d and d, are equivalent.
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5.1 Introduction

Cauchy sequence is one in which the terms become arbitrarily close to each other as the sequence
progresses. This concept is important in the study of metric spaces, particularly in understanding
the completeness of a metric space. A metric space is said to be complete if every Cauchy

sequence in the space converges to a point in the space. A function f : X —Y between metric

spaces is a homeomorphism if it is bijective, continuous, and its inverse f is also continuous.

In simpler terms, a homeomorphism is a function that preserves both continuity and openness,

meaning that it maps open sets to open sets and vice versa.

Continuity in metric spaces have a great importance in analysis and topology, as it helps in
studying the properties of functions and spaces, including the convergence, limits, and

topological properties.

5.2  Objectives

After reading this unit the learner should be able to understand aboutthe

. Sequence in metric space

. Convergent sequence in metric space

. Bounded Set and their important theorem

. Cauchy Sequence and important theorems

. Continuity in Metric Spaces and important theorems

. Open mapping, Closed mapping and Bicontinuous mapping

. Homomorphism andHomomorphism Spaces



5.3 Sequence in Metric Space

Let (X,d) be a metric space. A sequence <X, >in X is a function from N to X.

N <y, > X (Metric space)

(Set of
natural
number)

The sequence <X, > is also denoted by {X,} or < X, X,, X3, ..., X,,.. >, VX, X,, €tc., € X and

they need not be distinct.

5.4 Convergent Sequence in a Metric Space

Let (X,d)be a metric space. A sequence <X, >in X is said to be convergent sequence if it

converges to a point x e X such that

limd(x,,x)=0

n—oo

and X is called the limit of {x,}.

Now we write limx, =xor X, —>Xas n—oo.

n—o



5.5 Bounded Set

A non-empty subset M < X is a bounded set if its diameter
s(M)= sup d (X, y)is finite.
Theorem 1: Let ( X,d ) be a metric space. Then
(i) A convergent sequence in X is bounded and its limit is unique.
(i) If X, > Xand y, = yin X then
d(X,,¥,) —>d(xy)

Proof: (i) Let <X, >be a convergent sequence in X, i.e.,X, = X.Then we take 1, find an nsuch

that
d(x,,x)<1, vneN

Using triangular inequality vn, we have
d(x,,x)<1l+a

Where a=max {d (%, X),d (X, X), ..., d (X, X)}

i.e., {X,}is bounded.



Now we assume
X, = Xand X, > Z

Using triangular inequality, we have
0<d(x,z)<d(xx,)+d(x,,z2)—>0+0

= X =1z, 1.e., uniqueness of limit point. Hence, a convergent sequence in X is bounded and its

limit is unique.

(ii) It is given that X, — X.

This implies, for a given > 0there exits a positive integer n,such that
d(x,x,)<e/2for n>n,

Also giventhat y, > Y.

This implies for a given >0, there exist a positive integer m, such that
d(y,y,)<e/2for n>m

If p=max(n,,my)then
d(x,X,)<e/2and

d(y,y,)<el2for n>p



Now we have
A (X, ¥ ) =d (%, Y)[ =[d (%, o) =d (%, ) +d (%, ¥) =d (X, )
<[d (%, ) =d (% = y)[+d (% ) —d (x.¥)

<d(y,y,)+d(x,x,)
<el2+e/2=€

Henced (X,,Y,) convergesto d(X,y).

5.6 Cauchy Sequence

Let <X, > be a sequence in a metric space (X,d) then <X, >is said to be cauchy sequence if
given any e>0there exist N, € N such that

mnxn, = d(x,,X,)<e.

Theorem 2: Every convergent sequence in a metric space is a Cauchy sequence.

Proof: Let <X, >Dbe a convergent sequence in a metric space (X ,d ) .

To show that < X, > is also a Cauchy sequence. Since < X, >a convergent sequence then <X, >

converges to a point say x e X i.e., Xis the limit point of X, .



Then for a given e> 0there exist n, € N such that
n>n, =d(x,,x)<e/2
For n,m = n,, using triangular inequality, we have

d(x,,%,)<d(x,x)+d(xXx,)

<el2+e/2 =€

sd (X, %,)<e vn,m>n,
Thus for any given e> 0, there exist me N such that

d(x,,X,)<eVnm=n,

Hence, <X, >is a cauchy sequence in X .

Examples

Example.1: To show that Cauchy sequence is not necessarily convergent.
Solution: Let X = R—{0} and d(x,y)=|x-y|

Consider a sequence <X, >, where

1. .
X, =—Iis sequence in X .
n



To show that < X, >is a Cauchy sequence but it does not converges in X .

Let e>0and n,be a positive number such that

Now d (Xos X, ) =X — X, |

1 1
d , <-4+
(xm xn) m+n

2
IfmznO:>m>—sothati=E
S m 2

Similarly, we have 1_e
n 2
d(xm,xn)sl+l:5+fze
m n 2 2
Thus, d(x,, X, )<e

Hence, <X, > is a Cauchy sequence. Obviously the limit of this sequence is 0 which does not

belongto X,i.e., <X, > does not converge in X .



5.7 Continuity in Metric Spaces

Let (X,,d;) and (X,,d,) be two metric spaces and f: X, — X,be a mapping of X,into X,.
Then f is said to be continuous at a point X, € X, if for every e> 0, there exist 0 >0 such that

d,(X,%) <& = dz(f(x),f(xo))<e

(X, dy) (Kg, dy)

or
Let X and Y be two metric spaces. Amapping T : X — Y is said to be continuous, if at a point

Xe X.

T(S;(x)=5.(T(x))

=0

S- r»T[_\c:]J

62>0

a(x) Tséf:-c]

Theorem.3: A mapping T of a metric space X into a metric space Y is continuous if and

only if the inverse image of any open subset of Y is an open subset of X .



Proof: Let T be continuous and let S Y be open and S, =T () be the inverse of S .

Y
M
®
S

To show that S, is open setin X .
(1) Suppose if S, =¢ then it is open set.
(2) If Sy #¢ then x, €Sy =T _eS or y, =T, €S

It is given that S is an open set then it contains an € -neighbouhood N of y, =T, . Since T is
continuous then X,has a & -neighbourhood which is mapped into N. Since N < S, we have

N, < S,.Sothat S, is openin X because X, € S, coversely, let the inverse image of every open

setin Y isanopensetin X .

Then for every X, € X and any € -neighbourhood N of T, the inverse image of N, of N is open.
Since N isopenand N,contains X,. Thus, N,also containsa & —neighbourhood of X,which is
mapped into N, because N, is mapped into N . Using definition, T is continuous at X, since

X, € X was arbitrary.

Hence, T is a continuous mapping from X into Y .



Theorem.4: A mapping f : X —Y of a metric space (X : dl) into a metric space (Y,dz) is

continuous at a point X, € X if and only if
X, % < f(x)->f(x)
i.e., fiscontinuous iff f issequentially continuous.
Proof: Let f:X —Y be continuous at X, € X . Let <X, >be a sequence in X such that

limx, =x,

To show that f is sequentially continuous or f(x,)— f(X,).Using continuity of f at X,, we

have given e> 0, there exist & > 0such that
d, (X, %) <8 =d,(f(x),f(x)<e )
Since X, =X,
So given & >0, there exists N, € N such that
d, (X,,%)<8 Vn=n, ...(2)
Using equation (1) and (2), we get the given >0 this implies there exist 6 > 0 such that
d, (X, %) <6

=d,(f(x,), f(x))<e vnxn,



Using definition, we have f(x,)— f(x,).
Conversely, let X, —> X, = f (x,) = f(X%,).

To show that f is continuous at X,suppose if possible, let f is not continuous at X,then given

e>0 there exist & > 0such that

d,(X,, %) <&

or d, (X, %) <8

Now consider the sequence of open ball such that
<S(xo,1j:ne N >
n
1
Take x e S [xo,—jbut d,(f (%) f(%))=0
n
From the sequence < X, >, we have X, = X,
1
As d, (X, %) <=
n

Also lim f (x,)# f(x,). Thisis contradiction. Hence f is continuous at X, .



5.8 Open Mapping, Closed Mapping and Bicontinuous Mapping

Let (X,,d,)and (X,,d,)be two metric spaces. A mapping f:X, — X,is said to be open

mapping if f [G]is d,-open where G is d,-open.

Let (X,,d;)and (X,,d,) be two metric spaces. A mapping f:X; = X,is said to be closed

mapping if f(F)is d,-closed whenever F is d, -closed.

Let (X,,d,)and (X,,d, ) be two metric spaces. A mapping f : X; = X, is said to be bicontinuous

mapping if f is open and continuous.

5.9 Homomorphism

Let (X,,d;)and (X,,d,)be two metric spaces. A mapping f:X,— X, is said to be

homeomorphism if

(i) f isone-one, onto or f is bijective.
(it) f is continuous

(iii) f 1is continuous.

5.10 Homomorphism Spaces

Let (X,,d;)and (X,,d, ) be two metric spaces. Aspace X, is said to be homeomorphic to another

space X, if there exists a homeomorphism of X, onto X,and then X,is said to be



homeomorphic image of X, or simply a homeomorph of X, . If X, is homeomorphicto X,, we

write X, = X,.

Note: 1. Let (X,,d;)and (X,,d,) be two metric spaces and let f be a bijective mapping of X,
onto X,. Then the following statements are equavelent

(i) f is homeomorphism

(i) f is continuous and open

(iii) f is continuous and closed

2. Homeomorphism is an equivalence relation in the collection of all metric spaces.

5.9 Summary

A non-empty subset M < X is a bounded set if its diameter 5(M )= sup d(x,y) is finite. Let

X,yeM

<X, > be a sequence in a metric space (X,d) then <X, > is said to be Cauchy sequence if

given any e>0 there exist Ny € N such that m,n>n, = d(x,,x,)<e.

m? “*n
Every convergent sequence in a metric space is a Cauchy sequence.

A mapping f: X —Y of a metric space (X : dl) into a metric space (Y,dz) IS continuous at a
point X, € X if and only if X, &%, < f(x,)—> f(x). Let (X,,d;)and (X,.,d,)be two
metric spaces. A mapping f : X, = X, is said to be open mapping if f [G] is d, -open where G

is d, -open.

Let (X,,d,)and (X,,d,) be two metric spaces. A mapping f: X, — X, is said to be closed



mapping if f (F)is d,-closed whenever F is d, -closed. Let (X,,d;)and (X,,d, ) be two metric

spaces. A mapping f : X, — X, is said to be bicontinuous mapping if f is open and continuous.

Let (X,,d;)and (X,,d,)be two metric spaces. A mapping f:X,— X, is said to be
homeomorphism if (i) f is one-one onto or f is bijective (ii) f is continuous (iii) f * is

continuous.

Homeomorphism is an equivalence relation in the collection of all metric spaces.

5.10 Terminal Questions

Q.1. Define the convergent sequence in metric space.
Q.2. Explain the Cauchy sequence in metric space.

Q.3. Give an example of a function which is continuous and closed but not open.

Q.4. Let (X,,d;)and (X,,d,)be two metric spaces and let f be a mapping of X,into X,.Then

f is continuous if and only if the inverse image of under f of every d,-closed set is d, -closed

set.

Q.5. Let (X,,d;) and (X,,d,)be two metric space and let the mapping f : X, = X,be one-one

onto. Then f isa homeomorphism if and only if

f(A)=f(A)forevery Ac X,.
Answer

3. Afunction f:R—Rsuchthat f (x)=1 VxeR.
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6.1 Introduction

The completeness of a metric space is a fundamental property with several important
consequences and applications in mathematics, particularly in analysis and topology. A metric
space is said to be complete if every Cauchy sequence in the space converges to a point in the
space. Completeness is an important property in analysis and topology, as it allows for certain
convergence properties to hold, and it helps distinguish between different types of metric spaces.
For example, the real numbers R are complete, while the rational numbers Q are not complete.
Completeness is closely related to the topological properties of a space. Complete metric spaces
are often easier to work with in terms of continuity, compactness, and connectedness. Many
fundamental results in analysis, such as the Bolzano-Weierstrass Theorem and the Heine-Borel
Theorem rely on the completeness of R". Completeness of a metric space is a fundamental
concept that underpins many important results and ideas in mathematics, making it a central

notion in the study of spaces and functions.

6.2  Objectives

After reading this unit the learner should be able to understand about the:

. Complete metric space and Incomplete metric space
. Contor’s Intersection theorem
. Baire Category Theorem

. Contracting Mapping
. Banach Fixed Point Theorem
. Isometric Mapping

. Completeness of C



6.3 Complete Metric Space

Let (X,d)be a meric space. Then (X,d) is said to be complete metric space if and only if

every Cauchy sequence <X, > in X converges to a pointin X .
For example: Let R be the set of real numbers and d be the usual metric on Ri.e.,

d(x,y)=|x-y|, vx,yeR

The metric space (R, d) is a complete metric space.

6.4 Incomplete Metric Space

Let (X,d)be a metric space. Then is said to be incomplete metric space if and only if there

exists some cauchy sequence < X, >in X which does not converge to a pointin X .
For example: Let X = (0,1] and d be the usual metric on X i.e.,
d(x,y)=|x-y|, ¥vx,yeX

The metric space (X, d)is incomplete.

Theorem.1: Let Y be a sub-space of a complete metric space (X ,d ) Then Y is complete

if and only if Y is closed.
Proof: Let (X,d) be a complete metric space. Let Y = X be also complete.

To show that Y is closed in X



i.e., show that D(Y)cY.

Suppose y € D(y),to show that y e y

Now we assume vy is a limit point of y so that
[s.(y)-{y}]nY =4, VeR

y isa limit point of Y = y is the limit of the sequence <Y, >.

Using a theorem, let (X,d ) be matrix space and Ac X, X, is said to be limit of A if and only if

there exist sequence of distinct point A converge to X,.
= <Y, > is convergent sequence which convergesto y .
= <Y, > is a Cauchy sequence which convergesto y .
yc X,<y,>Y:neN = <y,>X:neN>

In a metric space X , aCauchy sequence <Y, >convergesto y—=ye X . " (X .d ) is a complete

metric space. A Cauchy sequence <Y, > in Y iscomplete = y € X . Also Y iscomplete yeY.

Hence Y is closed.

Conversely, let Y is closed subset of a complete metric space. To show that Y is complete. Let

<Y, >Dbe a cauchy sequence in Y . Then <Y, >is also a cauchy sequence in X for Y < X.
Since (X,d ) is complete and <Y, > converges to some point, say ye X .

Case (1): When <Y, > has infinity many distinct points< 'y, > converges to y . This implies the

limit of the sequence <<y, >is ye X.

= the limit point of the set {y, :ne N}is y



yeD{y,:neN}cD(Y)

-+ AcB=D(A)c D(B)

=yeD(Y)cY [+Y is closed]
=yeY.

Case 2: When <Y, > has finitely many distinct points -.- y is repeated an infinite number of times

in the sequence <Yy, €Y :neN >, Thisimplies yeY .

.In either case y eY . Thus, an arbitrary Cauchy sequence <Y, >in Y converges to a point
y €Y . This implies every Cauchy sequence in Y is convergent. Using definition, this prove that

Y is complete metric space.

6.5 Contor’s Intersection Theorem

Let <X, > be a decreasing sequence of non-empty closed subsets of a complete metric space

(X,d) such that d(x,) —»0as n— 0. Then (7 x, contains exactly one point.

n=1

Proof: Let (X .d ) be a complete metric space and < X, > be a decreasing sequence.

We know that a sequence <X, > of subsets of X is said to be monotonic decreasing sequence if

and only if

X, DX, DXg DXy Do

Since d(x,)— 0,then (] x, cannot contain more than one point. So we have to show that () x,
x=1 x=1

IS non-empty.



Since each X, is non-empty there exists a sequence <X, >such that y, € X, for n=1,2,3,.... For

d(x,) > 0=for >0, there exist a positive integer say M, such that

d (Xmo) <e
Again, because < X, > is a decreasing sequence.
mnz=m, = X,, X, < X,
= Ynr Ym € X0
=d (Y, Yn)<e

i.e., <Y, >is a Cauchy sequence.

It is given X is complete, <Y, > must converge to some point, say X,in X . We show that

Suppose, if possible x, ¢ ﬁxn

n=1

= X, & X, for some N, € N

Since each X;is a closed set, X, is also a closed set, therefore X, cannot be a cluster point of

X, ,and so
0

d(xo,xno);to

Suppose d(X, %, )=6>0



Then

Thus,

Yo € X, fornzn,

= Y, eSlg(xo)

2

But it is impossible for y, — X,.

Hence, X, € N{x,:neN}.

6.6 Baire Category Theorem

Let (X,d)be a metric space. A subset A of a metric space is said to be the first category if and

only if it can be written as the union of a countable family of nowhere dense sets; otherwise is

known as second category.

Before Baire category theorem, we give some preliminary theorems:

1)

(@)

(b)

(©)

(2)

(3)
(4)

Let Abe a subset of a metric space (X ,d ) . Then the following statements are equivalent
A isnon-dense in X .

A contains no neighbouhood.

(K)' is dense in X .

If Aisnowhere dense, then A is not the entire space X .

The union of a finite number of nowhere dense sets in nowhere dense.

If Aisnon-densein X , then each open sphere contains a closed sphere which contains no

points of A.



Theorem.2: Every complete metric space is of the second category as a subset of itself.

Proof: Suppose (X ) d) is a complete metric space. To show that X is of second category. Let, if

possible X is not of second category, then X may be of first category so that X is the union of a

countable family of nowhere-dense sets. Suppose this family denoted as < X, >. Since X, is non-

dense using theorem (iv), there exists a closed sphere p, with radius I, <1 such that p, "X = ¢

Let S, denoted the open sphere having the same centre and radius as p; . In S;, we can determine

a closed sphere p, of radius I, <1/2 such that
P, "X, = ¢ and so on.

In this manner, we construct a nested sequence < p,, > of closed sphere having the following two

properties:

(i) For each positive integer n, p, does not intersect X;, X5 ,...., X, .

(i) The radius of p, »0as n— .

It is given that X is complete, it follows by using cantor’s intersection theorem that ﬂ P,

n=1
consists of a single point x, which does not belong to any of the nowhere dense sets A, by (i).

But this is not possible since X is the union of this family. It follows that the metric space X is

not of first category. Hence X must be of second category.

6.7 Contracting Mapping

Let (X ,d ) be a complete metric space. A mapping f : X — X issaid to be contracting mapping

if there exist a real number A withO< A <1 such that



d(f(x), f(y)<ad(x,y)<d(xy) Vx,yeX.

6.8 Banach Fixed Point Theorem

Let (X ,d ) be a complete metric space and f is a contracting mapping on X . Then there exist

one and only one point X in X such that

f(x)=x.

6.9 Isometric Mapping

Let (X,d)and ()Z , oT) be two metric space. A mapping f : X — X is said to be isometric on an

isometry of f preserves distances i.e., if vx,ye X.
d(f,. f,)=d(xy)

Where f, and f, are the images of x and y respectively.

f
x > f,
y > fy



Theorem.3: The metric space (R,d)is complete, where d is usual on R.
Proof: Let X, X, € Rbe arbitrary then d is defined.
d(X,%)=%—X%| VX,%XeR (1)

Suppose < X, >is a cauchy sequence in R . We define a sequence < n, > of positive numbers

by induction as follows:

m,nan :>|Xn—xm|<w
1 1
= X, —xm‘<—2k+1 < X

=

n,

1
xk—xm‘<? ....(2)
This is possible because < X, >is a Cauchy sequence. Let |, be the closed interval
82708, +2¢]

Then |, is closed interval. Let, |Ik| denote length of |, . Then

2 1 1
|Ik+1|: Xy~ Mes1 :W:_k<ﬁ:|lk|
2 2° 2
or la|<1 sothat I, <1,

This implies N {1, :k € N} consist of exactly only one point say acR.

Using Cantor’s intersection theorem, we have

m[lk:keN]:{a}



This implies ae |, ¥Vn

- a-x,

<2—]|'< Vk e N

Using equations (2) and (3), we have ¥Ym > n,

|a—xm|:‘a—xnk + X, —xm‘
s‘a—xnk +[, —xm‘
g‘a—xnk + (%, —xm‘
<2 i1 (say)
2k 2|( 2k—l
Thus, la—x,|<e vm>n,
This implies limx,=aeR

m—oo

i.e., every Cauchy sequence < X, >in R convergestoapointin R . Hence, (R, d) iscomplete.

Theorem.4: The set C of complex numbers with usual metric is complete metric space.

Proof: Suppose Z, =X +iy,and Z,=X,+Iy,be arbitrary elements of C

X, X5, Y1, Y, € R. The usual metric is defined by

d(z,2,)=|z,-2,|, Vz,z,eC.

..(3)

so that

Suppose <z, > is a cauchy sequence in C . So that given >0, there exist n, € N such that

n,m>n,



= |z, —2,| <€

= X, + 1y, — (X, +iy, )| <€
= |(xn—xm)+i(yn—ym)|2 <e?
= (X =% ) (Vo= Vm) <€

From this we can conclude that
X —X <e'y -y, <c'where e'=e/\/2

It follows that <X, >and <Y, >are Cauchy sequence in R . But R is complete so that
X, >XeR, y,>YyeR

Consequently, z, >X+iy=2€eC,

Therefore every Cauchy sequence <z, >in C converges to a point zeC.

Hence, (C,d)is complete metric space.

Examples

Example.1: The metric space (R",d) is complete, where d is usual metric on R".

Solution: Let X = (X, X,,.....X, ), Y = (Y1, ¥, ...y, ) be arbitrary elements of R". Then d is

defined as



d(x, Y)Z(Z(Xr—yr)zjﬂz (D)
Suppose an element (Xl,xz,....xn,)e R" can be regarded as a real function defined on
{1,2,3,...,n} . Thus, for we write
fo=(%,%. X,), VXeR
Now suppose < f, >be a cauchy sequence in R" so that given > 0there exist N, € N such that
p.azn,=d(f, f)<e

p’ °q

=d*(f,, f,)<e

p’ 'q
This implies [Zn:( f(r)-f, (r)}2}<e2
i.e., wehave |f (r)-f,(r)|<e where r=1,2,3,....,n.
This implies < f_ (r)>is a cauchy sequence and also R is complete.

Then the sequence < f_ () >converges point-wise to a limit function, say f(r)eR.

This implies lim f (r)=f (r)for r=12,...n

p—>0

Since {1,2,3,...,n} is finite and hence this convergence is uniform.
= |f,(r)=f(r)<e/n v, zn,

Taking sum with squaring and adding, we get.



Sin@-10F | <(Sa] =

r-1 n
= d(f, f)<evpzn,

This show that the Cauchy sequence < f >in R"converges to f eR". Hence, (R",d)is

complete metric space.

Example.2: The spacel”is complete.

Solution: Suppose {x,,} be a Cauchy sequence in 1”, where
X = (.»;:i(”‘), Em, ) such that

sup

1<i<owo

&M<, (M=1,2,3,...)

Then for each e> 0, there exist a positive integer N such that

<e vmn=N

d (Xm’ Xn ) = sup gi(m) - gi(n)

1<i<oo

— ‘é:i(m) _é:i(”)

<evm,n=N(i=123,..) ...(1)

This implies for each fixed (1<i<w), the sequence (.fi(l), E@), ) is a Cauchy sequence in

k (Ror C). Since k is complete, it converges in k. Let £™ — &as m— oo, Now we define

x =(&,&,,...) and show that xel”and X, — X
Suppose n — ooin equation (1), we get

M —g|<e vm=N {i=12,..}



Since x,, ={£",&,...} eI, there is a real number k, such that |&™| <k, Vi

Therefore, we have

|§i|:‘§i_§i(m)+§i(m)

< ‘;‘m) +& ‘ +‘(§i('“) (Using traingular in equality)

<e+k, Vm>N(i=12,...)

This inequality is true for each i and right hand side is independent of i. It means {g‘i} is a

bounded sequence of numbers
= xel{&el”
Using equation (2), we have

d(x,, X)=sup

1<i<wo

gM-¢|<e vm=N

= X, = Xin 17

Hence, 1”is a complete metric space.

6.10 Completeness of C

The space consists of all convergent sequencesX=(§i)of complex number, with the metric

induced from the spacel”.



Examples

Example.3: The space C is complete.

Solution: We know that C is a subspace of 1”. To show that C is closed in | .

Also we know that a subspace M of a complete metric space X is itself complete if and only if

the set M is closed in X .

We take x=(&)eC ( the closure of C)

We know that x e M if and only if there is a sequence <X, >in M such that X, — X

Such that X, > X.

Give e>0,there isan N such that for n> N and for all i, we have
‘gﬁ(”)—é‘sd(xn,xk%

In particular for neNand Vi.

Since X, €C, its terms cfi(N)from a convergent sequence, such a sequence is Cauchy. Hence,

there is an N, such that

Using triangular inequality, Vi, k > N,

& -] <[~ +]2) -] 4|2 & | <o



This implies X = (gﬁ) is convergent. Hence, x € C . Since x e C was arbitrary = Cis closed in 1”

. Hence, the space C complete.

Example.4: The space I? is complete, here pis fixed and 1< p < +oo.

Solution: Let {x, } be a Cauchy sequence in 1", where

Xp ={&™, &M, ...} such that

i[ " <oo(m=1,23,....)

i=1

Then for each e> 0, there exist a positive integer N such that

d(xm,xn)—(igﬁ(m)—éﬂ(”)p] <e vm,n>N 1)

i=1

= |gm g

<e vm,n=N(i=1 2,3,....)

This implies for each i(lg i< oo),the sequence gﬁ(l),é‘i(z),é@),..., is a Cauchy sequence in Ror

C(k)since k is complete it converges in k .
Suppose £™ — Eas m— o

Now we define X = (51,52,53,....) and show that x eI?and X, — X. Using equation (1) we get

Z‘g(m) (n)

<ef, vm,n>N(i=12,3,...)

Letting n — o, we get



) _ )P
;‘éﬂ _é:i

<e®, Ym>N(i=123,...)

Now suppose k — oo,then for m>N

0

>lem-g| <e?, vm=N

i=1

:xm—x=(§i(m)—.§i)elp
Since x, €1”, it follows that using Minkowski inequality we get
X=X, +(X=X,)el”
=xelf
From equation (2), we get ~ d(x,,X)<e ¥Ym>N
Which verify that X, — Xin I°

Hence, I° (with 1< p <o0)is a complete metric space.

Example.5: The function space C[a,b]is complete, here [a,b] is any given closed

interval on R.

Solution: Suppose {X,} is a Cauchy sequence in C[a,b]. Then for each >0, there exist a

positive integer N such that

d(xm,xn):rrtl3x|xm(t)—xn (t)<e Vvm,n=N, where | =[a,b]

For any fixed t=t, € | =[a,b], we get



%n (1) =%, (t )| <€ ¥Ym,n=N (1)

This implies {Xl(to),x2 (to)} is a Cauchy sequence in R. But R is complete, this sequence

converges. Now we let.

Xy (t;) = X(t;)as m— oo

We can associate to each t e | a unique x(t). This show that a function X on 1 is pointwise
and xeCl[a,b],x, - x.

From equation (1) we have

|

(t)—x,(t)|<e ymn=Nand Vtel

m

Take n— oo, we get |x, (t)—x(t)<e vm=Nand vtel ..(2)

This implies the sequence {Xm} of continuous functions converges uniformly to the function x

on [a,b] and hence the limit function X is a continuous function on as such x € C[a,b].
Using equation (2), we have

max|x, (t)—x(t)|<e vn=N
=d(x,,x)<e Vm=N
= X, = Xin C[a,b]

Hence, C[a,b]is a complete metric space.

Example.6: Let X be the set of all continuous real valued function on 1 =[0,1]and let



1
d(xy)=]x(t)-y(t)dt
0
Show that this metric space (X,d)is not complete.

Solution: Suppose the function X, from a Cauchy sequence because d (xm, xn) is the area

of the triangle and for every given >0

d (X, X,) <€ where m,n>l
S

To show that this cauchy sequence does not converge we have
x, (1) =0 if te[O,l}
2
o (t)=1if te[a,,1]
Where am:1+i, vx e X.
2 m

Now we have

1

d (%, %) =[x, (t) = x(t)t

0



1/2

- ! \x(t)\dt+ajm X (t)—x(t)\dt+a_1[ [1—(x)t|dt

1/2

Since the intergrands are non-negative so is each integral on the right, i.e., d (Xm, x) — Owoulf

imply that each integral approaches to zero. Since X is continuous, we have

0 ifte|:0,1j
2
1 if te[l,l]
2

i.e., contradiction for a continuous function. Hence, < X, > does not converges ot do not have a

x(t) =

limitin X .Hence, X is not complete and {X d ) is not complete metric space.

Example.7: Consider the usual metric d for R? and the mapping f :R*> = R’ such that
X 2
f(x)= > vx e R

Where X =(X,,X,). Then f isa contraction on R?.

Solution: Given that

f :R?* - R%such that
X 2
f(x)==VvxeR
2
We have

S(r- 1= (3]



:%\/[()ﬁ_xz)z"'()ﬁ_)’z)z

=%d(x, y)

Hence, f is contracting mapping because

d(f(x), f(y)=2(d(xy); whereOs/1<1[/1=%J.

6.11 Summary

Let (X, d)be a meric space. Then (X,d) is said to be complete metric space if and only if

every Cauchy sequence <X, > in X converges to a pointin X .

Let (X,d)be a metric space. Then is said to be incomplete metric space if and only if there

exists some cauchy sequence < X, >in X which does not converge to a pointin X .

Let <X, > be a decreasing sequence of non-empty closed subsets of a complete metric space

(X,d) such that d(x,) —0as n —co. Then (] x, contains exactly one point.

n=1



Let (X ,d ) be a metric space. A subset A of a metric space is said to be the first category if and

only if it can be written as the union of a countable family of nowhere dense sets; otherwise is

known as second category.

Let (X ,d ) be a complete metric space. A mapping f :x — X is said to be contracting mapping

if there exist a real number A with 0< A <1 such that
d(f(x), f(y))<ad(xy)<d(x,y) Vx,yeX.

Let (X ,d ) be a complete metric space and f is a contracting mapping on X . Then there exist

one and only one point X in X such that
f(x)=x.

Let (X,d)and ()Z , oT) be two metric space. A mapping f : X — X is said to be isometric on an

isometry of f preserves distances i.e., if VX,y € X .
a(fX’ fy):d(x,y)
where f and f, are the images of X and y respectively.

The space consists of all convergent sequence X =(& )of complex number, with the metric

induced from the spacel”.

6.12 Terminal Questions

Q.1  Define complete metric space with examples.

Q.2. Explain the Contor’s intersection theorem.



Q.3.

Q.4

Q.5.

Q.6.

To show that every contracting mapping is continuous.

1

Let X be the set of all positive integers and d (x,y) = 1——‘. Show that ( X,d)is not

Xy

complete.

The metric space of rational numbers with the usual metric is incomplete.

Show that the set X of all integers with metric d defined by d (x,y)=|x-Y|isa

complete metric space.
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Block-3

Introduction to Topological Spaces

Topology plays a crucial role in various areas of mathematics, science, and engineering due to
its ability to capture essential geometric and topological properties of spaces. It is concerned with
the study of shapes and spaces, focusing on the concepts of continuity and connectivity. Topology
seeks to understand the underlying structure of spaces and the relationships between different
spaces, often using concepts like open sets, closed sets, neighborhoods, and continuous functions.
In 1872, Cantor introduced the concept of the first derived set, or set of limit points, of a set. He
also defined certain closed subsets of the real line as subsets that contain their first derived set.
Cantor also introduced the concept of an open set, another fundamental concept in point-set
topology. In 1902, Hilbert used the idea of a neighborhood. In 1914, Felix Hausdorff coined the
term "Topological Space" and provided the definition for what is now known as a Hausdorff
space. In its current usage, a topological space is a slight generalization of Hausdorff spaces, as
formalized by Kazimierz Kuratowski in 1922.

In the seventh unit, we shall discussed about Topological Spaces, Trivial topology, Non-Trivial
topologies, Comparison of Topologies, Algebra of Topologies, Open Set, Neighbourhood, Usual
Topology, Limit Points, Derived Set, Closed Sets, Door Space, and in the eighth unitwe deal with
Closure of a Set, Separated Set, Interior points and the Interior of a Set, Exterior of a Set,
Boundary Points, Dense Set.

Ninth unit deals with Relative Topology, Subspace, Base for a topology, Sub-bases, Local base,
First Countable Space, Second Countable Space, Topologies Generated by Classes of Sets,
Separable Space, Cover of a Space, Lindel6fSpace. In the tenth unit we shall discuss about the
Continuous Function, Open Mapping, Closed Mapping, Bicontinuous Mapping, Bijective

Mapping, Sequential Continuity, The pasting Lemma, Homeomorphism.



UNIT-7: Topological Spaces-I

Structure

7.1 Introduction

7.2 Objectives

7.3 Topological Spaces
7.4 Trivial topology

7.5 Non-Trivial topologies
7.6 Comparison of Topologies
7.7 Algebra of Topologies
7.8 Open Set

7.9 Neighbourhood

7.10  Usual Topology

7.11 Limit Points

7.12  Derived Set

7.13  Closed Sets

7.14 Door Space

7.15 Summary

7.16  Terminal Questions



7.1 Introduction

Topology is a mathematical field that explores the properties of space that remain unchanged
under continuous transformations like stretching, twisting, and bending, without tearing or
gluing. This unit covers topics such as topological spaces, trivial topology (discrete and
indiscrete topology), comparison of topologies, algebra of topologies, open sets, neighborhoods
and neighborhood systems of a point, usual topology, limit points, closed sets, and door spaces.
In 1872, Cantor introduced the concept of the first derived set, or set of limit points, of a set. He
also defined some closed subsets of the real line as subsets containing their first derived set.
Cantor also introduced the concept of an open set, another fundamental concept in point set

topology.

7.2  Objectives

After reading this unit the learner should be able to understand about the:

= Introduction about Topology and Topological Spaces,

= Trivial topology and Non-Trivial topologies

= Comparison of Topologies

=  Algebra of Topologies

= Open Set and Neighbourhood, Neighborhood system of that point
= Usual Topology or standard Topology

= Limit Points and Derived Set

= Closed Sets and Door Space



7.3 Topological Spaces

Topology is a mathematical discipline concerned with the properties of shapes and spaces that
remain unchanged under continuous transformations like stretching, bending, and twisting,
without tearing or gluing. It is a foundational field with broad applications in mathematics,
physics, biology, and computer science. Topological spaces are structures that generalize notions
of proximity and include sets of points along with collections of open sets satisfying specific
properties. This branch of mathematics provides a framework for analyzing properties that
endure through continuous transformations, making it a potent tool in mathematical analysis and

various other fields.

Let us consider X be a non-empty set and 3 be the collection of subsets of X. Then J is said to

be a topology on X, if the following properties are satisfied:

. X eJ and ¢pe3.

. Let a, b €3 then anbeJ, hence it is closed under the operation of finite intersection.

. Let {Ai: iel}e3 then U{Ai: iel}€3, hence it is closed under the operation of arbitrary
union.

The members of I are known as open sets of the topology 3 and the pair (X, 3J) is known as a

topological space.

Note: A subset of X may be open, closed, both or neither.

Examples

Example.1. Consider X= {a, b, c} and I3 ={X, ¢, {a}, {b}, {a, b}}. Then show that 3 is a
topology on X.

Solution. It is given that X= {a, b, c}



and 3={X, ¢, {a}, {b}, {a, b}}
(i) Xe3J and $e3.

(i) We have {a} ~{b} =¢e3, X ~{b} = {b}e3,

X {a} ={a}e3, on{b} = pe3,
dn{a} = eI, X nd = pe3.

I.e., it is closed under the operation of finite intersection.

(iii) We have {a} u{b} ={a, b}e3J, X U{b} = Xe3,
Xuf{a} = XeJ, XU ¢ = XeS,
{a} v ¢ ={a}eS, {b} U ¢ ={b}e3.

I.e., it is closed under the operation of arbitrary union. Hence 3 is a topology on X.

Example.2. Consider X= {a, b} and 3={X, ¢, {a}, {b}}. Then show that J is a topology on
X.

Solution. It is given that X= {a, b}
and 3 = {X, ¢, {a}, {b}}

()X €3 and ¢e3.

(ii) We have {a} ~{b} =pe3T, X ~{b} = {b}e3,

X {a} ={a}e3J, ¢ ~{b} = ¢€3,
d{a}=9¢e3I, XNnd=¢el.

i.e., it is closed under the operation of finite intersection.
(ii)We have {a} U{b} =Xe3J, X U{b} = X3,

X {a} = Xe3J, Xup = Xe,
{a} up ={a}e3, {b} ud={b}eS.



i.e., it is closed under the operation of arbitrary union. Hence 3 is a topology on X.
Example.3. Determine all the topologies on X= {a, b}.
Solution. It is given that X= {a, b}.
Then 31 ={X, ¢},
32={X, ¢, {a}},
35={X, ¢, {b}}
and 34={X, ¢, {a}, {b}} are all topologies on X={a, b}.

Example.4. Consider X= {a, b, ¢, d, e} and 3={X, ¢, {a}, {b, c}, {c, d, e}}. Then show that 3

is not a topology on X.

Solution. It is given that X={a, b, c, d, e}

and 3={X, ¢, {a}, {b, c}, {c, d, e}}

(i) X eI and 3.

(ii) We have {b, c} ~{c, d, e}={c}&3

i.e., it is not closed under the operation of finite intersection.
Hence 3 is not a topology on X.

Example.5. Consider X= {a, b, c} and 3={¢, {a}, {b}, {a, b}}. Write down why J is not a
topology on X.

Solution. It is given that X= {a, b, c}
and 3={¢, {a}, {b}, {a, b}}

Here 3 but X¢3



I.e.,J is not a topology on X because it’s not contains X.

Hence 3 is not a topology on X.

7.4 Trivial Topology

The trivial topology satisfies the axioms of a topology, namely that the empty set and the whole
space are open, the intersection of any finite number of open sets is open, and the union of any

collection of open sets is open.There are two types of trivial topology:

(1) Indiscrete Topology
(it) Discrete Topology

(i) Indiscrete Topology

Let X be a non empty set. Then the collection I ={X, ¢}, (consisting of only empty set and the
whole space) is always a topology for X, is called the indiscrete topology. The pair (X,3) is

called an indiscrete topological space.

Indiscrete topology is also denoted by I. For any set X, the indiscrete topology | is coarser or

smaller or weaker topology.

(ii) Discrete Topology

Let X be a non empty set. Then the collection J = {consisting of all the subsets of X} is always
atopology for X, called the discrete topology. The pair (X,3) is called discrete topological space.
Discrete topology is also denoted by D. For any set X, the discrete topology D is finer or stronger

or larger topology.

For example, we haveX= {a, b, c} then we have

31 ={X, ¢} is the indiscrete topology for X



and 32={X, ¢, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} is the discrete topology on X.

53:{)(’ (I)v {a}}

3a={X, ¢, {b}}

SSZ{X’ (I)v {C}}

I6={X, ¢, {a}, {a, b}}

S?z{x’ ¢1 {a}1 {b1 C}}

SBZ{X’ ¢1 {a}1 {a1 C}}

39={X, ¢, {b}, {a, b}}

S10={X, ¢, {b}, {b, c}}

Sll:{xy (1)' {b}, {a, C}}

S={X, ¢, {c}, {a, b}}

313={X, ¢, {c}, {b, c}}

314:{)(1 (I)’ {C}’ {a1 C}}

J15={X, ¢, {a}, {b}, {a, b}}

J16={X, ¢, {a}, {c}, {a c}}

Sur={X, ¢, {b}, {c}, {b, c}}

S18={X, ¢, {a}, {a, b}, {a, c}}



Slgz{xa (|)1 {b}1 {a1 b}1 {b1 C}}

and J320={X, ¢, {c}, {a, c}, {b, c}} are all non-trivial topologies on X.

7.5 Non-Trivial Topologies

Non-trivial topologies are topologies on a set that are not the trivial topology. In other words,
they are topologies that contain open sets other than the empty set and the entire space. Non-
trivial topologies are often used to define interesting and useful topological properties on
sets.Topologies defined on X other than trivial topology (Indiscrete and Discrete topology) are

known as non-trivial topologies.

7.6 Comparison of Topologies

Comparing topologies involves understanding how one topology relates to another in terms of

their open sets and the properties they induce on a space.

Let X be a non-empty set and 31, 3> are two topologies on X then either 3132 and I3y, the
topologies 31 and 32 are comparable. If 31232 and J2z 31 then the topologies Jiand 32 are not

comparable.

Examples

Example.6. Consider X= {a, b, c}. Find the three topologies 31, J2 and J3 for such that

31 3J2c3s.

Solution. Given that X= {a, b, c}.



Then 31 ={X, ¢},

32={X, ¢, {a}}

and 33={X, ¢, {a}, {b}, {a, b}} are topologies on X. Hence J1cJI>c3a.
Example.7. Let X= {a, b, c}. Find indiscrete and discrete topologies on X.
Solution. Given thatX= {a, b, c} then

3J1={X, ¢} is an indiscrete topology for X

and 3.={X, ¢, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} is a discrete topology on X.

Example.8. Find two mutually comparable topologies for the set X={a, b, c}.
Solution. Given that X= {a, b, c}.
Then 31 ={X, ¢, {a}},

32={X, ¢, {b}}

and 33={X, ¢, {a}, {b}, {a, b}}.
Hence the above two topologies 31 and 33, 32 and 33 are comparable because JicJzand I Js.
Example.9. Give five distinct non-trivial topologies for the set X={a, b, c}.
Solution. Given that X= {a, b, c}.
Then 31 ={X, ¢, {a}},

32={X, ¢, {b}},

JI={X, ¢, {c}}

34={X, ¢, {a}, {a, b}}



and 3s={X, ¢, {a}, {b}, {a, b}} are all five distinct non-trivial topologies on X.
Example.10. Find three mutually non-comparable topologies for the set X = {a, b, c}.
Solution. Given that X= {a, b, c}.
Then 31 ={X, ¢, {a}},

JI2={X, ¢, {b}}

and 33={X, ¢, {c}} are all three mutually non-comparable topologies for the set X

because JI1z32, 31z3T3 and Iz 3.

Hence 31, 32 and 33 are non-comparable topologies for the set X.

7.7 Algebra of Topologies

The algebra of topologies refers to the operations and properties that arise when combining or
manipulating topological spaces and their associated topologies. These operations include the
intersection, union, and product of topologies, as well as the generation of new topologies from

existing ones through operations like closure and interior.
Theorem.1. Prove that the finite intersection of two topology on X is again a topology on X.

Proof. Let (X, 31) and (X, 32) are two topological space. To show that (3:13>) is again a

topology on X.
(i) Since 31 and 3» ate two topology on X such that
X e3J1and ¢pe31
Similarly, X €32 and ¢e 3.

= X €31n3T2 and $peI1N3a.



(if) Let a, be 31132

= ae31N32i.e., ae31, 23>

and be31n32i.e., beT1, beS

Now we have ae 31, be J1=> anb €31

aeJr, beIr= anb €3>
Since anb €31, anb €32 = anbeI1N32
i.e., it is closed under the operation of finite intersection.
(iii) Let {Ai : iel}eIinTa.
{Ai:iel}eJrand {Ai:iel}e3>

=>U{Ai :iel}eTrandu{Ai : iel}e 3, {since J1 and 32 are topology on X}
=>U{A :iel}e3iN3,.
i.e., it is closed under the operation of arbitrary union. Hence 31132 is a topology on X.

Theorem.2. Prove that the intersection of any number of topologies on X is again a topology
on X.

Proof. Let X be a non-empty set and collection of topologies {Ji : iel} is a topology on X. To

show that ~{J; : iel} is a topology on X.
(i) Since X, ¢e 3.

=>Xen{SJi:iel}and pe{Ji:iel}

(ii) Let G and G2en{Si :iel}

Since G; and G2 eeach J;



=G1NG2 eeach i
I.e., it is closed under the operation of finite intersection.
(iii) Let {Ga:ael}en{STi iel}
Since {Go:ael}eeach T
and each J;i is a topology on X.
W{Gauael}en{Si:iel}
i.e., it is closed under the operation of arbitrary union. Hence ~{Ji : iel}is a topology on X.

Theorem.3. Prove that the union of two topologies on X is again a topology if X consists of

at most two elements.
Proof. Suppose if possible X={a, b, c},
31={X, ¢, {a}}
and 3={X, ¢, {b}}
Then 31032 ={X, ¢, {a}, {b}}
()Since X, eI and X, e3>
= X, peF1UTz
(i)Let {a}, {b}eT1U3>
={a}n {b}=peI1L3>
i.e., it is closed under the operation of finite intersection.
(iii)Let {a}, {b}eT1UZ>
={a}u {b}={a, b} I1U3>

i.e., it is not closed under the operation of arbitrary union.



Hence 31032 s not a topology on X because it consists more than two elements.
Now we suppose X= {a, b},

31={X, ¢, {a}}

and 32={X, ¢, {b}}

Then 31032 ={X, ¢, {a}, {b}}

Here (i) and (ii) are satisfied as above.

Now let {a}, {b}eI1U3>

= {a}u {b}=XeT1U3>

i.e., it is closed under the operation of arbitrary union.

Hence 31U3:is a topology on X if it consists of at most two elements.

7.8 Open Set

The concept of an open set is important because it allows us to define continuity, convergence,

and many other fundamental properties in topology.
If X is a non empty set and 3 is a topology on X, then every member of 3 is called open set.

Some properties of open set

M The empty set ¢ is open.
(i) The whole space X is open.
(i) The intersection of two open set is open.

(iv)  Arbitrary union of open set is open.



(v) A finite set is not an open set.

(vi)  Ris an open set.

(vii)  Q is neither open nor closed.

(viii) The complement of a closed set is open set.

(ix)  Every neighbourhood is an open set.

For example, the set {xeR: x>3} is open set but the set {xeR: x?>1} is not open set.

7.9 Neighborhood

Neighborhoods are important in topology because they allow us to define and study the notion
of "closeness" of points in a topological space. In topology, a neighborhood of a point in a

topological space is an open set that contains that point.

Let (X, 3) be a topological space. A subset N of X is said to be a neighborhood of point x if it

contain an open set G to with the point xeG such that xe GeN.
or

Let (X, 3) be a topological space and xeX. A subset N of whole space X is said to be a 3-

neighborhood of x if and only if there exist a J-open set G such that xe GeN.
Neighborhood system of that point

The neighborhood system of a point in a topological space is a fundamental concept that
describes the local structure of the space around that point. It plays a crucial role in defining
continuity, convergence, and other important concepts in topology.The neighborhood system of
a point in a topological space is the collection of all neighborhoods of that point. The collection

of all the neighborhood of a point is called the Neighborhood system of that point.



Note. 1. Since every set is a subset of itself therefore open set is the neighborhood each of its

point.

2. A 3-open set is a 3-neighborhood of each of its points but a J-neighborhood of a point need

not be an open set.

3. Let us consider (X,3) be a topological space. Then

(i) For each point xe X and each 3-neighborhood N of x, xeN.
(ii) For each point xe X, there is at least one J-neighborhood of x.

(iii) If N is any 3-neighborhoods of xeX and M is a superset of N, then M is also 3-
neighborhood of x for all xeX.
(iv) If M and N are any two 3-neighborhoods of xe X then M~N is also 3-neighborhood of x

for all xeX.

Theorem.4. Let us consider (X, J3) be a topological space and AcX. The set A is a J-open

set if and only if it is a 3-neighborhood of each of its points.

Proof. Let (X, 3) be a topological space and A be any subset of X.

If A is 3-open set then VxeA and ACA.

Therefore A is neighborhood of each of its points.

Conversely, let A is a neighborhood of each of its points, then we have
(i) A=¢, this implies, it is open.

(ii) A#¢, then to each xe A

= there exist an open set Ax of x such that

Xxe AxcA



= A=U{ Ax : xeA}

= A is a union of open sets.

= A is open.

7.10 Usual Topology or Standard Topology

The term "usual topology" is often used to refer to the standard topology on a particular space,

especially in contexts where there may be multiple possible topologies under consideration.

Let R be a set of real numbers and U be the collection of subsets of R and if U satisfies all the
properties of topology then U is a topology on R and pair (R, U) is called usual topological space
or standard topological space.

Theorem.5. Let U be a collection of null set and all those subset of R such that xeG there

exist e>0 such that ]x-e, x+e[cGcR. Then show that U is a topology on R.

Proof. (i) Given that peU and ReU

(because to each xeR i.e.,]x-€, x+e[cR)

(ii) Let G, GoeU,

Case.l. If GinGo=¢, then G1NG2€U.

Case.2. If GinGa#¢, then

XeG1, XeGy

= there exist €1, €2>0 such that



IX-€1, X+ e1[cGy, |X-€2, Xte2[cG2
Let e=min(e1, €2)
e>0such that ] x-€, xte[c G1nG2
= GinG2eU.
(iii) Let {Gi: iel}eU.
Since |x-€, x+e[c{Gi: iel}
Also {Gi: iel}c{Gi:iel}
= Ix-€, xte[cA{Gi: iel}
= U{Gi:iel}eU
Hence U is a topology on R.

Theorem.6. Let f be a mapping from X to Y, where X is a non-empty set and Y is a
topological space if 3 is a topology on Y then prove that J1={f1(G): GeJ3} is a topology on
X.

Proof. Let us consider 31= {f1(G): GeJ}.To show that J1 is a topology on X.
(1) Since 3 is a topology on Y then
Y, 3, therefore
f1(Y)=Xe31
and f1(¢)= 31

Therefore X, ¢e31



(i) Let f1(Ga), F1(G2)e 31

= (G FH(G2) eIt

= 1(G1nG2)e31 {because G1€3J, G2eI= G1nG2e3J }
i.e., it is closed under the operation of finite intersection.

(ii)Let F{Gi :iel}eT:

Using definition of topology, we have

= U fHGi:iel}e3:

i.e., it is closed under the operation of arbitrary union. Hence 31 is a topology on X.

7.11 Limit Point

Limit points are important in topology because they tell us about how points in a set relate to
each other and to the space around them. They help us to understand when a set is closed, which
is a key concept in topology. Limit points also help us to define when functions are continuous

and when sets are compact.

Let (X,3) be a topological space and A be a subset of X. Then a point xe X is a limit point of A

if each neighborhood of x contains at least one point of A other than x.

7.12 Derived Set

A derived set, also known as the derived set or set of limit points, of a set A in a topological
space X is the set of all limit points of A. The derived set is important in topology because it

helps us to define the closure of a set. The derived set also plays a role in characterizing the



properties of a set, such as whether it is closed or dense in the space X.A collection of all the

limit points of a set A is called thederived set of A denoted by A’ or D (A).

Note. A limit point may or may not belong to the set.

!

Theorem.7. Let A and B be subsets of topological space (X, J). Then (Au B) =A'UB'

Proof. Let (X, 3) be a topological space and A,BcX.

We know that AcAUB = A’ = (AUB). {AcBthen A" B'}

’

BcALB =B’ (AUB)
~ A'UB c(AUB). O
Now to show that (AU B) < A"U B’
Let if possible x¢ A" U B'=xe¢ A" and xe B’

= xis not limit point of A and B

= there exist a neighborhood Ux which contains no point of A other then x (by definition) and

Vx which contains no point of B other then x (by definition)
ie., Xg (A' U B')
Now if xe A"U B’ = xe (A' U B')

Therefore (AUB) <« AU B’ (2)

!

Uging (1) and (2), we get (AU B) =A'UB.



Examples

Example.11. Let X= {a, b} and 3={X, ¢, {a}, {b}}. Find 3-neighborhood of (i) a and (ii) b.
Solution. Given thatX={a, b} and 3={X, ¢, {a}, {b}}.
(1) 3-open sets containing a are X, {a}
Superset of X is X.
Superset of {a} are {a}, X.
Hence 3-neighborhoods of a are {a}, X.
(i) 3-open sets containing b are X, {b}
Superset of X is X.
Superset of {b} are {b}, X.

Hence 3-neighborhoods of b are {b}, X.

Example.12. Let X={a, b, ¢, d} and 3={X, ¢, {b}, {a, b}, {a, b, d}}. Find 3-neighborhood of
(i) a (ii) b and (iii) c.

Solution. Given thatX= {a, b, ¢, d} and 3={X, ¢, {b}, {a, b}, {a, b, d}}.
(i) 3-open set containing a are X, {a, b}, {a, b, d}.

Superset of X is X.

Superset of {a, b} are {a, b}, {a, b, c}, {a, b, d}, X.

Superset of {a, b, d} are {a, b, d}, X.



Hence 3-neighborhoods of a are
{a, b}, {a, b, c}, {a, b, d}, X.
(if) 3-open set containing b are X, {b}, {a, b}, {a, b, d}.
Superset of X is X.
Superset of {b} are {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, ¢, d}, X.
Superset of {a, b, d} are {a, b, d}, X.
Hence 3-neighborhoods of b are
{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X.
(iii) 3-open set containing c is X.
Superset of X is X.
Hence 3-neighborhoods of ¢ is X.

Example.13. Let X= {a, b, c} and 3={X, ¢, {a},{b}, {c}, {a, b}, {b, c}, {a, c}} is a discrete
topology on X. Find 3-neighborhood system of (i) a (ii) b and (iii) c.

Solution. Given thatX={a, b, c}
and 3={X, ¢, {a},{b}, {c}, {a, b}, {b, c}, {a, c}}
(i) 3-open sets containing a are X, {a}, {a, b}, {a, c}
3J-neighborhoods of a are {a}, {a, b}, {a, c}, X.
Hence neighborhood system of a is
Na= {{a}, {a, b}, {a, c}, X}.

(ii) 3-open sets containing b are X, {b}, {a, b}, {b, c}



3-neighborhoods of b are {b}, {a, b}, {b, c}, X.
Hence neighborhood system of b is
Np= {{b}, {a, b}, {b, c}, X}.
(iii) 3-open sets containing c are X, {c}, {a, c}, {b, c}
3-neighborhoods of a are {c}, {a, c}, {b, c}, X.
Hence neighborhood system of c is
Ne= {{c}, {a, c}, {b, c}, X}.

Example.14. Let X={a, b, ¢, d, e} and 3={X, ¢, {a}, {a, b}, {a, b, c}, {a, ¢, d}, {a, b, c, d},
{a, b, e}}. Find 3-neighborhood system of (i) ¢ and (i) e.

Solution. Given thatX={a, b, c, d, e}
and 3={X, ¢, {a}, {a, b}, {a, b, c}, {a, c, d}, {a b, c,d}, {a b, e}}.
(i) 3-open set containing c are X, {a, b, c}, {a, ¢, d}, {a, b, c, d}.
Superset of X is X.
Superset of {a, b, c} are {a, b, c}, {a, b, ¢, d}, {a, b, ¢, e}, X.
Superset of {a, c, d} are {a, c, d}, {a, b, ¢, d}, {a, c, d, e}, X.
Superset of {a, b, ¢, d} are {a, b, ¢, d}, X.
J-neighborhoods of ¢ are {a, b, c}, {a, ¢, d}, {a, b, ¢, d}, {a, b, c, e}, {a, c, d, e}, X.
Hence neighborhood system of c is
Ne={{a, b, c}, {a, c, d}, {a b, c d}, {a b, c e} {ac d e} X}

(ii) 3-open set containing e are X, {a, b, e}.



Superset of X is X.
Superset of {a, b, e} are {a, b, e}, {a, b, c, e}, {a, b, d, e}, X.
3-neighborhoods of e are a, b, e}, {a, b, ¢, e}, {a, b, d, e}, X.
Hence neighborhood system of e is
Ne={{a, b, e}, {a b, c, e}, {a b, d e}, X}

Example.15. Let X={a, b, c}, 3={X, ¢, {a}, {b}, {c}, {a, b}, {b, ¢}, {a, c}} and A = {a, b}. Find
all the limit points of A.

Solution. Given thatX={a, b, c}, 3={X, ¢, {a}.{b}, {c}, {a, b}, {b, c}, {a, c}}
and A ={a, b}.
(i) Neighborhoods of a are X, {a}, {a, b}, {a, c}.
Here a is not a limit point of A because {a} is singleton and cgA.
(ii) Neighborhoods of b are X, {b}, {a, b}, {b, c}.
Here b is not a limit point of A because {b} is singleton and cgA.
(iii) Neighborhoods of ¢ are X, {c}, {b, c}, {a, c}
Here c is not a limit point of A because {c} is singleton.

Example.16. Let X= {a, b, c}, 3={X, ¢, {a}, {a, b}, {a, c}} and A ={a, c}. Find all the limit

points of A and hence determine A"
Solution. Given thatX= {a, b, c}, 3={X, ¢, {a}, {a, b}, {a, c}} and A ={a, c}.
(i) Neighborhoods of a are X, {a}, {a, b}, {a, c}.

Here a is not a limit point of A because {a} is singleton.



Neighborhoods of b are X, {a, b}.
Here b is a limit point of A.
Neighborhoods of c are X, {a, c}.
Here c is a limit point of A.
(ii) The derived set of Ais A" ={b, c}

Example.17. Let X={a, b, c, d, e}, I3={X, ¢, {a}, {c, d}, {a, c, d}, {b, c, d, e}} and A={a, b, c}
Find the derived set of A.

Solution. Given thatX={a, b, c, d, e}, I={X, ¢, {a}, {c, d}, {a, ¢, d}, {b, c, d, e}}
and A={a, b, c}.
3-neighborhoods of a are X, {a}, {a, c, d}.
Here a is not a limit point of A because {a} is singleton.
3-neighborhoods of b are X, {b, c, d, e}.
Here b is a limit point of A.
3-neighborhoods of c are X, {c, d}, {a, ¢, d}, {b, c, d, e}.
Here c is not a limit point of A because dgA.
3-neighborhoods of d are X, {c, d}, {a, ¢, d}, {b, c, d, e}.
Here d is a limit point of A.
3-neighborhoods of e are X, {b, c, d, e}
Here e is a limit point of A.

The derived set of Aisi.e., A"={b, d, e}.



Example.18. Let X={a, b, c, d, e}, 3={X, ¢, {a}, {a, b}, {a, ¢, d}, {a, b, ¢, d}, {a, b, e}},
(i) A={c, d, e} and (ii) B={b}. Find A"and B".
Solution. Given thatX={a, b, c, d, e},
3={X, ¢, {a}, {a, b}, {a,c,d}, {a b, c,d}, {a b, e}}
(i) It is also given that A ={c, d, e}.
3-neighborhoods of a are X, {a}, {a, b}, {a, ¢, d}, {a, b, ¢, d}, {a, b, e}.
Here a is not limit point of A because {a} is singleton and bgA.
J-neighborhoods of b are X, {a, b}, {a, b, ¢, d}, {a, b, e}.
Here b is not limit point of A because agA.
3-neighborhoods of c are X, {a, c, d}, {a, b, c, d}.
Here c is limit point of A.
3-neighborhoods of d are X, {a, c, d}, {a, b, c, d}.
Here d is limit point of A.
3-neighborhoods of e are X, {a, b, e}.
Here e is not limit point of A because a, bgA.
Hence A’ ={c, d}.
(ii) It is also given that B ={b}.
Using (i) we see that a, b, ¢, and d are not limit point of B.

3J-neighborhoods of e are X, {a, b, e}



Here e is limit point of B. Hence B’ ={e}

7.13 Closed Sets

Closed sets are a fundamental concept in topology that complement the notion of open sets. A

set is considered closed if it contains all its limit points. In other words, a set is closed if it

includes the points it converges to.Closed sets is crucial in topology as they help define the

structure of a space and its relationship with its subsets. They also play a key role in defining

continuity, compactness, and other important concepts in topology.

A set A is said to be closed if every limit point of A belong to the set A itself i.e., a set A is said

to be closed if D(A)cA.

Some properties of closed set

Q) Every singleton is a closed set.
(i)  The empty set ¢ is closed for D(¢)o.
(ili))  The complements of open sets are closed sets.

(iv)  Aclosed interval is always a closed set.

(V) Theset A=| 2
5

(vi)  Theset A= 0’1,1,
2

4 2n ] is a closed set.

J is aclosed set.



7.14 Door Space

A door space is a topological space that has a special type of open set called a "door". In a door

space, each point has a neighborhood that behaves like a closed interval in the real numbers.

Let (X,3) be a topological space. Then (X,3) is said to be door space if every subset of X is

either open or closed.

Theorem.8. Prove that the intersection of arbitrary number of closed sets is closed and the

union of finite number of closed sets is closed.

Proof. Let {Ai: iel}isaclosed setin X.

To show that "{Ai : iel} is closed in X.

We have {X~A :iel}is opensetin X

=U{X~A:iel}isopensetin X

Now X~{Ai : iel}=U{X~Ai : iel} (using demorgan law)

= X~n{Ai : iel} is open setin X

=nN{Ai:iel} is closed set in X.

i.e., intersection of arbitrary number of closed sets is closed.

Now we let {Ai: i€} isa closed set in X

To show that U{A : ieJn} is closed in X.

We have {X~A, : ieln} is open set in X



N{X~Ai : i€dn} is open set in X

X~U{Ai @ 1€dn} is open set in X (using demorgan law)

U{Ai : iedn} is closed set in X.

i.e., union of finite number of closed sets is closed.

Theorem.9. Prove that in a topological space (X,3), a subset Hof X is closed if and only if it

contains the set of its limit point.

Proof. Let (X,3) be a topological space. Given H is closed if and only if H'cH.

We will prove this theorem by contradiction method.

Let xe H'and suppose if possible xgH.

Since xgH =>xeX~H

H is closed set = X~H is open set.

Using definition, every open set contains neighborhood of each of its point therefore there exist
a neighborhood Uy of x such that UxcX~H

= Uy contains no point of H

= x is not limit point of H

=xeH’

:>H’C H.



Conversely, suppose H'cH. To show that H is closed or X~H is open set.
Let xeX~H = XgH. Itisalso giventhat H' < H — x¢ H'
= X is not limit point of H
=H' NH=¢ {If AnB=¢ then AcXB}
= UxcX~H
Using definition, X~H is open set
= Hisopenset. Hence His closed if and only if H' < H.

Theorem.10. Prove that in a topological space (X,3), the union of a set A and the set of its

limit points is closed i.e., Au A’ is closed.

Proof. Let (X,3) be a two topological space and A be any subset of X. To show thatAu A’ is

closed or X~(Au A") is open set.

Let xg AU A'ie., xgA, xg A’

= X is not limit point of A

= there exist a neighborhood Uy of x which contains no point of A.
= UxnA=¢d and Uy~ A" =¢

= Uxn(Au A"y=¢

= Uxc X~ (AU A,)



= X~(Au A") is open set because Uy is open set.

= Au A s closed.

Examples

Example.19. Give two examples of a proper non-empty subset of a topological space which

are both open and closed.
Solution. (i) Suppose thatX={a, b, c},
3I={X, ¢, {a}, {b, c}} and (X,3) is a topological space.
We know that every member of 3- are open sets
X, ¢, {a}, {b, c}.
And we know that complements of open sets are closed sets
¢, X, {b, c}, {a}.

Here X, ¢, {a}, {b, c}are both open and closed.

Hence all proper subsets of (X,3J) are open and closed.
(i) Suppose thatX= {a, b, c}, I3={X, ¢, {a}, {b}, {c}, {a, b}, {b, c}{a, c}} and (X,3) isa

topological space.

We know that every member of 3- are open sets



X, ¢, {a}, {b}, {c}, {a, b}, {a c}{b, c}.

And we know that complements of open sets are closed sets

¢, X, {b, c}, {a, c}, {a, b}, {c}, {a}, {b}.

Hence each proper subsets of (X,3J) are open as well as closed.

7.7 Summary

Let X be a non-empty set and 3 be a collection of subset of X. Then 3 is a topology for X, if the
following properties are satisfied: (i) X €3 and ¢e3. (ii) Let a, b €3 then anbeJ, hence it is
closed under the operation of finite intersection. (iii) Let {Ai: iel}eJ then U{Ai: iel} €, hence

it is closed under the operation of arbitrary union.

The members of 3 are called open sets of the topology I and the pair (X,3) is called a topological
space.There are two types of trivial topology: (i) Indiscrete Topology (ii) Discrete Topology. Let
X be a non empty set. Then the collection I ={X, ¢}, (consisting of only empty set and the whole
space) is always a topology for X, is called the indiscrete topology. The pair (X,3) is called an

indiscrete topological space.

Let X be a non empty set. Then the collection 3 = {consisting of all subsets of X} is always a
topology for X, called the discrete topology. The pair (X,3) is called discrete topological space.
Topologies defined on X other than trivial topology (Indiscrete and Discrete topology) are known

as non-trivial topologies.

Let X be a non-empty set and 31, 3> are two topologies on X. Then either 3132 and I3,
the topologies 31 and J2are comparable. If 31232 and J231 then the topologies Jiand 32 are

not comparable.Let X be a non empty set and 3 be a topology on X. Then every member of 3 is



called open set.Let (X,3) be a topological space. A subset N of X is said to be a neighborhood

of a point x if it contains an open set G to with the point xeG such that xe GeN.

Let R be a set of real numbers and Ube the collection of subset of R and if U satisfies all the
properties of topology then U is a topology on R and pair (R, U) is called usual topological space

or standard topological space.

Let (X,3) be a topological space and A be a subset of X. Then a point xe X is a limit point of A

if each neighborhood of x contains at least one point of A other than x.A collection of the limit

points of a set A is called the derived set of A denoted by A’ or D (A).

A set A is said to be closed if every limiting point of A belong to the set A itself i.e., A set A is
said to be closed if D(A)cA.Let (X,3) be a topological space. Then (X,3) is said to be door

space if every subset of X is either open or closed.

7.8 Terminal Questions

Q.1. Define the topological space

Q.2. What do yo mean by trivial and non-trivial topologies ?

Q.3. Find four mutually non-comparable topologies for X= {a, b, c, d}.

Q.4. Write all the possible topologies for X= {a, b}.

Q.5. Prove that the finite intersection of two topologies on X is again a topology on X.

Q.6. Prove that the intersection of any number of topologies on X is again a topology on X.

Q.7. Let X={a, b, c, d, e} and 3={X, ¢, {a}, {a, b}, {a, b, e}, {a, c, d}, {a, b, c, d}}. Find 3-



neighborhood of (i) a (ii) b (iii) ¢ (iv) d and (v) e.

Q.8. Let X={a, b, c, d, e} and I={X, ¢, {a}, {c, d}, {a, c, d}, {b, c, d, e}}. Show that 3 is a

topology for X and find 3-closed subset of X.

Q.9. Let X={a, b, c} and 3={X, ¢, {a}, {b}, {a, b}}. Show that 3 is a topology for X. Find all

the limit point of {a, b}.

Q.10. Let X={a, b, c, d, e} and 3={X, ¢, {a}, {a, b}, {c, d}, {a, b, c, d}}. Find the derived set

of each of the following sets: (i) {a, b} (ii) {b, d} (iii) {a, b, c} and (iv) {b, c, d}.

Answers

Q3. Ii={X, ¢, {a}}, JIo={X, ¢, {b}}, JIs={X, ¢, {c}}, Jo={X, ¢, {d}},
Q4. I1={X, ¢}, J={X, ¢, {a}}, Ia={X, ¢, {b}}, 3a={X, ¢, {a}, {b}},
Q8.¢,X,{b,c,d e}, {a b, e} {b, e}, {a}.

Q9. A" ={c}

Q.10.(i) {b, e} (ii) {c, €} (iii) {b, e} (iv) {c, d, e}.
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8.1 Introduction

In topology, the closure of a set is a fundamental concept that describes the behavior of points
near the set. The closure of a set can also be defined in terms of the interior of the complement
of the set. The closure of a set helps in characterizing the behavior of sequences and functions in
topology, and it plays a crucial role in defining many other concepts, such as closed sets, limit
points, and continuity of functions. Topology provides a framework for studying geometric
properties of spaces, such as shape, size, and dimension, without being restricted to specific
metrics or coordinate systems. It helps in understanding and formalizing concepts related to

continuity, convergence, and connectedness, which are fundamental in analysis and calculus.

Many concepts in network theory and graph theory are closely related to topology, making it a
valuable tool in understanding the structure of complex networks. The importance of topology
lies in its ability to provide a unified framework for understanding the structure of spaces, making

it a fundamental area of study with diverse applications across various disciplines.

8.2  Objectives

After reading this unit the learner should be able to understand about the:

. Closure of a set and properties of closure of a set

. Separated Set

. Interior points and the Interior of a Set and their properties
. Exterior of a Set
. Boundary Points or Frontier Points

= Dense Set



8.3 Closure of a Set

The concept of closure is fundamental in topology as it helps define closed sets and provides a

way to understand the behavior of sets and points in a topological space.

Let (X,5) be a topological space and A be a subsets of X. Then the closure of A, denoted by A,

is defined as

A= ~{all 3-closed subsets of X containing A}
or c(A) is the smallest J-closed set of X that contains A.

Some properties of closure of a set

(i) A set A'is closed set if and only if R:A.
(i) Z\ is the smallest closed set containing A.
iy $=¢.

iv) A=AUD(A).

vy AUB= AUB.

8.4 Separated Set

Let (X,3) be a topological space and A, B be any non-empty subsets of X. Then A and B are

said to be separated set if

()A~B=¢ (i) AnB=¢.



Theorem.1. Let (X,3J) be a topological space and A, BcX. Then (i)g?ﬁ =¢ (ii) Acﬂ (iii)

AcB=AC B(iv)AcB= A'cB’,
Proof. Given that (X,3) is a topological space and A, BcX.

(i)Since ¢ is closed = ¢ = ¢

(ii)Using definition of closure, A is the smallest closed set containing A. So AcA.

(iii) Let AcB then

AcBC B e, ACB fusing (i)}

Since closure of any set is closed and so B is closed set containing A. Also A is the

smallest closed set containing A. Consequently KC E ,
(iv)Let xg A’
= x is a limit point of A
We have AcB
= X is a limit point of B
Thenxe B'— A"’ =B’.
Theorem.2. Let (X,3J) be a topological space and A, Bc X. Then
i)ANBc AUB i) AnB=AUB.
Proof. Given that (X,3) is a topological space and A, BcX.

(i) We know that AnBcA, ANBcB



—~ANBcA ANnBcB
ANBc AUB.

(i1) We know that AcAUB, BcAUB
—~AcAUB, BcAUB

—~ AUBcAUB (D

We have Acﬂ, BcB

= AuUBcAUB

Since A, Bare closed

:KUE is closed.

Now let AU B s a closed set containing AUB. Also AU Biis the smallest closed set

containing AUB, Consequently

AuBc AUB (2

Hence from (1) and (2), we get AU B = AUB.

Examples

Example.1. Let X= {a, b, c, d}, 3={X, ¢, {a}, {b, c}, {a, d}, {a, b, c}}. Find the closure of

(i) A ={b}, (ii) B={a, b} and (iii) C={b, c, d}.



Solution. Given thatX= {a, b, c, d},
3={X, ¢, {a}, {b, c}, {a, d}, {a b, c}}.
J-open sets are X, ¢, {a}, {b, c}, {a, d} {a, b, c}.
S-closed sets are ¢, X, {b, ¢, d}, {a, d}, {b, c}, {d}.
(i) It is also given that A = {b}.

The closure of A is

A =n{all I-closed subsets of X containing A}

=n{X, {b, c, d}, {b, c}}
={b, c}.
(ii) It is also given that B = {a, b}.

The closure of B is

B =~{all 3-closed subsets of X containing B}
=n{X}
=X.
(iii) It is also given that C = {b, c, d}.

The closure of C is

C =~{all 3-closed subsets of X containing C}
=n{X, {b, c, d}}

={b, c, d}.



Example.2. Let X={a, b, c, d, e} and 3={X, ¢, {a}, {c, d}, {a, c, d}, {a, c, d, e}}. Find the
closure of (i) A = {b, c}, (ii) B={a, c}, (iii) C={a, b, c} and (iv) D={d}.

Solution. Given thatX={a, b, c, d, e}
and 3={X, ¢, {a}, {c, d}, {a,c,d}, {a,c, d, e}}.
J-closed sets are ¢, X, {b, c, d, e}, {a, b, e}, {b, e} {b}.

(i) It is also given that A = {b, c}.

A= ~{all 3-closed subsets of X containing A}
=n{X, {b, c,d, e}
={b, c, d, e}.

(ii) It is also given that B = {a, c}.

B = ~{all 3-closed subsets of X containing B}
=n{X}
=X.

(iii) It is also given that C = {a, b, c}.

C = ~{all 3-closed subsets of X containing C}
=n{X}
=X.

(iv) It is also given that D = {d}.

D = ~{all 3-closed subsets of X containing D}



=n{X, {b,c, d, e}

={b, c, d, e}.

8.5 Interior Points and Interior of a Set

Interior points of a set play a crucial role in topology, particularly in defining the openness of
sets and understanding the structure of topological spaces. An interior point of a set is a point

that has an open neighborhood entirely contained within the set.

Let (X,3) be a topological space and A be any subset of X. A point xeA is said to be an interior
point of A if and only if A is a neighborhood of x. The collection of all interior point of a set is
called theinterior of A and denoted by A° or int(A) and defined as

A= U{all 3-open subset of X contained in A}
Some properties of interior of a set

Q) A set A is open set if and only if A’=A.
(i) AL is the largest open set contained in A.
(i) ¢°=¢.

(iv)  X°=X.

(v) AcB=A’B’,

(vi)  AUB°c(AUB).

(vii)  (AnB)°=A’~B°.

(viii) X - A=X-A°,

Theorem.3. Let (X, 3J) be a topological space and AcX. Then show that A is open if and
onlyif A”=A

Proof. Given that (X,3) is a topological space and AcX.



Suppose that A is open, therefore A is itself largest open subset of A.
= A=A,

Conversely, let A°=A. To show that A is open.

Because A is open therefore A is open (by definition).

Hence A%=A.

Theorem.4. Let (X,3) be a topological space and A, BeX. Then (i) AcB= A’ c B’
(i) (ANB)P=A°AB? (iii)(A°UBY)<(AUB)? and (iv) (AUB)%A% BO .

Proof. Given that (X,3) is a topological space and A, BcX.

(i) Let xe A= A is a neighborhood of x (by definition)
Given AcB= B is a neighborhood of x

= X is interior point of B

= xeB°

Hence AcB= A’ c B’.
(i) We have AnBcA
= (ANB)’CA°
Similarly, (AnB)°cB?
=(ANB)°’cA’~B° (D)
Now to show that =A’~B°c(AB)°

AoAY (A contained A%



BoBY (B contained BY)
= AnB>A’~B°
=A’~B%< AnB
=(A’~B%°c (AB)°
=(A’~B%c (AnB)?  {because A°cA}
(iii) We have AcAUB
= A’%c(AUB)? (by definition)
Similarly, BcAUB
= B%—(AUB)° (by definition)
=AUB’°c(AUB)°
(iv) using (iii), we have A°UB°—(AUB)°
But here to show that (AUB)°zAUB°
We proof this using an example.
Let A =[0,1[, and B=[1, 2
Then A°=]0, 1[, B®=]1, 2[
(AUB)’=]0, 2[
AUB=[0, 2[
A’UB=10, 1[U]4, 2[ =]0, 2[-{1}
Using (3) and (4), we show that

(AUB)’2A°L B

-2

.3)

.4



8.6  Exterior of a Set

The exterior of a set in topology is the set of all points in the topological space that do not belong

to the closure of the given set.

Let (X,3) be a topological space and A be any subset of X. The set of all those point of A which

are interior to X-A is called theexterior of A and denoted by ext(A) or (X-A)? and defined as

ext(A) =(X-A)° or X- A

i.e., exterior of A is the complement of closure of A.

8.7 Boundary Points

Boundary points are points that are neither entirely in the interior of a set nor entirely in the
exterior of the set. In other words, a point is a boundary point of a set if every neighborhood of

the point contains points both inside and outside the set.

Let (X,3) be a topological space and A be any subset of X. The boundary or frontier of the set
A in (X,3) is the set of all those points which do not belong to the interior or exterior of A and
is denoted by b(A) or F:(A)and defined as

b (A)' “[APU( A ) or A A -A%ng A=ACUB(A).

8.8 Dense Set

Dense sets are important in topology because they provide a way to approximate any point in a
space using points from the dense set. For example, the set of rational numbers is dense in the
real numbers, as every interval contains rational numbers. Similarly, the set of real numbers is

dense in the complex numbers.



Let (X,3) be a topological space and A be any subset of X. If ;\: X, then A is said to be dense
in X.

Examples

Example.3. Let X={a, b, ¢, d, e} and 3={X, ¢, {a}, {a, b}, {a, c, d}, {a, b, ¢, d}, {a, b, e}} and

A={c, d, e}. Find the (i) closed set, (ii) closure, (iii) interior and (iv) exterior of A.
Solution. Given thatX={a, b, c, d, e}
and 3={X, ¢, {a}, {a, b}, {a, c, d}, {a, b, c,d}, {a, b, e}}.
(1) We know that every member of 3 is a open set.
X, ¢, {a}, {a, b}, {a, c, d}, {a, b, c,d}, {a b, e}
J-closed sets are ¢, X, {b, c, d, e}, {c, d, e}, {b, e}, {e}, {c, d}.

(ii)The closure of A is

A =~{all 3-closed subsets of X containing A}
=n{X, {b, c,d, e}, {c, d, e}}
={c, d, e}.
(i) The interior of A is
A= U{all 3-open subsets of X contained in A}

=u{¢}



(iv)The exterior of A is

ext(A) = u{all 3-open subsets of X contained in X-A}

= {0, {a}, {a, b}}

= {a, b}

Example.4. Let X= {a, b, c} and 3={X, ¢, {a}, {b}, {a, b}}. Find the limit point, closure,

interior, exterior and boundary points of the following subsets of X:

(i) A= {a, c} (i) B= {b, c}.

Solution. Given thatX= {a, b, c}and 3={X, ¢, {a}, {b}, {a, b}}.

3-closed sets are ¢, X, {b, c}, {a, c}, {c}.

(i) It is also given that A = {a, c}.

3-neighborhoods of a are X, {a}, {a, b}.

Here a is not limit point of A because {a} is singleton and bgA.

3-neighborhoods of b are X, {b}, {a, b}.

Here b is not limit point of A because {b} is singleton.

3-neighborhood of c is X.

Here c is limit point of A



The closure of A is

A =n~{all 3-closed subsets of X containing A}

=n{X {a c}}
={a, c}.
The interior of A is
A= U{all 3-open subsets of X contained in A}
= {9, {a}}
={a}
The exterior of Ais
ext(A) ={all 3-open subsets of X contained in X-A}
= {4, {b}}
={b}
The boundary of A is
b(A) = {The set of all those elements of A which neither belong to A° nor to
ext(A) i.e., {c}}

={c}.



(i) It is also given that B = {b, c}.
3-neighborhoods of a are X, {a}, {a, b}.
Here a is not limit point of A because {a} is singleton.
3-neighborhoods of b are X, {b}, {a, b}.
Here b is not limit point of A because {b} is singleton.
3-neighborhoods of ¢ is X.
Here c is limit point of B.

The closure of B is

B =~{all 3-closed subsets of X containing B}

=n{X, {b, c}}
={b, c}.
The interior of B is
B%= {all 3-open subsets of X contained in B}
= {9, {b}}
= {b}

The exterior of B is



ext(B) = w{all 3-open subsets of X contained in X-B}
=u{¢ {a}}
= {a}
The boundary of B is
b(B) = {The set of all those elements of A which neither belong to B® nor to
ext(B) i.e., {c}}
={c}.
Example.5. Consider the following topology on X= {a, b, c, d, e} and
3I={X, ¢, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}.
Find (i) Determine the closure of the sets {a}, {b} and {c, e}.
(it) Which set in (i) are dense in X.
Solution. Given thatX={a, b, c, d, e}
and 3={X, ¢, {a}, {a, b}, {a, c, d}, {a, b, c,d}, {a, b, e}}.

3-closed sets are ¢, X, {b, c, d, e}, {c, d, e}, {b, e}, {e}, {c, d}.

(i) The closure of {a}, denoted by E

A1 =n{all 3-closed subsets of X containing {a}}



=n{X}

=X.
Hence Ai=X.

The closure of {b}, denoted by E

A2 =n{all 3-closed subsets of X containing {b}}

={X, {b, c, d, e}, {b, e}}

={b, e}.
Hence E = {b, e}.

The closure of {c, e}, denoted by E

% = n{all 3-closed subsets of X containing {c, e}}

=n{X, {b, c,d, e} {c, d,e}}

={c, d, e}.
Hence A;={c. d, e}.
(if) We know that any set A is dense in X if K: X.

Here K1= {a} in the given dense set in X because Kl =X.



8.9 Summary

Let (X,3) be a topological space and A be any subset of X. Then closure of A, denoted by A,

defined asﬂz N{all 3-closed subset of X containing A}.

Let (X,3) be a topological space and A, B be any non-empty subsets of X. Then A and B are

said to be separated set if (i)AmE = (i) sz:q).

Let (X,3) be a topological space and A be any subset of X. A point xeA is said to be an interior
point of A if and only if A is a neighborhood of x. The collection of all interior point of the set
A is called the interior of A and denoted by A° or int(A) and defined as

A= U{all 3-open subsets of X contained in A}

Let (X,3) be atopological space and A be any subset of X. The set of all those points of A which
are interior to X-A is called theexterior of A and denoted by ext(A) or (X-A)° and defined as

ext(A) =(X-A)° or X- A.

Let (X,3) be a topological space and A be any subset of X. The boundary or frontier of a set in
(X,3) is the set of all those points which do not belong to the interior or exterior of A and is
denoted by b(A) or Fr(A)and defined as

b(A) =[A°( A" YJor A A’-A° and A=AUb(A).

Let (X,3) be a topological space and A be any subset of X. If K: X, then A is said to be dense
in X.



8.10 Terminal Questions

Q.1. Explain the closure of a set with their properties.
Q.2. Define the Interior points and the interior of a set.

Q.3. What do you mean by Exterior of a set and Boundary points?

Q.4. Toshow that AN B # ANB.

Q.5. Let (X, 3J) be a topological space and let AcX. Then (i) If A is open, then b (A):K =A
(i1) b(A) =¢ if and only if A is open as well as closed.

(iii) Ais closed if and only if b(A)cA.
(iv) Alis open if and only if Anb(A)=¢, i.e., if and only if b(A)c A,
Q.6. Let (X, 3) be a topological space and let A, BcX. To show that ext(A)oext(B).

Q.7. Let X={a, b, c, d, e}, I={X, ¢, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} and A={a, b,
c}. Find (i) Closed set, (ii) Closure, (iii) Interior (iv) Exterior of A and (v) Boundary point.

Answer

7. @) X {b, c, d e}, {c, d, e}, {b, e}, {e}, {c, d}. (i) X

(i {a,b} (iv)¢  (v){c}
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9.1 Introduction

Bases and subbases play a crucial role in defining the topology of a space and understanding its
properties. In topology, a base (or basis) and a subbase are fundamental concepts used to define
the topology of a space. Both bases and subbases provide a way to generate a topology on a set
by specifying a smaller collection of sets that behave nicely with respect to unions and
intersections. By specifying a base or subbase, one can generate the open sets of the topology
without needing to explicitly list all open sets, which can be cumbersome for more complex
spaces. In analysis and geometry, bases and subbases are used to define topologies on spaces
such as the real numbers or metric spaces. They provide a way to study the properties of these
spaces using concepts from general topology. Hence the bases and subbases are foundational
concepts in topology that help define, characterize, and study the properties of topological spaces

in a concise and systematic manner.

9.2  Objectives

After reading this unit the learner should be able to understand about the:
. Relative Topology and their applications

. Subspace and Base for a topology,

. Sub-bases and Local base,

. First Countable Space and Second Countable Space,

. Topologies Generated by Classes of Sets,

. Separable Space, Cover of a Space and Lindelof Space



9.3 Relative Topology

Relative topology is important in various areas of mathematics, including topology, analysis, and
geometry. Relative topology allows for the study of properties of subsets of a space without
considering the entire space. Hence the relative topology provides a framework for studying
subsets of spaces in relation to the larger space's topology, enabling deeper insights into the

structure and properties of spaces in various mathematical contexts.Let ( X, J)be a topological

space and Y be a subset of X . The family v of all subsets which are intersection of Y with
member of Ji.e.,

v ={Y nevery member of 3}
or v={YNA:Ae 3T}

is called relative topology on Y .

9.4  Subspace

Subspaces are fundamental objects in mathematics with a wide range of applications in various

areas of mathematics and its applications.Let (X, 3J)be a topological space. If v is a relative
topology for asubset Y of X then the corresponding topological space (Y, v)is called a subspace

of (X,3).

Examples

Example.l: Let X ={a,b}and I ={X,¢,{a},{b}}be a topology for X . Find the

relative topology of Ac X,where A={a}.



Solution: Given that X ={a,b},3={X,4,{b}}
And A={a}.
We have XNA=AgnA=¢;{ajnA={a}land {b}nA=¢
Hence, the relative topology V for A is
v={Ag¢}.

Example 2: Let X ={1,2,3,4,5}and 3{X,¢,{1},{3,4},{1,3,4},{2,3,4,5}} to
be a topology for X.Let A={1,4,5be a subset of X.Find the relative topology and

subspace for A.

Solution: Given that X ={1,2,3,4,5}

3I={X,0,{1},{3,4},{1,3,4},{2,3,4,5}}

And A={1,4,5}

We have XNA=A
PpNA=¢;
1~ A={1);
(3.4)nA={a);

(13,4} nA={14)
And {2,3,4,5) " A={4,5}

Hence, the relative topology V for A is



v={A 21} {4}.{1.4} {4,5}}
And (A, V) isasubspace of (X,3).
Example 3: Let X =[a,b,c,d,e]and 3={X,¢,{a},{a,b},{a,c,b} {a,b,c,d}, {ab,e}}
be a topology for X.Let A={a,c,e}be asubset of X . Find the relative topology for A.
Solution: Giventhat X ={a,b,c,d,e},

3={X,¢.{a}.{a,b},{a,c,d},{a,b,c,d},{a,b,e}}

and A={a,c,e}

We have XNA=A
pOA=4
{ajnA={a};
ab}nA={a};

{a,c,d}nA={a,c};
{a,b,c,d}nA={ac};
And {a,b,e}"A={ae};

Hence, the relavtive topology Vv for Ais

v={Ag.{a} {ac} (ae}}

Theorem 1: To show that relative topology V is a topology for Y .



Proof: let ( X, 3)be a topological space and Y — X . Let V be a relative topology for Y of X .

1) Since Y N X =Y, therefore Y ev.
and Y N¢ = ¢, therefore g ev
(2) Let ABev [v={Y mevery member of 3} ]

To show that AmBev
Let A=YNC;Ce3
B=Y"D;De3
We have AB=(YNC)n(YND)
=Y n(CnD)[since C,D,e 3]
=Y mevery member of 3
=(AnB)ev
Hence , it is closed under the operation of finite intersection.
(3) Let{A:iel}ev
To show that U{A:iel}ev
We have
A=YNnU;U €3
=U{A:iell=U{YnU,:iel}

Y {wl,:iel}



Since U; € Jand Jis a topology on X
=W, €3
=[Yn{w, :iel}ev
Therefore, U{A:iel}ev

i.e., it is closed under the operation of arbitrary union. Hence, (Y,v)is a subspace of (X, 3J),

which is called relative topology.

Theorem 2: Let (Y,v)be a subspace of (X,3J)and (Z,)be a subspace of (Y,v). Then

(Z,w)is a subspace of (X, 3J).
Proof: Given that (Y,v)be a subspace of (X, 3J)

= YcX ...(0)
And (Z,w)is a subspace of (Y,v)

= XcyY ...(2)
From (1) and (2), we have

ZcX.

Now to show that (Z,®) is a subspace of (X,3J)if and only if @=3,. {J,is topology for Z}

Let G e w,since (Z,w)is a subspace of (Y,v)there exist H eVsuch that
G=HnNZ
Also (Y,v)is a subspace of (X, J)there exists Ae Jsuch that

H=ANnY



Hence, G=HnNZ
=(ANY)nZ
=AN(YNZ)
=AnZ [-Z<Y]

Using definition of topology, we have

wcC3 ...(3)
Conversely, let N € 3, then by the definition of 3, thereexist A e Jsuch that
N=AnZ
Since (Y,v)is a subspace of (X,3), we have

ANY ev

Also (Z,w)is a subspace of (Y,v)we have
(ANY)NZew

=>ANnZecw
But N=AnZ=New

=3, co ...(4)

From equations(3)and (4), we have 3, C .



9.5 Base for a Topology

The concept of a base for a topology is important in topology and has several applications. Bases
can simplify the study of topological properties. Instead of considering all open sets in a
topology, one can often work with a base and still deduce many properties of the space. This can

lead to more efficient proofs and calculations.

Let (X, 3)be any topological space. Let B be a collection of subsets of X such that:

(i) B < Jorsubclass of 3
(i) For each X e X and for all neighborhoods N of X there exist a member B e 4 such that
xeBcN.

Then B is called a base for topology 3.
or

Note:Let (X, 3)be any topological space. Then B is said to be a base for the topology Jon X,

if for x € G e Jthis implies thereexist B € gsuch thatxe BcG.

Examples

Example.4: Let X ={a,b,c}and I={X,¢,{a},{b}.{c}.{a,b},{a,c},{b,c}}be a

topology for X.1f g ={{a},{b},{c}}then show that gis a base for 3.
Solution: Given that X ={a,b,c}.

3

{X..(al}, (b}, {c} .0} fa.c}. fo.c}]
And B = {{a} {b}.{c}]



To show that g is a base for topology J .
(1) BcS
2 First we find neighbourhood of a,band C . We have

N

,={{a} {ab}.fac} X}

and Ny

{{b} 2.0} {b.c}. ]

8. = (e} {a.c). b} X)

Here ac{a)c X or ac{a}c{ablor ac{a)clac)
be{ajc X or be b} < fa,b} or be{b) < b.c)
ce{cje X or cefe) efac) o ce o)< fbic)

Hence, for all x € X there exist a member {x}in 4 such that

xe{x} =N Vneighbourhood N of X .

Therefore, gis a base for topology 3.

Example.5: Let X ={1,234}and 3I={X,4{1},{2},{1.2}{3,4}{1,34},{2,3,4}}be a

topology for X . Show that g = {{1},{2},{3,4}}isabase for 3.
Solution: Given that X ={1,2,3,4}
S (X8}, 12).1.2},13.41, 134} 23,4}

And B={{1).(2}.(3.4})

To show that g is a base for topology 3.



1) pcS

1

(2 First we find neighbourhood of 1,2,3and 4, we have
N, ={{1}.{1.2}.{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}, X |
= 1e {1} < each neighbourhood of 1
i.e., here {1} e g
N, ={{1},{1.2},{2,3},{2,4},{2,3,4},{1,2,3},{1,2,4}, X}
2 € {2} ceach neighbourhood of 2
i.e. here {2} e B
to find neighbourhood of 3, we have
J—open set containing 3 are X,{3,4},{1,3,4},{2,3,4}

Superset of X is X .

Superset of {3,4}is {3,4},{1,3,4},{2,3,4}.
Superset of {1,3,4}is {1,3,4} X.
Superset of {2,3,4}is {2,3,4}, X .

= N, 4},{1,3,4},{2,3 4}, X}
3e{3,4} ceach neighbourhood of 3

i.e. here {34} ep



Similarly, ={{X:}.,{1,3,4},{2,3,4}, X}
= 4 € {3,4} c each neighbourhood of 3
i.e., here {3,4}e g
Hence for all x e X there exist a member {xjor {x,y}is A such that
x e {x}or {x,y} = NVneighourhood N of X

Therefore gis a base for topology 3

Theorem 3: Let (X, 3)be a topological space and g = Ithen gis a base for J iff each open

set can be expressed as the union of member of 3.
Proof: Assume that S is a base for 3. Let G be an open set.

Let xeG. Since G is open set then G is a neighborhood of X therefore using definition of base

S thereexist a member B e g such that

XeBcG,VxeG
=G=u{B:Beg}and Bc G
i.e., each open set is the union of member of 2.

Conversely, suppose that each open set can be expressed as the union of member of B

.Now to show that g is a base for 3.

It is given B 3. Let N be any neighborhood of Xthen using definition of



neighborhood, there exist an open set G such that

xeGc N

:Xeu{B:Beﬁ}cN

By assumption, xe B < N, for at least one B € . Therefore gis a base for 3.

Theorem 4: Let {X, 3} be a topological space and g is a base for topology 3. Then show

that (1) for all X e X there exist B € g such that

(2) For all B;,B, € pand every point X € B, "B, there exist B € g such that

XxeBc B NB,

i.e., the intersection of any two member of B is a union of member of 3.

Proof: Given that { X, 3} be topological space and S is a base for topology 3.

1) Since X isaopen set then it is the neighborhood of each of its point then using definition

of the base for every X e X there exist some B e gsuchthat xeBc X i.e,,
X =U{B:Be g}

(2)  Let B,,B, € S,then Band B, are open sets.

= B, n B, is open set.

= B, N B, is the neighbourhood of each of its point

= There exsit some B e gsuch that X e B < B, N B, i.e., the intersection of any two member of



A is a union of member of B is a union of member of 2.

9.6 Sub-bases and Local Base

Sub-bases and local bases are important concepts in topology because they provide ways to
describe topologies in terms of simpler collections of sets (sub-bases) or to understand the local

structure of a space around a point (local bases).

Let (X,3J)be a topological space. A family g of subsets of X is called a subbase for the

topology J if and only if finite intersections of members of g form a base for 3.

Let (X, 3)be a topological space. A class /3, of open sets containing X is said to be a local base

at X (or base for the neighborhood system of X) if and only if for each open set G containing

X . There exist G, € B,with xe G, cG.

9.7 First Countable and Second Countable Space

First countable and second countable spaces are important concepts in topology because they

provide useful properties that simplify the study and characterization of topological spaces.

A topological space ( X, J)is said to be the first countable space if and only if every point X € X

has a countable local base.

A topological space (X,3J)is said to be second countable space if and only if there exist a

countable base g for the topology 3.



9.8 Topologies Generated by Classes of Sets

In topology, topologies can be generated by different classes of sets, such as bases, sub-bases,
and local bases.Let X be a non-empty set and A be a non-empty collection of subsets of X .

Then the collection A always generates a topology on X .

Examples

Example.6: Let X ={a,b,c,d,e} and A ={{a,b,c},{c,d},{d,e}}. Find the topology on

X generated by A.

Solution: Giventhat X ={a,b,c,d,e}and A={{a,b,c},{c,d} {d e}}

The collection of all finite intersections of sets in A is denoted by
p={ab.cj{c.d} {d.ejfcj.{d} 4 X}

Using definition of base { X € B} . The union of member of S gives the class

I={X,¢{c},{d},{a,b,c},{c,d},{d,e},{a,b,c,d},{c,d,e} whichisthetopologyon X

generated by A
Theorem 5: Prove that every discrete space is a first countable space.

Proof: Let (X, 3) be a discrete topological space. We know that in a discrete topological space
every subset of X is open. Hence, if X e X then {x}is open and contained in every open set G

which contains X . Therefore ( X, 3)is a first countable space.

Theorem 6: Prove that each second countable space is a first countable space.



Proof: Let (X, J)be a second countable space and A be a countable base for 3. Let 3 be the

subfamily of B which contains X. Then Jis countable because g is countable. Now to show

that J is the local base at X .

Let N, is the neighbouhood of X and an openset X €G i.e.,

=>XxeGcN,

=>xeN,eJ

= U{N;:N, e 8}

—xesome N,cGc N €3

=>Xxe(
= Jis countable local base at X . Since X is arbitrary.

The given space is first countable space.

9.9 Separable Space

A separable space is a topological space that contains a countable, dense subset.Separable spaces
are often used as a convenient assumption in various theorems and proofs. Many important

spaces studied in topology, such as separable metric spaces, are separable.

Let (X, 3)be a topological space. Then (X, 3) is said to be separable space if and only if there

exist a finite countable dense subsets of X .



Note:Let ( X, 3)be a topological space. Then (X, 3) is said to be separable space iff there exist

a finite countable subsets A of X such that A= X .

9.10 Cover of A Space

In topology, a cover of a topological space X is a collection of subsets of X whose union contains

X as a subset.Let (X, 3J)be a topological space and Ac X.A family Aof subsets of X is a

cover for (X, 3)if and only if

u{v:VGA}zx

And if g < Asuch that gis also a cover for X then g is asubcover of A.

9.11 Lindelof Space

A Lindelof space is a topological space in which every open cover has a countable
subcover.Lindel6f spaces are a generalization of countably compact spaces, which are spaces in
which every countable open cover has a finite subcover. Countably compact spaces are important

in their own right, and Lindel6f spaces provide a broader class of spaces with similar

properties.Let (X, 3)be a topological space. Then (X, 3J)is said to be Lindelof space if and

only if every open cover of X has a countable subcover.

Theorem 7: Prove that every second countable space is separable.

Proof: Let (X, 3)be a second countable space.
To show that ( X, J)is separable space.

Since the given space is second countable, so there exist a countable base g for 3. We take a



point b from each member B of . Let the collection of each point is denoted by A then Ais

countable because g is countable.

Now to show that Aisdense in X.Let xe X and N is any neighbourhood of X . Since g is base

then
xeBcN
Using definition of A, b e Asuch that
beBcN
Thus, N contains a point of this set A other than X i.e., X is limit point A.
Since X is arbitrary point than all the points of set Aare limit point, i.e.,
A=X
Hence, Ais countable dense subset of X . Therefore (X, 3J)is separable.
Theorem 8: Every second countable space is Lindelof.
or
Every open cover of a second countable space is reducible to a countable sub-cover.

Proof: Let (X, 3)be a second countable space and S be a countable base for J. Let C be an

open cover of X .

To show that C has a countable subcover, i.e., each member of C is expressible as a union of

member of g. Suppose Ais the set of all those members of B which are actually required in

expressing members of C as union of members of 3.

Therefore A is countable and is a cover of X i.e., Aisa countable open copver of X . For each

A € Achoose a C; € C such that



A <G

i.e., the collection of these C; is also a countable open cover of X . So Ahas a countable

subcover. Hence, (X, 3J)is a Lindelof space.

9.12 Summary

Let (X, 3)be a topological space and Y be a subset of X . The family v of all subsets which are

intersection of Y with member of Ji.e.,

v={Y nevery member of 3} or v={Y "nA:Ae T}

is called relative topology on Y .

Let (X,3)be a topological space. If v is a relative topology for a subset Y of X then the

corresponding topological space (Y,v)is called a subspace of (X, J).

Let (X, 3)be any topological space. Then B is said to be a base for the topology Jon X, if for

X € G € Jthis implies thereexist B e g such that xeBcG

Let (X,3)be a topological space. A family pof subsets of X is called a subbase for the

topology J if and only if finite intersections of members of g form a base for 3.

Let (X, 3)be a topological space. A class /3, of open sets containing X is said to be a local base

at X (or base for the neighbourhood system of X)) if and only if for each open set G containing

X . There exist G, € B,with xe G, cG.

A topological space ( X, J)is said to be the first countable space if and only if every point X € X



has a countable local base.

A topological space (X,3J)is said to be second countable space if and only if there exist a

countable base g for the topology 3.

Let X be a non-empty set and A be a non-empty collection of subset of X . Then the collection

Aalways generates a topology on X .

Let (X,3)be a topological space. Then (X, 3J) is said to be separable space iff there exist a

finite countable subset Aof X suchthat A= X .

Let (X, 3)be a topological space and Ac X.A family Aof subset of X is a cover for (X,3J)
ifand only if U{vive}=X and if g Asuch that gis also a cover for X then gis a

subcover of A.

Let (X, 3)be a topological space. Then (X, 3J)is said to be lindelof space if and only if every

open cover of X has a countable subcover.

9.13 Terminal Questions

Q.1. Explain the relative topology and subspace with example.
Q.2. Show that every subspace of a discrete space is also discrete.

Q.3.Let Y be a subspace of X if U isopenin Y and Y isopenin X then U isopenin X .

Q4. Let X={abc.dejand I={X,¢,{a},{b} {ab} {a,d.e},{ab,d,e}}be a

topology for X . Find the relative topology Vv for the subset A:{a,b,c} of X.



Q5. Let X ={ab,cd,efand I={X,¢{a},{c,d},{a,c,d},{b,c,d,e}}be a

topology for X . Let A {a,d,e} be a subset of X . Find the relative topology for A.

Q.6. Prove that every finite space is also first countable.

Q7. Let X={abcd}and I={g X{a},{b},{a,b} {c,d} {a,c,d},{b,c,d}be a

topology for X . Show that 8 ={{a},{b},{c,d}}is a base for 3.

Q8. Let X ={a,b,c,d,efand A={{a,b},{b,c},{a,d,e}}. Find the topology on X

generated by A.

ANSwers:

4. v={A ¢ {a},{b}, {a,b}}.
5.v={Ag{a},{d} {a,d},{d,e}}.

8. 3={X,¢,{a},{b}.{a,b}.{b,c},{a,b,c},{a d.e} {ab,d,e}}.
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10.1 Introduction

Continuous maps and homeomorphisms are fundamental in topology for understanding the
relationships between various topological spaces. Homeomorphisms are particularly significant
as they identify spaces that are "topologically equivalent” or "topologically the same," indicating
they share identical topological properties despite potentially differing geometric characteristics.
In topology, homeomorphic spaces are often regarded as equivalent because many key
topological properties, such as connectedness, compactness, and continuity, remain unchanged
under homeomorphisms. By utilizing continuous maps and homeomorphisms, it becomes
possible to compare and categorize different topological spaces based solely on their topological
properties, independent of their specific geometric or metric attributes.

Hence these concepts provide a foundational understanding of the structure and behavior of

spaces in topology.

10.2  Objectives

After reading this unit the learner should be able to understand about the:

= Continuous Function

= Open Mapping and Closed Mapping

= Bicontinuous Mapping, Bijective Mapping
= Sequential Continuity

=  The pasting Lemma

=  Homeomorphism



10.3 Continuous Function

The term "topology™ is used in two distinct ways: to refer to the mathematical discipline itself,
and to describe a family of sets with specific properties that are used to define a topological
space—an essential concept in topology. Continuous functions are the most important mappings
between topological spaces, as they are used to define homeomorphisms that establish the

equivalence of two spaces.

Let (X,3)and (Y,v) be two topological spaces. A function f:(X,J)—(Y,v)is said to be
continuous at the point X € X if thereexist a neighborhood U, such that f (U)<V,where V is

the neighborhood of f (x).

or

Suppose (X, J)and (Y,v)are two topological spaces; let f :X —Y be a function. Then f is

said to be continuous if it continuous at each point of X .

X Y

Theorem 1: Let f:(X,3)—(Y,v)be a mapping. Then f is continuous if and only if the

inverse image of every open setin Y isopenin X .



Proof: Let f:(X,3)—(Y,v)be acontinuous. Let V is any open setin Y.

To show that f~(V )is opensetin X .

(1) If f7(V)=¢=itisopen set

(2) If £7(V)=gthenthereexist xe f (V)= f(x)=V

Since it is given f is continuous then there exist an open set G in X such that
xeGand f(G)cV=Gc (V)

ie., XeGCf’l(V)

Thus, f*(V)is a neighbourhood of each of its points and so it is open in X .

Conversely, let the inverse image of all open set in Y are open set in X . To show that f is

continuous at X . Let Xe X and G isan opensetin Y .

= f(G)isopensetin X suchthat xe f*(G)
If £(G)=M, then M isan open setin X continuous X such that
f(M)CG

= f is continuous at X € X



Since X is arbitrary then f is continuouson X .

Theorem 2: Let f:(X,3)—(Y,v)be a mapping. Then f is continuous if and only if the

inverse image of every closed setin Y isclosed in X .

Proof: Let f:(X,3)—(Y,v) be a continuous function and V is any closed set in Y

X Y

To show that f*(V)is closed setin X . Since V is closed setin Y then Y ~V is open set in

Y . Also it is given mapping in continuous
= f (Y ~V)is open setin X
= f7(Y)~ £ (V)isopen set X
= X ~ f7(V) isopen set X
= f(V)isclosed setin X .

Conversely, let the inverse image of closed set in Y is closed in X to show that f is continuous.

Let GisanyopensetinY .

To show that f *(G)is opensetin X

=Y ~Gisclosed setin Y

= f (Y ~G)is closed setin X



= f*(Y)~ f*(G)isclosed setin X
= X ~ f*(G)is closed setin X
= f(G)is opensetin X

Hence, f is continuous.

Theorem 3: Let X, Y and Z are topological spaces. The mapping f : X —Y and mapping

g:Y — Z are continuous then gof : X — Z is also continuous.

Proof: Given that X,Y and Z are topological spaces.

(gof)
Let G is open setin Z. Since it is given mapping g :Y — Z is continuous.
= g~ (G)isopen setin X .
Also itis given f : X —Y is continuous.
= f*[g(G)]isopensetin X

= (gof ) ' (G)is open setin X {for every open set G of Z}



= (gof ) is continuous from X to Z.

10.4 Open Mapping and Closed Mapping

Let f:(X,3)—(Y,v)beamapping f is said to be open mapping iff images of every open set

in X areopenin .

Open Open

Let f:(X,3)—(Y,v)be a mapping. Then mapping f is said to be closed mapping iff images

of every closed set in X areclosedin Y .

Closed Closed

10.5 Bicontinuous Mapping

Let (X,3)and (Y,v) be any two topological spaces. A mapping f is said to be bicountinuous

mapping if both f and f ™ are continuous mapping.



X f Y

(continuows)

f 1
[continuous)

10.6 Bijective Mapping

Let (X,3)and (Y,v)beany two topoligical spaces. A mapping f is said to be bijective mapping

if f is one-one onto mapping.

Note: Continuity of f is the same as open mapping or closed mapping.

10.7 Sequential Continuity

Let (X,3)and (Y,v) be any two topological spaces. A mapping f:X —Y is said to be
squentially continuous at a point X, € X if and only if for every sequence {x,} in X converging

to X,, the sequence { f (x,)}in Y convergesto f(x,).
i.e., X, > % = f(x,)—> f(X).

Theorem 4: Let f:X —Ybe a mapping then fis continuous if and only if
[f*(B)] o[ f7(B")] VBcY.

Proof: Let f: X —Y be acontinuous mappingand B <Y



=1

f

To show that [f‘l(B)T =) f‘l(B")

We know that by definition of interior, B* isaopensetinY .

Since f is continuous this implies f—1(|3°)is open set in X . By definition of interior, if B"isa

open set then B" =B, i.e,,

[t(B)] =f(B) @)

Also by definition, we have

BoB = f*(B)> f*(B)
If Ac Bthen A" c B’

=[(@)] o[ ()] @
From equations (1) and (2), we have

[t(B)] o f7(B) 3)
“Conversely, let [f(B)] o f7(B) (4)

To show that f is continuous mapping.



Let H be any open setin Y then to show that f *(H)is also openin X . We know that if H is

an open set then H°=H
From equation (4), we have
=[f*(H)] > f*(H) (5)
By definition of interior, we have
HoH
= f*(H)s[ f*(H)] (6)
From equations (5) and (6) , we have
[ (H)] =f*(H)
i.e., f*(H)isopenin X.
Because we know that B"is open set if B" = B .Hence, f is continuous mapping.
Theorem 5: Let f : X —Y be a mapping then f is continuous if and only if
f’l—(B)C f’l(g),VB cY.
Proof: Suppose f is continuous mapping and B is closed set in Y , therefore (E)is closed

setin X . By definition of closure if B is closed set then B =Bi.e.,
[ 17(B)]=17(8) (1)
Also by definition, we have

BcB= f_l(B)C f_l(g)

If AcBthen Ac B

= 17(B)| 7(B)] (2)

From equations (1) and (2), we have f*(B)c f‘l(ﬁ) 3



Conversely, let f*(B)= f*(B) (4)

To show that f is continuous mapping.

Let Bisany closed setin Y then to show that f*(B)is also closed setin X . We know that if

B is any closed set then B=B.

It is given that f*(B)c f*(B)="f"(B)for B=B (5)
By definition, we have

BoB= f*!(B)c f(B) (6)
From equations (5) and (6), we have

f*(B)=f"(B)
i.e., f(B)isclosedin X .Hence, f is continuous mapping.

Theorem 6: Let (X,S)and (Y,v)be tow topological spaces, then a mapping f: X —Y is
openifandonly f (A )| f(A)] VAcX.

Proof: Suppose (X,J)and (Y,v) are two topological spaces. Let Abe a subset of X and

f : X —Y be an open mapping.
Since A’isa J-open subsetand f is an open mapping so f ( )is a v-open subset of Y.
By definition of interior, we have
AcA
= f(A)= f(A)
Thus, f(A")isav-open set contained in f (A).
Therefore, f(A')<[ f(A)]

Conversely, f(A)<[ f(A)]and G beany opensetin X . Then we have

f(G)=1(G")<[f(G)] because G is open iff G' =G



Hence, f(G)isan v-open subset of Y i.e., f is open mapping.

Examples

Example.1: Consider the following topologies on X ={1,2,3,4}and Y ={u,v,w, z}

respectively.
3={X,¢,{1}.{1.2},{1,2,3}} and v ={Y,¢,{u},{v},{u,v},{v,w,z}}

Also consider the function f : X —Y and g: X —Y defined by the diagrams below:

To show that (1) f is continuous and (2)g is not continuous.
Solution: (1) We have f*{Y}=X, f*{g}=9¢, f *{u}=¢
f{vi={1}, f {u,v}={1},and f*{v,w,z} ={1,2,3,4} =X

Hence, f is continuous because inverse of each member of vV on Y is a member of topology 3

on X.

(2) Wehave fH{Y}=X, f{g}, f*{v}={g},

(Ul ={1,20and {u,v}={1,2].



But f*{u,v,w} ={1,3} which is not open set of X i.e., not belongsto 3.

Hence, g is not continuous because inverse of each member of v on Y is not a member of the

topology Jon X .

Example 2: let (Y,v)be a topological space. Let f : X —Y be a mapping, where X is anon-

empty set.

(@) What is the smalles topology for X which makes f continuous?
(b) Is it always possible to assign a topology for X so that f is continuous?
Solution: (a) Suppose I={f*(H):H ev}

If 3'is any topology for X then f is3'-v-continuous if and only if 3" < 3. Thus, we have to

find the smallest topology for X containing 3.

(i) We have f(g)=¢
pe

Also fH{Y}=X
Xed

(i) Let Aand B two any member of 3.Then there exist V— open subsets G and H such that
A=f"(G)and B=f"(H)
Then ANB=f*(G)nf™(H)
=f*(GnH)=3

(iii) Let Ae3,Vien.Then



A = f*(H,)Vie,where H ev
U{Aien}=U{f(H,)ien]
=7 [ufHisien}]es
[ U{H,tien}ev]

(©) Yes, it is alsways possible to assign a topology for X so that f is continuous. The
discrete topology D is the required topology because for each v —open set H, f™(H)is D -

open.

10.8 The Pasting Lemma

Theorem: Let (X, 3)be the topological space and X = AUB, where A and B are closed
in X.Let f:A—Yand g:B—Y arecontinuous mapping into a topological space (Y,v)
. If f(x)=g(x)forall xe AnB, then f and g combine to give a continuous mapping

h: X —Y,defined by setting h(x) = f (x)for xe Aand h(x)=g(x)for x B, is continuous.

Proof: Suppose that the topological space (X, 3J)is the union of two closed subsets Aand B .
Let f:A—Y is continuous then f*(G)is closed for each closed subset of G of Y . Let
g:B—Y is continuous then g™ (H )is closed for each closed subset H of Y.Also it is given
f(x)=g(x), vxeAnB. To show that h: X —Y is continuous mapping. Suppose Cis a

closed subset of Y, i.e., to show that h™*[C]is also a closed subset of X .

Suppose C=GuUT UH , where G is the closed subset of Y such that h(x)eG = xe A. Also

H is the closed subset of Y such that



h(x)eH = XxeB.

And T is tl

h(x)eT =XxeANB
We have h*[C]=h"[GUT UH]
=h?*[G]uh™[T]uh™[H]

— £ [G]u f[T]ug™[H]

For f(x)=h(x)forall x=A
And g(x)=h(x)forall xeB
Then h(x)=f(x)=g(x)forall xe AnB.

Now f~[G], f[T]and g™*[H],are all closed subsets for f and g are continuous mappings.

Since a finite union of closed subsets is closed therefore hfl(C] is a closed set wherever Cis

closedin Y .

Hence, h: X —Y is a continuous mapping.

10.9 Homeomorphism

Homeomorphisms are of particular significance in this context, as they are defined as continuous



functions with continuous inverses. For instance, the function y =X’ is a homeomorphism on
the real line. Let (X, J)and (Y,v)be two topological spaces. A mapping f :(X,3) —(Y,v)is

said to be homeomorphism if and only if

1) f is one-one, and onto.

2 f and f "both are continuous
or

A mapping f:(X,3)—(Y,v)is said to be homeomorphism if and only if f is bijective and

bicontinuous.

fis continuous,
one-one and onto Y

1, .
f is continuous,

Theorem 7: Prove that a homeomophism is an equivalence relation in a collection of all

topological spaces.

Proof: We know that homeomorphism is a mapping which is reflexive, symmetric and transitive

if it is an equivalence relation.
1) Reflexive: Let an identity mapping
I : X — X such that

I(x)=xforall xe X.

Here | is one-one onto. | and 17" is continuous. Hence it is homeomorphism, i.e., the relation



of homeomorphism is reflexive relation.

X I b

-1

2 Symmetry: Let (X,3)and (y,v)are two topological spaces.

(X, J) (Y. v)

Since f is homeomorphism f:X —Y then f is one-one onto, fand f ‘are continuous. i.e.,

fry 5> X
= f~'is one-one onto because f is one-one onto. Also f'is continuous i.e., (f’l)f1 =fis
continuous. This implies f is homeomorphism.
Hence, the relation of homeomorphism is symmetric relation.
(3)  Transitivity: Let (X,3),(Y,v)and (Z,W )are three topological spaces.

Let f: X —»Y and g:Y — Z are the corresponding homeomorphism, then we have to show that

the mapping gof : X — Z is homeomorphism. Now we have:



1) Since f isone-one onto and g is one-one onto then gof is also one-one onto.

2 Since f X ->Yand g:Y — Z are continuous then gof is also continuous.

3 Since f is continuous then implies f is continuous.

(gof)”’

And g is continuous then implies g "is continuous. Thus the mapping f “og™ = (gof )‘1is also

a continuous mapping. Hence, gof is homeomorphism, i.e., the relation of homeomorphism is

Transitivity.
Theorem 8: Let {X, 3} and (Y,v)be two topological spaces and let the mapping f : X —Y

be one-one onto. Then f is homeomorphism if and only if f (K) =[f(A)], vAcX.

Proof: Suppose (X, J)and (Y,v)are two topological spaces. Let amapping f : X —Y be one-

one, onto and

f(A)=[f(A)] VAcX. @)

To show that f is homeomorphism



By (1), we have

f(A)c[f(A)]
This implies f is continuous

Now let H be any closed set then H = H

Using above conditions, we have
f(F)=f(F)=f(F)

This implies f (F)is v—closed. Thus, f isclosed mapping. Here f is closed and continuous so

f is homeomorphism.

Conversely, let fis homeomorphism and to show that

f(A)=[f(A)], VAcX

Suppose Ais any subset of X and given f is continuous

Then f(A)=[f(A)]
Also AcA = f(A)cf(A)
Since fisclosedso [ f(A)]=(A)

Thus, we have [ f (A)]< f(A)

Hence, f(A)=[f(A)] VAcX.



Examples

Example.3: Let X ={a,b,c}and Y ={1,2,3}.Let I={X,¢,{a,b},{c}}and Vv

={Y.4.{1},{2,3}}.Suppose f(a)=1 f(b)=2and f(c)=3.
1) Is f: X —Y continuous?

2 If f:X —Y ishomeomorphism?

Solution: Given that X ={a,b,c}and Y ={1,2,3}.

Also given I={X,4,{a,b},{c}}and v={Y,¢,{1} ,{2,3}}.

(1)Here f is one-one mapping from X to Y . But f : X —Y is not continuous. Since {1} is V

-open set but f {1} ={a}is not 3—open set.

(2) From (i), f : X —Y is not continuous. Hence, f : X —Y is not homeomorphism.

10.10 Summary

Let (X,3)and (Y,v)are two topological spaces. A function f:(X,J)— (Y,v)is said to be
continuous at the point X € X if there exist a neighborhood U, such that f (U)cV,where V is

the neighborhood of f (x).



Let f:(X,3)—(Y,v)beamapping f is said to be open mapping iff images of every open set

in X areopeninY .

Let (X,3)and (Y,v) be any two topological spaces. A mapping f is said to be bicountinuous

mapping if both f and f~ are continuous mapping.

Let (X,3)and (Y,v)beany two topoligical spaces. A mapping f is said to be bijective mapping

if f is one-one onto mapping.

Let (X,3)and (Y,v) be any two topological spaces. A mapping f:X —Y is said to be
squentially continuous at a point X, € X if and only if for every sequence {x,} in X converging

to X,, the sequence { f (x,)}in Y convergesto f(x,).
e, X, > % = f(x,)—>f(x).

Let (X,3)and (Y,v)be two topological spaces. A mapping f :(X,S—>(Y,v)is said to be

homeomorphism if and only if

(i) fisone-one and onto (ii) f and f ‘both are continuous.

10.11 Terminal Questions

Q.1. Explain the continuous and homeomorphism mapping.
Q.2. What do you mean by Open and Closed mapping.
Q.3. Define continuous and homeomorphism mapping.

Q.4. Amapping f : X —Y is continuous mapping if and only if f (Z\)c f(A), VAc X .

Q.5. Give an example of a one-one continuous mapping which is not a homeomorphism.
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Block-4

Separation Axioms on Topological Spaces

In this block we deal with the basic concept of separation axioms such as T, —space, T, —space,

T, —space, regular space, T, —space, T,,, —space, normal-space, T, —space, and their properties.
Urysohn’s lemma, Teitze extension theorem and statement of Urysohn’s metrization theorem,
Connected Set, Disconnected Set, Connectedness on the Real Line, components, Maximal
Connected Set, Locally Connected Space and Totally Disconnected Set, Cover, Open Cover,
Compact Space, Compact Set, Finite Intersection Property, Locally Compact Space, Lindelof
Space, Bolzano Weierstrass Property, Sequentially Compact, Uniformly Continuous, Lebesgue
Covering Lemma, Heine-Borel Theorem, Product Topology, Projection Mappings are be
discussed here. Compactness is an important property because it ensures that certain properties
hold in a space. There are different equivalent characterizations of compactness in terms of open
sets, closed sets, and continuous functions, which make compactness a versatile and important
concept in topology. Connectedness is a fundamental concept in topology that describes the
property of a space being in one piece, without being able to be split into two or more disjoint

nonempty open sets. Some symbols are defined below with their name and notations: T =

Frechet space T, = Housdorff space
T, = Regular + T,spaceT, = Normal + T,space

T31 = Tychonoff space or completely regular T, —space T, = Completely normal T, —space
2

R = Regular space N = Normal space
CN = Completely normal space CR = Completely regular space

C, = First countable space C,= Second countable space

L = Lindelof space
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11.1 Introduction

Separation axioms are properties that describe the level of "separation™ or "disconnectedness”
between points and sets in a topological space. These axioms help to classify and distinguish
different types of topological spaces based on their separation properties. In mathematics,
particularly in topology and functional analysis, a To -space is a type of topological space that
satisfies the To separation axiom. To spaces are considered the weakest separation axiom in
topology, weaker than T1 (or "Kolmogorov") spaces, which satisfy the T1 separation axiom: for
any two distinct points, each point has a neighborhood not containing the other point.In topology,
a T1 space, also known as a Fréchet space (is a topological space) in which every singleton set
(a set containing only one point) is a closed set. The T1 separation axiom is a step stronger than
the To separation axiom. T1 spaces are important in topology because they are strong enough to
ensure many desirable properties, yet they are still relatively general. Most commonly studied
topological spaces, such as metric spaces, are T1 spaces. In topology, a T2 space, also known as
a Hausdorff space, is a topological space in which any two distinct points have disjoint
neighborhoods. The T, separation axiom is stronger than the T separation axiom. Hausdorff
spaces are important in topology because they provide a setting in which limits of sequences and
continuity of functions are well-behaved. Most spaces encountered in analysis and geometry,

such as Euclidean spaces, are Hausdorff spaces.

11.2  Objectives

After reading this unit the learner should be able to understand about the:

. To—Space with their properties and applications
. T1—Space or Frechet Space with theor properties and applications
. Co-finite Topology

. T, —Space (Hausdorff Space) with theor properties and applications



11.3 To-Space

To-space are important in understanding the properties of topological spaces and their
relationships with other separation axioms.The To axiom states that for any two distinct points in the
space, there exists an open set containing one point but not the other. In other words, To spaces can

distinguish between different points based on open sets.

Let (X : S)be a topological space. Then (X : S) is said to be To-space if and only if for distinct

points x,and X, in X there exista 3—open set G such that
x, €Gand X, G

or X,eGand X ¢G

Examples

Example.l. Let X ={a,b,c}, I={X,¢4{a},{b},{a,b}}. Toshow that (X,J)isa T, -

space.
Solution: Given that X ={a,b,c}
and 3={X,¢.,{a}.{b},{a,b}}

Using definition of T, —space, for distinct element aand b there exists a 3— open set {a} or

{b} such that
ae{ajand b¢{a}
or a¢{bjand be{b}

Hence, (X, 3J) isa T, —space.



Example 2: To show that every discrete space (X , S) isa T, —space.
Solution: Suppose X ={a,b}and I={X,¢,{a},{b}}
For if a,b e X are two distinct points
(1) Then there exists a I —open set {a} such that
a¢{ajbut be{a}
(2) Then there exists a 3— open set {b} such that
a¢{b}but be{b}
Hence every discrete space (X , S) isa T, —space.
Example 3: To show that an indiscrete space (X , S) isnot a T, —space.
Solution: Suppose X ={a,b}and I={X,g¢}.
Here (X, 3)is an indiscrete space.

For if a,be X and a # b then there exists no 3—open set which contains one of a and b and

does not contain the other, i.e., here only one non-empty 3—open set is X which contains both

open and closed. Hence, an indiscrete space is not a T, —space.

Theorem 1: Prove that every subspace of a T, —space is a T, —space and hence the property

is hereditary.

Proof: Let (X,3)be a T, —space and (Y,V)is a subspace of (X,3J). To show that (Y,v)is a

T, —space.



Since Y < X, X, and X, are also distinct point of Y.

Itis given {X , S) isa T, —space then there exists an open set G € 3 such that
X €G, X, ¢Y

Now x, e Gand x, Y
=Xxe¥YNGeU

Suchthat X, €Y NG, X, ¢Y NG

This implies (Y,V)is a T, —space.

Hence, the property of being a T, —space is a hereditary propert.

Theorem 2: Let (X, 3)is (Y,v)is a subspace of (X,3). If f:X Y, f is one-one onto and

open mapping then (Y,V) IS an open space or T, —space.
or

The property of a space of being a T, —space is presented by one to one, onto, open mapping

and hence is a Topological property.

Proof: Let (X,3)be a T,-space and let f be one-one open mapping of (X, J)onto another

topological space (Y,V).
To show that (Y,V)is also to T, -space.
Let ¥,,Y,€Y where y, =Y,

—>there exist X, X, € X such that



One-one onto open
mapping

Itis given (X, J)is a T, -space

= There exist a neighbourhood u of x, which does not contains X, .

= f (u) is a neighbourhood in y (since it is given that it is an open mapping)
i.e., ¥, € f(u)which does not contains Y,
Hence, (Y,Vv)is also a T, —space.

Theorem 3: A topological space (X ) S) is aT, space if for any distinct arbitrary points X,y

of X, the closure of {x}and {y} are distinct, i.e., {X} = {V}.

Proof: Let (X,J)be a T, —space. Let X,y € X such that x = y. To show that {X} = {V}. Since

X is a T, —space, then there exist G e Jsuch that
xeG,yeG

=>X¢eX~Gand =>yeX ~G



i.e., X ~Gisclosed set

using definition of closure, we have
A=n {of all closed set containing A}

We have {V}=n{F:Fisaclosedsety eF}
Also X ~ Gis aclosed set containing y
{y}c X ~G=x¢X ~Gso that
X¢{y)
Obviously {x} < {X}
This impies xe{X}
Using (1) and (2) we have {x}={y}
Conversely, let {X} #{¥} such that x = yand
{x} #{y}
To show that (X, J)is a T, —space
Given that {X} = { ¥} then there exists one point p € X such that

pe{i} and pe{)_/}



We have xe{y}.

But if xe{V}.then

ie., p € {¥} which is contradiction
Using equation (4), we have

xe{y}=>xeX ~{y}

yel{Vj=ye X ~{y}

= X ~{V} is open for {¥}is closed

Then X~ {V}is open set such that

xeX ~{¥}and y ¢ X ~{y}
i.e., space is T, -space.
Theorem 4: If (X,3)isa T, -space and 3, is finer than J,then (X, 3, )is also a T, -space.

Proof: Suppose (X, 3J)is a T, -space then for any two distinct points X, %, in X, there exists a

J—open set G such that



X, €Gand x, £ G

Since 3, is finer than 3. So every 3—open set is also I, —open set. Hence, G is a J,-open set

which contains X, but not X, .

Thus, the space (X, 3, )is also a T, -space.

11.4T.-Space or Frechet Space

T1 spaces are important in topology for their separation properties, their compatibility with
analysis, their connection with Hausdorff spaces, their applications in topological dynamics, and
their role in algebraic topology. Ti1 spaces are well-suited for analysis and related fields.
Properties like continuity, convergence, and limits are well-behaved in T spaces, making them

valuable in functional analysis and other areas of mathematics.

Let (X : 3) be a topological space. Then (X : S) is said to be a T, —space if for each distinct pair

X, Y then there exist two sets G and H such that
xeGhut yeG

and yeHbut xgH

Note:A topological space (X, J)is said to be T, — space if each singleton is closed.

Examples

Example.4. Let X ={a,b}and 3={X,¢,{a},{b}}. To show that (X,3)isa T, - space.

Solution: Given that X ={a,b}and3={X,¢,{a},{b}}



J—opensetsareg, X,{b},{a}.
3—closed sets are X, ¢,{a},{b}
Here each singleton is closed so the given space ( X, J)vis a T, — space

Another Solution:Let aand b are two distinct points (pair) of X there exist two open set {a}

and {b} such that

ae{a},b¢{a}
and be{b},a¢{b}
Hence, {X,J)isa T,-space.

Example 5: Let X ={1,2,3}and 3={X,4,{1},{2},{1,2}} To show that (X, 3J)is a T,-space.

Solution: Given That X ={1,2,3}

And 3={X.4.{1}.{2}.{1.2}}

Here 1 and 2 are two distinct pair of X then there exist two open set {1} and {2} such that
le{l},2¢{1}

and 2e{2},1¢{2}

Hence, (X, 3)is a T,-space



11.5 Co-Finite Topology

The co-finite topology is also known as the finite complement topology. The co-finite topology
is used in functional analysis, particularly in the study of the space of continuous functions. It
provides a useful examples for understanding convergence and continuity in function spaces.
The co-finite topology is one of the simplest examples of a non-trivial topology. It is easy to
understand and provide a basic model for studying more complex topological spaces. Hence the
co-finite topology is an important example in topology that helps to illustrate key concepts and
has applications in various areas of mathematics, including number theory and functional

analysis.

Let A B,C,...,c X and (X, 3)be a topological space if S be the collection of all subset of X

whose complement is finite then (X, J)is known as co-finite topology.

Theorem 5: Prove that a topological space (X ; S) is a T,-space if and only if each singleton

subset {x}of X is closed.

Proof: Let {X}is closed, ¥x ¢ X
To show that the space is T,-space
Let X,y be two distinct point of X .

= {x}and {y} are closed.

X~ {x} Z~{y}



= X ~ {x} is open set which does not contain xand X ~{y} is open set which does not contain

y. = There exist a neighbourhood X ~{x}and X ~ {y} are open sets such that
xe X ~{y}and ye X ~{x}
x¢ X ~{x}and y¢&X ~{y}
Hence, given space is T, — space
Conversely, let the given space is T, — space To show that {x} is closed.
i.e., X ~{x}is open set.
Let ye X ~{x} =y =X
—> There exist a open neighbourhood U of y which does not contain x
=U, c X ~{x}
:>U{Uy:yex ~{x}}:x ~{x}
= X ~{x} is union of open set.
= X ~(x} is open set

= {x} is closed.

Theorem 6: Every subspace of a T,-space is T,-space.

Proof:Let (X,3)bea T,-space and (Y,V) be asubspace of (X,3).



To show that (Y,V)is also a T,-space
Let X,y €Y be arbitrary such that x = y.
Then X,y € X such that {y < X}
It is given that X —space is T,.
This implies there exist an open set G and H of 3 such that
xeG,yeG
And Xx¢H,yeH
We have
xeGand xeY =xeGnNYand x¢GnNY
yeHand yeY =>yeHnYand xgHNY
Suppose GNY =P, HNY =Q and we know that because
GHe3I=GNnY ,HNY ev
=P,Qev
Now we take a pair of distinct point X,y €Y
—there exist P and Q open sets of v such that
xeP,yeQ,xeP,yeQ
ie., (y,v)isa T,-space.

Theorem 7: Every T,-space is T, -space but converse is not true.



Proof: Let (X,3)be a T,-space. Then there exist two distinct elements x,, X, such that
X, eU,x,eU
X, €V, X, ¢V

Hence, there exists a neighbourhood U of X, which does not contain X,.Therefore the given

space is T, —space. Conversely, let X ={a,b}and I={X, ¢, {a}}.

If a= b= there exists a neighbourhood {a} of X such that
ag¢{ajand b¢{a}

i.e., the given space is T, -space.

Because each singleton is not a closed set therefore the space is not T,-space or conversely, let

a,beX.
= There exists{a} and X e Jsuch that
ae{a},b¢{a}
And beX,aeX

i.e., the space is not T, space.

Thus, every T, -space is T, -space but converse is not true.

Theorem 8: Every finite T,-space is a discrete space.
Proof: Let (X, J)be a finite T,-space and Ac X..

To show that( X, J)is a discrete space.



Let Ac X, X is finite
= Ais a finite set
Since X is T, —space = {X} is closed Vx e X
A=U{{x}:xe A}
=a finite union of closed set
= Ais closed set (2
We know that a space X is T,if and only if every finite subset of X is closed
Also X ~ Ais finite set

= X ~ Ais closed set

= Alis open set.

Thus, we proved that every subset Aof X is both open and closed. Hence, (XS) is a discrete

space.

Theorem 9: A topological space (X, 3J)is a T,-space if and only if 3 -contains the co-finite

topology on X .
Proof:

Let (X,3)be a T,-space.

To show that 3 contains co-finite topology on X.i.e., to show that 3 contains subset Aof X
such that X ~ Ais finite.

Since it is given X is T, —space



= {x}is closed ¥x e X
= X ~ {x} is open subset of X
= X ~{x}e3J
Thus, X ~{x}e3I= X ~[X ~{x}]
={x} (finite)
This is true forall xe X .

Using definition of confinite, J3— contains co-finite topology of X .

Theorem 10: Prove that a homeomorphism image of T, —space is T,.
Proof: Let (X,3)bea T, —space and f :(X,3)—(Y,v)be a homeomorphism.
To show that Y is T,-space.

Sine it is given X is T, -space

fis one-one onto continuous

_1 . .
To show thatf is continuous

= There exist G and H open set of such that

xei,yeH,xgH,yeG



Because x#y= f(x)= f(y)

Since mapping is one-one onto (homeomorphism)
=it is open mapping

= f(G)and f(H)areopeninY
= f(X)ef(G)and f(x)ef(H)
and = f(y)ef(H)and f(y)e f(G)

Hence, the space Y is T,-space.

11.6T>.—Space (Hausdorff Space)

Hausdorff spaces are important in topology for their separation properties, their applications in
analysis and algebraic topology, and their role in understanding the structure of topological
vector spaces. Hausdorff spaces satisfy the T separation axiom, which states that for any two
distinct points, there exist disjoint open sets containing each point. This separation property is

crucial in distinguishing points and sets in a topological space.

Let (X, 3)be a topological space. Then (X, J) is said to be a T, —space if for each distinct pair

of element xand Y there exist neighborhood N and M such that

xeN,yeMand NnM =¢.

Examples

Example.6: Let X ={123}and 3I={X,4,{12}{3}}.Then show that (X,3)is not a

Hausdorff space.



Solution: Given that X ={1,2,3}

And 3={X.4.{1,2}.{3}}

For a,b distinct elements of X there are no disjoint neighbourhoods.
Hence, the given (X , S) space is not a Hausdorff space.

Example 7: Show that an indiscrete space consisting of at least two point is not a Hausdorff

space.

Solution: Let 3 be an indiscrete topology on X consisting of at least two point. Then we have
3={X,¢}

This show that there exist no pair of non-empty disjoint open set.

Hence, (X, 3)is nota T, —space.

Theorem 11: Every discrete space is a Hausdorff space.

Proof: Let (X,S)be a topological space and X,y e X be arbitrary such that x==y.Using

definition of discrete space, we have

{x}and {y} are open set
Obviously {x}n{y}=¢
Hence, there exist disjoint open set {x}and {X}containing xand Y respectively.

Thus, (X, 3)is Hausdorff space.



Theorem 12: Each singleton set in a Hausdorff space is closed.
Proof: Let (X,3)be a Hausdorff space.
Since X is T, -space = X is T, — space = {x} is closed for x e X

Hence, each singleton set in a Hausdorff space is closed.

Theorem 13: Prove that every subspace of a Hausdorff spaceis T, .

Proof: Let (X,3)be a Hausdorff space and (Y,V)be a subcpace of (X, J)

Let Y, Y, €Y suchthat y, =,

Since (X,3)isa T, —space.

This implies there exist disjoint neighbourhoods N,and N, of y, and Y, respectively.

Now using the definition of neighbourhood, there exists 3— open sets G,and G, such that
y,€Gand vy, €G,

And G, NY and G, NY are disjoint v—open subsets. Hence, (Y,V)is also a T, -space.

Theorem 14: Every finite Hausdorff space is discrete.

Proof: Let (X,3)be a finite T, —space.

To show that (X, J)be a discrete space.

Since X'is T, —space = X is T space

= {x} is closed subset of X,VX e X



Let A={a,,a,,....,a,} be a finite subset of X.

Then A={a }u{a,ju...u{a,}

=finite union of closed set
= a closed set
Thus, every finite subset X is closed 1)
Because X isfiniteand Ac X
= X ~ Ais finite
= X ~ Ais closed set (by (1))
= Ais open
Hence, every subset of X is closed as well as open i.e., X is a discrete space.

Theorem 15: Every T, —space is a T, — space but converse is not true.

Proof: Let (X, 3)bea T, —space.

Let X,y € X such that x =y

This implies disjoint open set G and H of 3 such that
X=G,yeH,x¢gH,ye¢G

And GNnH=¢

Hence, given X,y € X such that z=y

This implies there exists G and H of 3 such that



xeG,yeG and yeH,x¢H
I.e., given space is T, — space.

Conversely, we prove this, in two parts. If Jis a co-finite topology on an infinite set X , then

(X,3)is T,space but not a T, -space. Let 3 be a co-finite topology on X. To show that (X, 3J)

isa T, —space let x e X then {X}is a finite set so that X N{x} is 3—open set (using definition

of topology).

Now let X,y € X such that x =y

We take G =X ~{x}and H =X ~{y}, then G and H are open subsets of X.
Also xg¢H,yeG,xe¢G,ygH

ie, (X,3)isa T, space.

LetG, H € 3 then by the definition of co-finite topology X ~Gand X ~ H are finite subsets
of X.

We know that there does not exist any pair disjoint open set (suppose not).
But if we let G and H are disjoint open sets so that

GnH=¢
Taking complement of both sides, we get

(GNH)'=¢'

G'NH'=X

ie. (X ~G)U(X ~H)=X



i.e., finite union of finite sets = an infinite set. This is impossible.

Hence there exist no pair of disjoint open sets. This implies (XS) is not a Hausdorff space.

Therefore, every T, —space is a T,-space but converse is not true.
Theorem 16: Prove that a homeomorphic image of T, —spaceis T,.

Proof: Let (X,3)and (Y,v)are two topological spaces let (X,3)be a T, -space and to show

that (Y,V)is also a T, —space.

(X, J) fis homeomorphism (Y, v)
T, space (G)
(given) f(H)
It is given that X is T, -space; x # Y.
This implies there exists open sets Gand H such that
xeG,yeH
XeH,yeG and GNnH=¢ Q)

Let f(x),f(y)eYand f(x)# f(y).The mapping is one-one
This implies there exist f (G)and f(H} such that

f(x)e f(G)andf(y)ef(H)

f(x)e f(H) andf (y)& f (G)

And f(G)nf(H)=f(GnH)



=1(¢) {using (1)}

This implies (Y,V)is T, —space.

Theorem 17:Let (X, J)be a topological space and (Y,v)be a T, —space. Let f:X —Y be

a one-one continuous mapping then X is also a T, -space.

Proof: We have

T,-space
(given)

T,-space
(to show)

Let x,, X, be any two distinct points of X

Since f is one-one X, # X, = f(x )= f(x,)

Let ¥, ¥, €Y ¥, = f(x)and y, = f (X,) (by continuous mapping)
=x=f"(y)and x, = f(y,)

Since y,, Y, €Y such that y, # Y,

It is given that Y is T, —space.



This implies there exist open sets G and H such that

y,€G,y,eHand GNH =¢
Since f is continuous, f*(G)and f™(H)are open.
Now fHG)Nf*(H)=f(GnH)=f"(g)=¢
And y,eG=f7(y,)ef?(G)=>x e f™*(G)
y,eH=f7(y,)ef(H)=>xef*(H)
It is shown that every pair of disjoint points x, X, € X.
This implies there exist open sets f *(G)and f ™ (H)such that
x, € f*(G)and x, e f *(H)
£4(G)n F(H)=¢
This implies given space is T, (Hausdorff ) space
Hence, (X, 3)isa T, —space.

Theorem 18 : Prove that a one-one continuous mapping of a compact set onto Hausdorff

space is a Homeomorphism.

Proof: Let (X, 3)be a compact space and (Y,V)isa T, —space and let f : X —Y be a one-one

onto continuous mapping



To show that f is homeomorphism i.e., to show f is closed mapping.

Let G be any closed set of X

f
(X 3) one-one, continuous {Y. w,-)

Compact To show homeomorphism

To show that f is homeomorphism i.e., we need to show that f is closed mapping.
Let G be any closed set of X

To show that f(G)is closed set in Y.

(1) 1f G=gthen f(G)isalsonull set, i.e., it is closed

2 If G #¢,since G is a closed subset of a compact set X = G is compact.

We know that every closed subset of a compact set is compact.

And we know that every continuous subset of a compact set is compact.

= f (G)is a compact subset of Y
It is given Y is T, -space.
We know that every compact subcet of a T, -space is closed.

This implies f (G)is closed. Hence, f is homeomorphism.



11.5 Summary

Let (X : S)be a topological space. Then (X : S) is said to be To-space if and only if for distinct

points x,and X, in X there exista 3—open set G such that
x €eGand X, G or X,eGand X, ¢G

Let (X,S)be a topological space. Then (XS) is said to be T, —space if for each distinct pair

X, Y then there exist two sets G and H such that
xeGhbut yegG

and yeHbut xgH

A topological space (X , S) is said to be T, —space if each singleton is closed.

Let A B,C,...,c X and (X, 3)be a topological space if 3 be the collection of all subset of X

whose complement is finite then (X : S) is known as co-finite topology.

Let (X, 3)be a topological space. Then (X, J) is said to be a T, —space if for each distinct pair

of elements x and Yy there exist neighborhood N and M such that
xeN,yeM

and NNM =¢.



11.6 Terminal Questions

Q.1. Explainthe T, and T, spaces with examples.

Q.2. Define the T, space with examples.

Q.3. To show that for a space X is T, if and only if every finite subset of X is closed

Q.4. A finite subset of a T, -space has no limit point.

Q.5. If (X,3)is a T,-space and J,> 3, then show that (X, 3, )also a T, -space.

Q.6. Prove that every finite Hausdorff space is discrete.
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12.1 Introduction

In topology, regular spaces and Tz spaces are specific types of topological spaces that adhere to
certain separation axioms, ensuring they behave predictably when it comes to separating points
and closed sets. These spaces are significant in topology because they establish a context in
which numerous foundational results in topology and analysis are valid. Their properties make
them especially suitable for examining concepts like continuity, convergence, and other

fundamental aspects of topology.

In topology, normal spaces, T4 spaces, and completely normal spaces are distinguished types of
topological spaces that conform to specific separation axioms, guaranteeing consistent behavior
in separating points and closed sets. These spaces hold great significance in topology as they
establish the foundation for many results and concepts in the field. They are particularly
instrumental in studying the structure and properties of topological spaces.

12.2  Objectives

After reading this unit the learner should be able to understand about the:

. Regular Space and T3 -Space

. Completely Regular Space

" Ts2—Space or Tychonoff Space

. Normal Space, T4—Space and Completely Normal Space

. Ts—Space, Urysohn’s Lemma and Urysohn Metrization Theorem

. Tietze-Extension Theorem



12.3 Regular Space

Regular spaces play a role in theoretical computer science, particularly in the study of
computability and complexity. They provide a framework for understanding topological aspects
of computation. Regularity is a fundamental property that helps us to understand the structure of
topological spaces. It allows us to distinguish points and closed sets using open neighborhoods,
providing a clearer picture of the space's internal arrangement. Regular spaces are well-suited
for analysis and related fields. Properties like continuity, convergence, and limits are well-
behaved in regular spaces, making them useful in functional analysis and other branches of

mathematics.

Hence the regular spaces are essential in topology for their foundational role, their connection to
metric spaces, their compatibility with analysis, their relationship with compactness, and their

applications in theoretical computer science.

Let (X : S) be a topological space. Then (X : S) is said to be a regular space if given an element

x € X and closed set F < X such that
XeF
There exist disjoint open setsG, H < X such that xeG,FcH

or

Let (X ) S) be a topological space. The (X : S) is said to be regular space if and only if for every

closed set F and every point p ¢ F, there exist 3—open sets G and H such that

peG,FcHand GcH=¢.

12.4 T3-Space

T3 spaces are used in the study of topological dynamics, which deals with the behavior of

continuous mappings on topological spaces. T3 spaces provide a suitable setting for studying the



dynamics of such mappings. T3 spaces are used in the study of topological dynamics, which deals
with the behavior of continuous mappings on topological spaces. Tz spaces provide a suitable
setting for studying the dynamics of such mappings.Hence the T3 spaces are essential in topology
for their fundamental properties, their generalization of metric spaces, their compatibility with

analysis, their connection with compactness, and their applications in topological dynamics.

Let (X , S) be a topological space. Then (X , S) is said to be T, -space if following conditions are
satisfied:

(i) Given space is T,.

(i) For all x e X every neighborhood U of x there exist neighborhood V of xsuch that

V cU.

Note: T,-space T, —space + Regular space.

12.5 Completely Regular Space

Completely regular spaces are important in topology for their generalization of T spaces, their
compatibility with analysis, their connection with normal spaces, their applications in functional
analysis, and their role in algebraic topology. Completely regular spaces play a role in algebraic
topology, particularly in the study of homotopy theory and homology theory. They provide a
framework for understanding the topological properties of spaces in relation to their algebraic

structures.

~

Let (X,3)be a topological space, then (X,3J) is said to be completely regular space if it

satisfies the following condition:

If Fisaclosedsubsetof X and x e X ~ F then there exist a continuous mapping

f : X —[0,1] such that



1

f(x)=0and f(F)

X f 0,1

12.6 Ts2—Space or Tychonoff Space

Ta2 spaces generalize the separation properties of regular spaces (T3 spaces) by adding the To
separation axiom. This additional property allows for finer distinctions between points and
closed sets, leading to a more refined understanding of topological spaces. Tz, spaces are used in
functional analysis to study topological vector spaces and other structures. Their properties make
them useful for understanding the behavior of linear operators and function spaces. Hence the
T3 spaces are important in topology for their generalization of regular spaces, their
compatibility with analysis, their connection with compact spaces, their applications in

functional analysis, and their role in algebraic topology.

A completely regular T, — space is known as tychonoff or tichonoy or T31 space.
2

12.7 Normal Space

Normality extends the separation properties of Hausdorff (T2) spaces by ensuring that any two
disjoint closed sets can be separated by disjoint open neighborhoods. This property is essential
for many topological constructions and arguments. Normal spaces play a role in the study of
topological dynamics, which deals with the behavior of continuous mappings on topological
spaces. Normal spaces provide a suitable setting for studying the dynamics of such mappings.

Hence the normal spaces are essential in topology for their structural understanding,



compatibility with analysis, connection with compactness, extension of separation axioms, and

applications in topological dynamics.

Let (X,3)be a topological space. Then (X, 3J)is said to be a normal space if and only if for

every pair of disjoint closed sets F,, F, = H there exist 3—open sets G and H such that
FcG,FcH

and GNH=¢.

12.8 T4+—Space and Completely Normal Space

T4 spaces are used in the study of topological dynamics, which deals with the behavior of
continuous mappings on topological spaces. T4 spaces provide a suitable setting for studying the
dynamics of such mappings. Hence the T4 spaces are important in topology for their fundamental
properties, their generalization of T spaces, their compatibility with analysis, their connection
with compactness, and their applications in topological dynamics.

A normal T, —space is known as T, -space.

Let (X,S)be a topological space. Then (XS) is said to be completely normal space if there

exist two separated sets Aand B of X such that

AcG,BcHand GnH =¢.
Note: Two sets Aand B are separated if

A=¢,B=¢,AnB=¢p,AnB=¢.

12.9 Ts—Space

In topology, a Ts space, also known as a perfectly normal space, is a topological space that

satisfies the T4 separation axiom and is also completely regular Ts spaces are important in



topology for their generalization of T4 spaces, their compatibility with analysis, their applications

in topological dynamics, and their connection with compactness.

A completely normal T, — space is known as T, —space.

Examples

Example.1: Let (X,J)be a topological space. Let X ={a,b,c}and I={X,¢.{a},{b,c}}.

To show that (X : S) is normal and regular space but not T,and T, —space.
Solution: Given that
X ={a,b,c}and I={X,¢ {a},{b,c}}
3 -open sets are X,¢,{a},{b,c}

3 -closed sets are ¢, X, {b,c},{a}
Let a pair of distinct closed sets

{a},{b,c} e X

This implies there exist disjoint open sets {a},{b,c} € X such that

open closed  open closed

{aj = {a}.{b.cj = {b.c}
and {a}n{b,c}=¢
Hence, given space is normal.

Now let a pair a < X and closed set {b,c} € X such that a ¢ {b,c} .



This implies there exist disjoint open sets{a} and {b,c} = X such that
ae{a},{b,c} ={b,c}
And tajnib.c)=¢

Hence, given space is also regular space.

Now consider a pair of distinct elementsb, ¢ € X then the only open set containing either of the

element bcare X and {b,c} such that
be X,C e{b,C},Ce X,be{b,c}
Hence, given space is not T,-space
Because every singleton is not closed therefore the given space is not T, space.
Hence, the given space is not T,and T, space.
Therorem.1: Every T, —space is T, -space
Proof: We know that a regular T, -space is called a T,-space.
Let (X,3)bea T, —space
Let X, y be any two distinct points of x using definition of T, —space.
This implies X is also a T,-space and so {X}is a closed set.
Also y & {x}

Since X is a regular space.

This implies there exist open setsG and H such that



{X}CG,yeH
And GAH=4¢
Also {(x}cG=xeG

= X, y belong respectively two disjoint open set G and H.
=XxeG,yeH,xgH,ye¢G
And GnH=¢

.., given space is T, —space.

Theorem.2: If (X, 3J)is a T, —space then it is also t, — space, i.e., If (X, J)is a normal space

then it is also regular space.

Proof: Let (X,3)bea T, -space, i.e.,

1) X is T,-space and

2 X is normal space.

To show that (X, J)is T,-space i.e.,

1) X is T, -space and

2 X is regular space

It is given that X is T, -space = xis T, —space
= {x}is closed in X

X is normal space = given a pair of distinct closed set {X}and F < X such that there exist



disjoint open set G and H of X such that

{X}CG,FCH

i.e., givenaclosed set F and x € X such that x ¢ F there exist disjoint open sets G and H of X

such that

xeG,FcH
Thus, space is regular space

Hence, if (X, 3)isa T, -space then it is also T,-space.

Theorem.3: Let (X,3J)be a topological space. If (X,3)is a T, -space then it is also T, -

space.
Proof: Let (X,J3)bea T, -space i.e.,
1) X is T,-space and
2 X is normal space

T, show that X is T, —space.
Let X,y € X be arbitrary such that x =y because X is T,-space
= {x}and {y} are disjoint closed set in X

Also X is normal space
= given a pair of disjoint closed set {x}, {y} <= X

There exist disjoint open setsG, H € 3 such that



{X} c G,{y} cH
i.e., xeG,yeH
Given X,y e X such that x =y
= there exist disjoint open sets G and H such that
xeG,yeH
I.e., space is T, —space. Hence, T, —space is also T, —space.

Theorem.4: A topological space X is said to be regular space if and only if for every x e X

and every neighbourhood U of x there exists a neighbourhood H of xsuch that
HcU
Proof: Let (X, 3)be a regular space.

To show that a neighbourhood N of x there exists a neighborhood M of x such that

McN

Since x is regular space = aclosed set F and aelement x € X such that x ¢ F there exist disjoint

open sets G and H of X such that

xeG,FcHand GNnH=¢
X € G = G is a neighbourhood of x.
GNnH=¢=GcX~H
=>GcX~H (using closure property)

—=GcX~H (KzA, ifAiscIosed)



Here X ~ H is closed because H is open

=GcX~H (1)
Now we have FcH

X~F>X~H

X~HcX~F 2)

Using (1) and (2), we have
GcX~HcX~F
=>GcX~F
. Fisclosed = X ~ F is open
i.e., aneighbourhood X ~ F of xthere exist a neighborhood G of xsuch that
XxeGcGc X ~F
=>GcX~F
Theorem.5: Prove that every closed subspace of a normal space is normal.

Proof: Let (X,3)be a normal space and (Y,V)be a closed subspace of (X,3J).

To show that (Y,V)is also normal space.

Let U and Vare disjoint v closed subset of Y (@8]
This implies there exist closed subsets N and M of X such that
U=NnY using relative topology

V=MnY



It is given Y is closed = U and V are disjoint closed subsets of X .

It is given also X is normal space = There exist open sets G and H of X such that
UcGVcHand GnH=¢

Using (1) and (2)

UcGNY,VcHANY

And (GNAY)N(HANY)=(GNH)NY
=¢nY (GNH=9¢)
=¢

Also UcYVcG=UcYnGev

VcYVcH=VcYnH

And (YNG)N(YNH)=g,UNV =¢

i.e., (Y,V)is normal space.

Hence, every closed subspace of a normal space is normal.

Theorem.6: Prove that a topological space X is normal if and only if for every closed set

F and open set G containin F there exist an open set V such that
FcVandV cG

Proof: Let X be a normal space and let F be any closed set and G be an open set such that
FcG

= X ~Gis closed set



FA(X~G)=¢
Thus, X ~Gand F are disjoint closed substs of X .

It is also given X is normal = there exist two open setsU and V such that

(X ~G)cU,FcVand UnV=¢

So that VcX~UbutVeX~U=Vc(X~U)
=V c X ~U{X ~U is closed} 1)

We know that the closure of a closed set is closed.
=>Xx~GcU=X~(X~G)X ~U )
=Go>X~U

Using equations (1) and (2), we get V c G.

This implies there exists an open set V such that

FcVandV cG
Conversely, let the above conditions hold.

Let Aand B be closed subsets of X and AnB=¢

To show that space is normal we have AnB=¢ = Ac X ~ B = closed set Ais contained in

open set X ~ B.

It is given that there exists an open set V such that

AcVandVc X ~B=Bc X~V



Also V(X ~V)=4¢

Thus, V and X ~V are two disjoint open sets such that
AcV and X ~V
Hence the given space is normal.

Theorem.7: Prove the every completely normal space is normal and hence, T.-spaceisa T,

-space.
Proof: Let X be a completely normal space.
To show that X is also normal space.
Let Aand B be any two closed subsets of X such that
ANB=¢
Since Aand B are closed, we have
A=Aand B=B
And ANB=¢,AnB=4¢
= A, B are separated subsets of Y
Using completely normality
There exist open sets Ac G,Bc Hand
GnH=¢
= X is normal space.

Also we know that T, —space is completely normal T, —space and T, is a normal T, -space hence,



T, -space is a T, -space.

Theorem.8: Let f: X —Y be a homeomorphism where XY are topological space and X is

completely normal space. Then show that Y is also a completely normal space.

Proof: Let Pand Qare subsets of Ysuch that Pand Qare separated set, i.e.,

PnQ=¢,PnQ=¢Given f:X —Y beahomeomorphism

X f Y
Completely Completely
normal normal
(given) (To show)
f—1

= f7*(P)and f(Q)are subset of X

Since mapping is continuous
[ (P)]= f*(P)and [ 1(Q]cf*l( )
Now [F2(P)]n Q) () F7(Q)

= f’l(PmQ)

Similarly f—l(p)m[f—l(Q):¢



Hence, it is given X is completely normal

= there exist open sets G and H of X such that

f*(P)cG,f*(Q)cHand GNH=¢
f1(P)cG=Pc f(G)
f1(Q)cH=Qc f(H)
and f(GNH)=¢
For two separated set P and Qof Y .
This implies there exist f(G)and f (H )open sets such that
Pcf(G), QcF(H)
And f(G)nf(H)=¢

Hence, the space Y is completely normal.

12.10 Urysohn’s Lemma

Urysohn's Lemma is widely used in topology and related areas of mathematics. It is a key tool
in the proof of many important theorems, including the Tietze Extension Theorem and the Stone-
Weierstrass Theorem. Urysohn's Lemma is also essential in the study of topological vector
spaces, functional analysis, and other branches of mathematics where understanding the structure

of topological spaces is crucial.

Let F,F,be any pair of disjoint closed sets in a normal space X.Then there exists a



continuous mapping f : X —[0,1]such that f (x)=0for xe Fand f(x)=1for xeF,.

Proof: Let X be a normal space and let F and F, be any two disjoint closed sets in X.Then

FnF = ¢
= F, < F, "which is open set
—>there exists an open set G,;, such that
f,cG,cG,cF

Here G,,and F,are open sets containing the closed set F and G, respectively as same way

there exist open sets G, and G, such that
FcGy, o ém =Gy, < G:UZ =Gy, = 63/4 ck

Counting in this manner, for each rational number in ]0,1] of the form
r=— (wheren=1,2,..,.m=13,...,2" ")

We obtain an open set of the form G, such tha
r<s=FcG cG, cG,cG,cF, (1)

Let we denote the set of all such rational numbers r by D.Now we define a function

f(x):{l, xeF,

inf {r:reDxeG,} xeF,ie,xeF,

If r € F,then XeG, forall re Dby (1)

Using definition of f,we have



f(x)= inf.D=0

Thus f (x)= Owherever xe F
And f(x)=1for xeF,
And 0< f(x)<1, wvxe X

It remains to show that f is continuous.

Here[0,1] is a topological space with its relative topology. Clearly all intervals of the form [0,a[

and [b,1l where 0<a<land 0<b<1.

Here 0< f (x)<aifand only if xeG,
= f*{[0,a]} ={xeG:0< f(x)<a}
=U{G,:reD,r<a}

Thus, G, is an open set and we know that union of open sets is open. Thus, the inverse image of

an open set is open. Similarly, f‘l]b,l] isalsoanopensetin X .Hence f is continuous mapping.

This proves the theorem.

12.11 Urysohn Metrization Theorem

The Urysohn Metrization Theorem is a fundamental result in topology that provides a
characterization of metrizable topological spaces. It states that a topological space is metrizable
if and only if it is regular (T3) and has a countable basis. Hence the Urysohn Metrization Theorem
is important in topology for its characterization of metrizable spaces and its applications in

analysis, topology design, and compactness considerations.



Every regular space X with a countable basis is metrizable.

Note:1. A topological space (X,S)is known as second countable space if there exists a

countable base for the topology 3 .

2. Every second countable normal space is metrizable.

3. If X is a second countable normal space then there exists a homeomorphism f : X — R"and

so X is metrizable.

12.12 Tietze-Extension Theorem

The Tietze Extension Theorem is a result in topology that provides conditions under which a
continuous function defined on a closed subset of a topological space can be extended to a
continuous function defined on the entire space. Hence the Tietze Extension Theorem is an
important result in topology and analysis, providing a powerful tool for extending functions and
characterizing normal spaces.

A topological space (X,3)is normal if and only if for every real valued continuous

mapping f of a closed subset F of Xinto the closed interval [a, b]there exists a real valued

continuous mapping g of X into [a,b]such that g/F = f i.e., gis a continuous extension

of f over X.

Proof:Suppose for every real valued continuous mapping f of a closed subset F of X into

[a,b], there exist a continuous extension of f over X.
To show that (X, 3)is normal space

Let F and F,be two closed subsets of X such that



F,NF, =¢and let [a,b]be any closed interval
We define a mapping
f:FUF, >[ab]
Such that
f(x)=aif xe R
f(x)=b if xeF,

Let H be any closed subset of [a,b]then

F ifacH and bgH
f*l(H)z F, ifbeH and a¢H
F,UF, ifaeH and beH
o ifagHand begeH

Thus, the function f is continuous

By hypothesis, there exists a continuous extension, namely, g of f over X,i.e., g: X —>[a,b]

such that
aif xeF
X)=
9(x) {b if xeF,
This implies g satisfied all the conditions of Urusohn lemma, hence (X, 3)is a normal space.

Conversely. Let (X : S)be a normal space and let f be a real valued continuous mapping of the

closed set F into the closed interval [a,b]. For numerical convenience, we define a function

fy:F —>[-1]



By setting fo(x)=f(x) vxeF (1)

R

Since {—1,—%} and El} are closed in [-1,1]and f,is continuous. If follows that Gyand H,

are closed in F and so also closed in X.

Thus, Gyand Hare disjoint closed subsets of X.

Since X is normal.

By Urysohn’s lemma, there exists a continuous mapping

11
X | -=,2
x| -2.5]

Such that 9o[Go]= {_%} and Gy (M) = {%}

Now again we define a mapping

fl:F—{—

w|nN
wlnN
| |



By setting
fl(X) =1, (X)_ Jo (X)

Since f,, g, are continuous, f,is also a continuous mapping.

= {[-24)]

This implies G;, H, are disjoint closed sets of X .

By Uryshan’s lemma, there exist a continuous mapping

w494

Such that

o el

Now again define a mapping

o[ 6]

By setting f,(x)=f,(x)—0,(X)



= fo(X)— 9 (X)—0,(X) YxeF

Observe as before that f, is continuous. proceeding this process in same way:

o.x | 2] (2)2] | vn-0a2m-s

We define a mapping

By setting fo (X)=fo(x)

«eeu{5 ]
SIS FERG)

e w3 ol 2

Are disjoint closed subsets of [-1,1]and f,, is a continuous mapping

Now



And show that g is continuous extension of f over X are have

1
(=332 =251

n=0

99120, (4)

So by weierstress’s M — test the series > _ g,, (x) converges uniformly and abolutely over X
n=0

and since each g, (x) is continuous if follow that g is a continuous mapping of X into [—1,1].

Now |fm(x)|s(§j which —0as m—
m-1
Since fo(X)=fo(x)=>.9,(x)vxeF.
n=0
m-1
We have lim £, (x)=f,(x)-1lim> g, (x)
m-—oo m*)OOn:O
Hence, 0=f,(x)-g(x) vxeF
ie., g(x)=fy(x)—f(x) VxeF

Hence, g is continuous extension of f over X .

12. 13 Summary

Let (X ; S) be a topological space. Then (X : S) is said to be a regular space if given an element

x e X and closed set F < X such thatx ¢ F there exist disjoint open setsG, H < X such that

xeG,FcH.



Let (X , S) be a topological space. Then (X , S) is said to be T, -space if following conditions are
satisfied: (i) Given space is T,. (ii) For all xe X every neighborhood U of xthere exist

neighborhood v of x such thatV < U.

~

Let (X,S)be a topological space, then (X,J) is said to be completely regular space if it

satisfies the following condition:

If F isaclosedsubset of X and x e X ~ F then there exist a continuous mapping
f :X —[0,1]such that f (x)=0and f (F)=1.

A completely regular T, — space is known as tychonoff or tichonoy or T31 space
2

Let (X,S)be a topological space. Than (X,S) is said to be a normal space if and only if for
every pair of disjoint closed sets F,F, < X.This implies there exist 3— open sets G and H

suchthat F, <G, F,cH and GnH=¢.
A normal T, —space is known as T, -space.

Let (X ; 3) be a topological space. Then (X ; S) is said to be a completely normal space if there

exist two separated sets Aand B of X suchthat AcG,BcHand GnH =¢.
A completely normal T, —space is known as T, —space.
Every regular space X with a countable basis is metrizable.

A topological space (XS) is normal if and only if for every real valued continuous mapping
f of a closed subset F of Xinto the closed interval [a, b]there exists a real valued continuous

mapping g of X into [a,b] suchthat g/F = f i.e., gis a continuous extension of f over X .



12.14 Terminal Questions

Q.1. Write a short note for regular and normal space.

Q.2. What do you mean by Tzand Tsspaces?
Q.3. Explain the Simpson’s 3/8 rule.

Q.4. State and prove the Urysohn Metrization Theorem.
Q.5. Give a counter example to show that a regular space is not necessarily a T, -space.
Q.6. Prove that every indiscrete space is regular.

Q7.If 3={X,¢,{a}{ab} {ac} {ab,c}is a topology on X ={a,b,c,d} then prove that

{X : S) is a normal topological space.
Q.8.Show that every disceret topological space is a T, —space.

Q.9.Prove that the property of being a T, -space is a hereditary property.

Q.10. Prove that a regular lindelof space is normal.

Answer

5.X ={a,b,c}and I={X,4,{a,b},{c}}.
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13.1 Introduction

Connectedness is a key concept in topology with important implications in various areas of
mathematics and science. It helps to classify and understand the structure of spaces, and it forms
the basis for many theorems and results in topology and related fields. In this unit we shall discuss
another important property of topological spaces known as connectedness. This unit deals with
connected and disconnectd sets, connectedness on the real line, components, maximal connected

set, locally connected space and totally disconnected set.

Connectedness can also be characterized in terms of paths. A space is path-connected if, for any
two points in the space, there exists a continuous path (a continuous map from the unit interval
[0, 1] to the space) that connects the two points. Hence the connectedness is an important
property because it captures the idea of "wholeness” or "integrity" of a space. Intuitively, a
connected space cannot be broken apart into pieces that are not somehow "linked" or "connected"

to each other.

13.2  Objectives

After reading this unit the learner should be able to understand about the:

. Separated Sets

. Connected Set and Disconnected Set

. Connectedness on the Real Line

= Components

. Maximal Connected Set and Locally Connected Space

. Totally Disconnected Set.



13.3 Separated Set

In topology, the concept of separated sets refers to sets that can be distinguished in a certain way
by open sets. There are several types of separation axioms that define different levels of
separation between sets.

Two subsets Aand B of a topological space (X, J)are said to be separated if any only if

AnB=gand AnB=9¢.

13.4 Connected Set and Disconnected Set

Connectedness and disconnectedness are important concepts in topology that describe how a
topological space can splitted into different parts. Connectedness and disconnectedness are
related to separation axioms in topology. For example, a space is disconnected if and only if it
violates the Ty separation axiom, meaning there exist two points that cannot be separated by open
sets. Connectedness and disconnectedness are fundamental concepts in topology with wide-
ranging applications in various fields, including topology, analysis, geometry, and image
processing. They provide a framework for understanding the structure and properties of

topological spaces and geometric objects.

A set X is said to be connected if there does not exist any non-empty proper subset of X which

is both open and closed.

Let (X, 3)be atopological space then X is said to be disconnected if and only if there exist two

disjoint non-empty subsets Aand B of X such that
(i) AnB=gand AnB=¢ (ii)AUB=X
Note: 1. If X is not the union of two separated subsets of X then X is said to be connected set.

2. A set X is said to be disconnected if there exists a non-empty proper subset of X which is



both open and closed.

3. Aset X issaid to be disconnected if there exist two separated sets Aand B such that AU B = X

Examples

Example.l: If X ={ab,,c.d}and I={X,4,{a},{b,c},{a,b,c}}. Then show that the

topological space is connected.

Solution: Given that X ={a,b,c,d}and 3={X,4,{a},{b,c} {a,b,c}}
J—open setsare X,g,{a},{b,c},{ab,c}
J—closed sets are ¢, X {b,c,d},{a,d},{d}

This implies there does not exist any non-empty proper subset of X which is both open and

closed in X

Hence, (X , S) is conneted.

Example 2: If X ={a,b,c}and 3 :{X ,¢,{a,c},{b}. Then show that the topological space

{X, 3} is disconneceted.

Solution: Given that X ={a,b,c}and 3={X,¢,{a,c},{b}.
J -open setsare X,¢,{a,c},{b}

J—closed sets are ¢, X ,{b},{a,c}

This implies {b} Is non-empty proper subset of X which is both open and closed in X . Hence,

{ X, 3} is disconnected.



Example 3: let (R,v) be the usual topological space. Let A=(1,2),B=(2,3)and C =[2,3).

Show that Aand B are separated but Aand C are not separated.

Solution: Given that (R,v)is an usual topological space. Also given
A=(12),B=(23)and C =(2,3)
Here Aand B are seperated because
AnB=gand AnB=¢ (. A=[12] andB=[2,3]|
ie., AnB=[12]n(23)=¢
ANB=(12)n[2,3]=¢
ANB=(1,2)n(2,3)=¢
But Aand C are not separated because
ANC=[12]n[2,3)={2} = ¢
Hence, Aand B are seperated but Aand C are not seperated.

Example 4: If X ={a,b,c,d}and I={X,¢,{b},{b.c},{b,c,d}. Then show that (X,3)is

connected.

Solution: Given that X ={a,b,c,d}and I={X,g,{b},{b,c},{b,c,d}.
J-open setsare X,¢{b,{b,c},{b,c,d}
J—closed sets are ¢, X,{a,c,d},{a,b},{a}.

This implies there exists no non-emprt proper subset of X which is both open and closed in X .



Hence, (X, 3J)is not disconnected i.e., (X, J)is connected.

Theorem 1: Two closed subsets of a topological space are separated if and only if they are

disjoint.
Proof: Suppose Aand B are closed subsets of a topological space.

Since Aand B are closed, then

A=Aand B=B

1) Let Aand B are seperated sets, i.e.,

Using equation (1), we have

A=B=AnB=¢

And ANB=ANB=¢

(because A and B are closed, i.e., A= Aand B=B)
i.e., Aand B are disjoint sets.
(2) Now we let Aand B are disjoint set i.e.,
AnB=¢
Using equation (1), we have

ANB=ANB=¢
And ANB=ANB=¢

(because Aand B are closed, i.e., A= Aand B=B)



= ANB=¢,AnB=¢
i.e., Aand B are separated sets.

Theorem 2: Two open subsets of a topological space are separated if and only if they are

disjoint.

Proof: We know that two separated sets are always disjoint.

Hence, we need to prove that two open, disjoint subsets are separated.

Suppose Aand B are any two open and disjoint subsets then
ANB=¢

Suppose if possible Aand B are not separated. Then either
ANB#=gor ANB=¢

If AN B # ¢ then there exists a point x e X such that

X € Aand Xeg

Since Aisan open set it is a neighborhood of x. Again X € B = xis a limit point of B and every

neighbourhood of x must contain at least one point B . This implies that

ANB=¢ which is contradiction

Hence, Aand B are seperated.

13.5 Connectedness on the Real Line

Connectedness on the real line is intimately related to the structure of intervals and plays a crucial

role in understanding continuity and the behavior of functions on the real line.



Asubset E of the real line R containing at least two points is connected if and only if E is an

interval.
Finite interval (a,b),(a,b),(a,b),(a,b).
Infinite interval (—o0,0),(—0,a),(a,»),(a,»).

Examples

Example.5: Let X ={a,b,c,d,e}and 3

{X,g.{a},{c.d},{a,c,d},ib.c.d e}}.
Show that Y = {b, d, e} is connected.
Solution: Given that X ={a,b,c,d,e}and
5={X.g.{a}.{c.d}, {a,c.d} {b.c,d e}
J—opensetsare X,¢,{a},{c,d},{a,c,d},{bc,d,e}
3— closed sets are ¢, X, {b,c,d,e},{a,b,e},{be},{a}

This implies {a} and {b,c,d, e} is non-empty proper subsets of X which is both open and closed

in X.
Hence, (X, 3J)is a disconnected space.
Now v{Y mevery member of 3}
={g.{b.d.e}.{d}}

vclosed sets are Y, ¢,{b,e}



This implies there does not exist any non-empty proper subsets of Y which is both open and

closed in Y .Hence, (Y,v)is connected.

Theorem 3: Every indiscrete space is connected.
Proof: Let (X, J)be an indiscrete space.

J—open sets are X, ¢

3 -open sets are ¢, X

This implies there does not exist any non-empty proper subset of X which is both open and
closed in X .

Hence, (X, 3)is connecetd, i.e., every indiscrete space is connected.

Theorem 4: Every discrete space is disconnected if the space contains more than one points.

Proof: Let (X, J)be a discrete space and X contains more than one element.
Let X ={a,b}and I={X,4,{a},{b} be adiscrete topology on X .

J—open sets are X,¢,{a},{b}

J—closed sets are ¢, X {b},{a}.

The implies {a} and {b}are two non-empty proper subsets of X which is both open and closed

in X.

Hence {XS) is disconnected i.e., every discrete space is disconnected if the space contains

more than one points.

Theorem.5: Prove that a topological space is disconnected if and only if any one of following
statements holds good:



1) X is the union of two non-empty disjoint closed sets.

2 X is the union of two non-empty disjoint open sets.

Proof: Suppose X is disconnected

This implies a non-empty proper subset A of X which is both open and closed.
= X ~ Ais both open and closed in X .
= AuX~A=Xand anX ~A=¢

Hence, X is the union of two non-empty open sets which are disjoint.

Now let AuB=Xand AUB=¢

Where Aare B are non-empty open sets to show that X is disconnected
Let A=X ~B = Aisclosed

B is non-empty — Ais proper subset of X which is both open and closed.
Hence, space is disconnected.Similarly, we can prove that by taking Aand B closed set.

Theorem.6: A continuous image of a connected set is connected in a topological space. \

Proof: Suppose f:0nto yis a continuous mapping. To show that if X is connected then Y is

also connected.
f continuous

Connected Connected
(given) (to show)

We will prove this theorem by contradiction method. Suppose Y is disconnected and s X is



connected. This implies there exists a non-empty proper subset G of Y which is both opoen and

closed.

Since f is continuous = ffl(G) is both open and closed in X also f is one-one onto
= f *(G)is also non-empty proper subset of X .

Hence f*(G)is non-empty proper subset of X which is both open and closed. Therefore the

set X is disconnected, which is contradiction. Hence, if X is connected then Y is also connected.

Theorem.7: Prove that a topological space is disconnected if and only if there exist a

continuous mapping of X onto the discrete two point space (0,1).

Proof: Let (X, 3)be a topological space . E =(0,1)is a discrete space, i.e., E is disconnected

space. Let X is disconnected. To show that there exists a continuous mapping f: X > E.

X f E =[0, 1]

-1

Given X is disconnected this implies X = AU B, where AUB=¢and Aand B are open set

Let f X — E such that
f(x)=0, f(x)=1if xeE
= f*(0)=Aand f*(1)=B

(Given Aand B are open set then there exist f*(0) ff *(1)are open set)



Hence, mapping is continuous.

Conversely, let there exists a continuous mapping
f:X>E

To show that X is disconnected.

We prove this part by contradiction method suppose if possible X is connected set we know that
continuous mapping of a connected set is connected therefore Eis connected which is

contradiction.
Because given E is disconnected.

Theorem.8: Let (X, 3J)be a topological space and Y is a subset of X if Y is connected then

Y is connected.

Proof: Let Ybe a connected subset of a topological space (X,J). To show that Y is also

connected. Suppose if Y is disconnected then there exists non empty set A, Bof X such that
ANB=¢,AnB=¢ (1)
And Y =AuUBthenY Y
=YycAuUB (Y is connected)
YcAOrYcB
We have YcA=YCA
=Y cBcAnB=¢ using (1)
=>YNB=¢ 2

Now Y=AUB=BcY



= ANBcY B

—BcYNB

=Bc¢ using (2)
Which is contradiction.
Because Aand B are separated set therefore there are non-empty sets.

Similarly Y < B = A=g¢again a contradiction thus Y is connected.
Hence, if Y is connected then Y is connected.

Theorem.9: Let (X, J)be a topological space. Then X is disconnected if and only if there

exist a non-empty proper subset of X which is both open and closed.

Proof: Let (X, 3)be a topological space and also X is disconnected. This implies there exist a

non-empty disjoint open subsets G and H of X such that
GUH=X
And GNnH=¢
To show that there exist a non-empty proper subset of X which is both open and closed.
Given that GNH=¢=>G=X~H (if disjoint)
It is also given that H is open = Gis closed.
Also Gisasubset of X . Since H is non-empty therefore G is also proper subset of X .
This implies G is non-empty proper subset of X which is either both open and closed.
Conversely, suppose there exist a non-empty subset A of X which is both open and closed.

To show that X is disconnected.



Since Ais a non-empty and closed set.

= X ~ Ais anon-empty and open set.

Also given that A is a non-empty proper open subset of X then we have
AuX ~A=X

This implies X is the union of two non-empty disjoint subset of Aand X ~ A

Hence, X is disconnected.

Theorem.10: Let (X,J)be a topological space. Let Abe a connected subset of X and

Ac B c A. Prove that B is connected and hence deduce that A is connected.

Proof: Let (X, 3)be atopological space, Let A,B < X suchthat Ac B< Aand Ais connected.

To show that B is connected.

We will prove this theorem by contradiction method.

If possible B is disconnected.

This implies there exist seperated sets G and H such that

That GuUH=B and
GCNnH=¢9,GNH=¢ Q)

Since B=GuUH

It is given that AcB=AcGuUH

Then AcG=AcG

= ANnHcGNH (Operating nH both sides)

Using (1), we have



ANHcop=>ANH=¢ )
Now we have BcA=GUHCA

=>HcGUHcA (B=GuUH,GcBandH cB)

—HcA
=HNHcANH (Operating ~H both side)
>Hcg (Using 2)

or H=¢

Because Gand H ar separated set. Therefore they are non-empty set. Hence, B is connected
which is a contradiction. Since we prove above if Ais connected and A< Bthe B is connected

itis given B < A. Hence Ais also connected.

Theorem.11: Let (X, 3)be a topological space and E be a connected subset of X such that

Ec AuB,where Aand B are separated sets then E < Aor E < Bi.e., cannot intersect

both Aand B.

Proof: Let (X, 3)be atopological space and E be a connected subset of X such that E c AUB,

where Aand B are separated sets then
ANB=¢,AnB=¢ ..(1)
Itis also given that Ec AUB
= E=En(AUB)
=(EnA)U(ENB) ...(2)

Suppose EnAand E N B is empty sets. ....(3)



We will prove this by contradicition.
If possible the set are non-empty, i.e.,

EnA#4ENB=g
We have(EmA)m(ETB)c(EmA)m(Em I§){mc AN I§} ()
=(ENE)n(ANB)<=(ENE)ng=¢  using equation (1)
Using (3) we have
(Er\A)m(E7:§)=¢
Similarly, (ENA)N(ENB)=¢ ...(5)
This implies (EnA)and (EnB)are seperated sets.
Using equation (2) we have
(ENnA)U(ENB)=E
This implies E is the union of two separated sets(E n A)and (ENB).

Therefore E is disconnected, which is contradiction because it is given E is connected.
Let EnA=g¢then by (3)
Equation (2) implies

E

(ENA)U(ENB)
=pU(ENB)

=ENB



=EcB

ie., EcBandif EnA=¢
Let EnB=¢ Then by (3)
Equation (2) implies
E=(EnA)U(ENB)
=(EnA)ug
=ENA

=EcCA

i.e., EcAandif ENnB=¢

Hence, either E Aor ENB

13.6 Components

Components are a fundamental concept in topology that help us to understand the structure of a
space by partitioning it into maximally connected subsets. They have important applications in
various fields, including graph theory, image processing, and the characterization of topological
spaces. The number and nature of components can provide important information about the

topological properties of a space.

For example, the number of components can help to distinguish between different types of

spaces, such as those that are connected, disconnected, or have more complex structures.

Let (X, 3)be atopological space. A component of the space X is a maximal connected subspace

of (X,3).



13.7 Maximal Connected Set

Maximal connected sets are important in topology for their role in defining components,
understanding the structure of spaces, and their applications in analysis and geometry. They
provide a foundational concept for studying connectivity in topological spaces.

Let (X,3)be a topological space and A< X . Then the set Asaid to be maximal connected

subset of X if:

(i) Ais connected.

(if) Aiis not a proper subset of any connected subset of X .

Note: 1. Every indiscret space has only one component (the space itself)

2. Each connected subset of X which is both and closed is a component of X .

13.8 Locally Connected Space

Locally connected spaces are important in topology for their local structure, their relationship
with path components, their applications in analysis, and their role in defining important classes
of spaces such as manifolds.Many important spaces in mathematics, such as topological
manifolds, are locally connected. Locally connectedness is a key property in the definition and

study of these spaces.

Let (X,3)be a topological space. Then (X, J)is said to be locally connected at a point xif and

only if every open neighbourhood of x contains a connected open neighbourhood of x . The space

is said to be locally connected if and only if it is locally connected at each of its point.

13.9 Totally Disconnected Set

Totally disconnected sets are important in topology for their role in understanding the structure



of topological spaces, their applications in fractal geometry, and their connection to dimension
theory and compactness. A totally disconnected set is a set in which every subset with more than
one point can be divided into two disjoint nonempty subsets such that no point of the set is an

interior point of both subsets.

A topological space is totally disconnected if given any pair of distinct points x, y € X then

there exist a disconnection G H of X with

XxeG,yeHand GUH =H.

Examples

Example.6:Let X ={a,b,c,d,ejand I={X,g,{a},{b,c},{a,b,c} {b,cd,e})be a

topology on X . Find all the component of X .
Solution: Giventhat X ={a,b,c,d,e} and
3={X,¢,{a},{b,c},{a,b,c},{b,c,d,e}}

Here {a}and {b,c,d, e} are disjoint and their union is X . Also these two sets are both open and

closed in X . Hence, components of X are {a},{b,c,d,e}.

Note: Any other connected subset of X in above example such as {b,d, e} is subset of one of the

components. A={b,d,e}. The relative topology on A,v={A ¢,{d}}.

Hence, Ais connected since Aand ¢are the only subsets of Aboth open and closed in the

relative topology.

Example 7: Every discrete space (X, J)is locally connected.

Solution: Let (X,J)be a discrete topological space for every xe X,{x} Is a connected 3 -



neighbouhood of 3. Also evidently every J-neighbourhood of xcontains {x}. Hence, {x, 3}

is locally connected.

Example 8: Let X ={a,b,c}and I={X,¢{a},{b},{c}.{a,b},{b,c} {ac}}be a discrete

topology on X . tshow that the space (X, J)is locally connected.

Solution: Given that X ={a,b,c}
And 3={X,¢,{a},{b},Pc}.{a,b},{b,c}.{a,c}}
Let A={a,b}.

To find relative topology on A.

We have v{An every member of 3}

={Ag.{a},{b}}
Here Aand ¢are only subset of A both open and closed in relative topology.

Hence, Ais connected.

Since for every xeX ,{x}is a connected JI—neighbourhood of x. Also every JI-

neighbourhood of x contains {x}.

Hence, {XS) is locally connected.Similarly, for every a,b e X,{a}and {b} is a connected v —
neighbourhood of x. Also every JI—neighbourhood of aand bcontains {a}and {b}

respectively.
Theorem.12: Every component of a locally connected space is open.

Proof: Let (X, 3)be a locally connected space and C be a component of X . To show that C is

an open set.



Let xbe an element of C. Since X is locally connected, there must exist a connected open set

G, which contains x . Since C is a component.
We have

xeG,cC
Obviously C=u{G,:xeC}

Thus, C being a union of open set, is open set.

Theorem.13: Prove that the image of a locally connected space under continuous and open

mapping is locally connected.

Proof: Let f be a continuous and open mapping from X —Y , where X and Y are topological

spaces and X is locally connected.

To show that Y is also locally connected.

Let ye f(x)and vbe any open neighbourhood of yin f(x).
This implies there exists x e X such that y = f (x)since mapping f is continuous.

This implies f ™ (v)is open setin X and xe f™(v)= f(v)open neighbourhood of x.It is

given that X is locally connected.

This implies there exist open set u such that
xeUc f? (V)
And U is connected using definition.
We know that by a theorem continuous image of connected set is connected.

This implies f (u)is connected set.



Also it is given f mapping is open mapping.
This implies f (u)isopensetin .
This implies ye f (u)cv

Hence, f (X)=Y is locally connected at point y. Therefore, f (X )=Y is locally connected.

13.10 Summary

Two subsets Aand B of a topological space (X, J)are said to be separated if any only if

AnB=gand AnB=¢.

A set X is said to be connected if does not exist any non-empty proper subset of X which is both

open and closed.

Let (X, 3)be a topological space then X is said to be disconnected if and only if there exist two

disjoint non-empty subsets Aand B of X such that
(i) AnB=¢gand AnB=¢ (i)AUB=X

Asubset E of the real line R containing at least two points is connected if and only if E is an

interval.

Let (X, 3)be atopological space. A component of the space X is amaximal connected subspace
of (X,3).

Let (X, 3)be a topological space and A< X . Then the set Ais said to be maximal connected

subset of X if:

(i) Ais connected



(if) Ais not a proper subset of any connected subset of X .

Let (X,3)be a topological space. Then (X, J)is said to be locally connected at a point x if and

only if every open neighborhood of x contains connected open neighborhood of x.The space is

said to be locally connected if and only if it is locally connected at each of its point.

A topological space is totally disconnected if given any pair of distinct points X, y € X then there

exists a disconnection GUH of X withxeG,ye H and GUH =H .

13.11 Terminal Questions

Q.1. Explain the connected and disconnected set.
Q.2. What do you mean by locally connected and totally disconnected set.

Q.3. To show that the closure of a connected set is connected.

Q4. Let X ={a,b,c}and I-{X,¢,{a,b},{c}}.Prove that {X,3)is disconnected.

Q.5. Show that {X, Jis a connected space if X ={a,b,c,d}and I={X,¢,{a,b}}.
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14.1 Introduction

Compactness is a fundamental concept in topology that captures the idea of a space being "nicely
bounded" or "finite in a sense." A topological space is said to be compact if every open cover of
the space has a finite subcover. Compactness is a useful property because it ensures that certain
properties hold in a space. For example, in a compact space, every sequence has a convergent
subsequence. This property is known as the Bolzano-Weierstrass theorem. Compactness also
allows for the extension of certain theorems from analysis to more general topological spaces.
This unit deals with compactness, compact sets, basic properties of compactness, finite
intersection property,locally compact space, Bolzano weietrass property, sequentially compact,
countably compact sets, uniformaly continuous, Lebesgue covering lemma, Heine-Borel
theorem, compactness and one point compactification, cartesian product of two sets, projection
mapping, embedding and product topology.

14.2  Objectives

After reading this unit the learner should be able to understand about the:

Cover and subcover of X

. Open Cover and Finite Cover

= Compact Space and Compact Set

. Finite Intersection Property

. Locally Compact Space and Lindelof Space

. Bolzano Weiertrass Property

. Sequentially Compact and Uniformly Continuous

. Lebesgue Covering Lemma and Heine-Borel Theorem

. Product Topology and Projection Mappings



14.3 Cover and Subcover of X

Covers and subcovers are important in topology for their role in defining and characterizing
compactness, their applications in studying topological properties, their use in partitioning unity,
and their applications in differential geometry and complex analysis.

Let (X : S)be a topological space. Let A be a subset of X. A family &# of subsets of X is said

to be cover for (X, 3J)if only if
U(vivee#)=X

Also if Z2 — &# such that 22 is also a cover for X then ZZ is a subcover of &#.

14.4 Open Cover and Finite Cover

In topology, an open cover of a topological space X is a collection of open sets whose union
contains X. A finite cover is an open cover that consists of only finitely many open sets. Open
covers and finite covers are crucial in the study of compact spaces. A topological space is
compact if every open cover has a finite subcover. Finite covers are particularly useful in proving

compactness because they allow for a more manageable number of sets to work with.

An open cover of A is a family {v:ve o#} of 3—open subsets of X such that each pointin X

belongs to at least one number of the class{v:ve o#}ie., Ac{viveo#}.

A cover of a topological space ( X, 3J)is said to be finite cover if it has only a finite number of

member.

14.5 Compact Space and Compact Set

Compact spaces and compact sets are fundamental concepts in topology with wide-ranging

applications in mathematics, including analysis, geometry, and topology. In topology, a compact



space is a topological space in which every open cover has a finite subcover. Compactness is a
fundamental concept in topology with many important properties and applications. A compact
set is a subset of a topological space that is itself a compact space when endowed with the

subspace topology.

Compact spaces are often connected, but there exist compact spaces that are not connected (e.qg.,

the disjoint union of two compact spaces).

Let (X,3)be a topological space. Then (X, 3) is said to be compact if and only if every open

cover of X has a finite subcover.

(i) U{G,:iel}=X (open cover)
(i) U{G, :ie(1,2,...,N)} = X (finite subcover)

Let (X, 3)be a topological space. A set A of X is said to be compact if every 3 -open cover

of A has a finite subcover.

14.6 Finite Intersection Property

A collection of subsets of X is said to have finite intersection property if and only if the

intersection of members of each finite sub-collection is non-empty.

14.7 Locally Compact Space and Lindelof Space

A locally compact space is a topological space in which every point has a compact neighborhood.
Locally compact spaces generalize the notion of compactness to allow for spaces that are
compact "around each point.” This property is useful in many areas of mathematics, including
functional analysis and algebraic topology. A Lindel6f space is a topological space in which
every open cover has a countable subcover. These spaces are important in topology because they

satisfy a "countable compactness" property that is useful for proving certain theorems.



Let (X,3)be a topological space. Then (X, J)is said to be locally compact space if and only if

every point of the set has at least one neighbourhood whose closure is compact.

Let (X, 3)be a topological space. Then (X, J)is said to be lindelof space if every open cover of

X has a countable cover.

14.8 Bolzano Weiertrass Property

Let (X, 3)be a topological space. Then (X, ) is said to have the Bolzano-Weiertrass property

if every infinite subset of X has a limit point.

Any space with Bolzano-weiertrass property is called Frechet compact space.

14.9 Sequentially Compact

Sequentially compact spaces are important in topology and analysis for their properties related
to convergence of sequences. They provide a way to ensure the existence of limits for sequences

in a space and have applications in various areas of mathematics.

Let (X,d)be a metric space. Then (X,d)is said to be sequentially compact if every sequence

in X has a convergent sub-sequence. For example, the set of all real number in(O,l) is not

otherhand [0,1]is sequentially compact.

Note: A sequence {x, ¢ X :ne N} is said to be convergent if X, = X, vxe X.

Examples

Example 1: Let X ={1,2,3,4}and I ={X,¢,{1},{4},{1,4},{2,3},{1,2,3},{2,3,4}}



be a topology for X .

The collections C, ={{1}.{4}.{2,3}}

C,= {{1’ 4} J {2’3}}

and C,

{1 {2.3.4))

Are open cover of X.Since these covers have finite number of members. So they are finite

covers. But C = {{1,2},{3,4}} isacover of X which is not open.

The collection {{l}{l 3},{12, 3}} is not a cover of X since the union of theses members of

this collection is not equal to X .

If A={1,2,3}is a subset of X then the collection {{1},{2,3},{1,2,3}}is an open cover of A.

Here C, is a refinement of C,and C, both.

Theorem 1: Prove that in a topological space {X, 3}, every closed subspace of a compact

space is compact.

Proof: Let {X, 3} be a topological space and X be compact and (Y,v)is a subspace of (X, J)

. To show that Y is compact.

Let {G, :i e 1}is an open cover for Y

Since each G; is the open set of Y
i.e., G ev

Using definition we have G; ={Y nevery member of 3}



ie, GG=YNH, ev (H; e3J)
It is given that Y is closed then X ~Y is open set in X.

— X ~Yand all H, €Jis an open cover for X.Since it is given X is compact, this implies it

has a finite subcover for X .

= U{G,G,,...G,} =Y (using definition)

Hence, (Y,V)is a compact space.

Theorem 2: Prove that the continuous image of a compact space is compact in a topological

space(X,3).

Proof: Let (X,3)and (Y,V)be two topological spaces. A mapping f : X —Y which is

continuous and X is compact.

X f continuous Y

(Compact (Compact
given) show)

1



To show that Yis compact space

Let {G, :iel}isan open cover for

ciel}=Y 1)

It is given mapping continuous
={f7(G,):iel}areopensetin X

And they form are open cover for X .

It is given X is compact = it has a finite subcover.

=U{f*(G):ie(123..N)}=X

= 1{U(@)ie(L23.N)|= X
SU{(G):ie(L23.N)}= f(X)
-y
6.y hasa finte suboover

Hence, Y is compact space.

Theorem 3: Prove that a topological space (X : 3) isacompact if and only if every collection

of closed subsets of X with finite intersection property has a non-empty intersection.

Proof: (i) Let X be compact and I={F :i 1} be the collection of closed subset of X with

finite intersection property.

To show that N{F:iell#g



Suppose if possible N{Fiel}=¢
=X ~n{F:iel}=X~¢ (Complement taking)
=>n{X~F:iel}=X
= it is open cover for X .

It is given X is compact = it has a finite subcover.
This implies U{X ~F:ie(12,..,N)j=X
(Taking complement and using Demorgan law)
=X ~X~n{F:ie(12..,N)}=X~X
=n{F:ie(L2..N)j=¢
=it is contradiction because X has finite intersection property
=>n{F:ie12.N)}=g.

(i) Let every collection of closed subset of xwith finite intersection property has a non-empty

intersection.

To show that X is compact.
Let X =U{G; :iel} ( G;is open set)
X~ X =X ~U{G; :i e |} (Taking complement)

p=n{X -G iel



=>N{X~G:iel}=¢

=>n{X~Gie12...N)}=¢

=X ~U{G1ie(L2..N)}=X~¢

= u{G,

cie(L2.,N)p=X
=it is finite subscover for X .

Hence, X is compact.

Theorem 4: If (X,3)is compact, 3 is coarser than J then show that (X,J) is also

compact.

Proof: Let (X,S)be a compact topological space and let 3" is coarser then I so that 3'c 3.
To show that (X, 3')is compact.

Let {G,:iel}bea 3'open cover for X

Then {Gi e I} be a 3 open for X for 3'cJ. Also X is compact.

Hence, {Gi iefl,23,., N} is reducible to finite subcover which is also ' open. So (X,3J')

Compact.

Theorem 5: Prove that every compact topological space is locally compact? Is the converse

true.
Proof: Let X be a compact. To show that it is locally compact.

We know that X is both open and closed therefore it has the neighbourhood of



each of its point. This implies X = X i.e., X is locally compact.

But converse is not necessary true.

Let (XS) be a discrete topological space where X is infinite therefore X is not compact

because the collection of all singleton sets is an open cover for X but it has no finite subcover.

Whereas this set is locally compact because let Xe X . This emplies {X} is the neighbouhood of

X .

And we know that in a discrete space each member of J is open and closed therefore {X} is

closed also D{X) :{)_(}

And {x} is a compact subset of .

Therefore every point of X has a neighbourhood whose closure is compact so it is locally

compact.

Theorem 6: Prove that every closed subspace of a locally compact space is locally compact.

Proof: Let (Y,V)be a closed subspace of a locally compact space ( X,3), then Yis I —closed

set. Let yeY < X.

To prove Y is locally compact.
We havey eY = y e X Y =X}

It is given X is locally compact.
This implies there exists a neighbourhood U of Yin X such that U is compact.

This implies U MY is open neighbourhood of Yin Y



=UnY U

=UnNnY U

=U Y is a closed subset of a compact set.
We know that a closed subset of a compact space is compact.
This implies for every point in Y has a neighbourhood in Y where closure is compact.
Hence, Y is locally compact.

Theorem 7: Show that a compact topological space has BWP.

Proof: We will prove this theorem by contradiction.

Let A has no limit pointin X .

This implies for every x e X there exists an open neighbourhood U, of x which contains no point

of A other then «.
This implies collection of such neighbourhood is an open cover for X .
ie., {U, :xe X}is an open cover for X .

It is given that X is compact space.

This implies it has a finite subcover.

= X =U{U,:ie(12,..,N)} (1)

Also it is given Ac X (2)
From (1) and (2), we have

AcU{U, :ie(12,...,N)}

X;



Since each U, contains at most one point of A therefore U {UX_ ie(12,..., N)}will contains

at

Most N points and A is given to be infinite set which is contradiction because an infinite set

cannot be subset of a finite set.

Hence, A must have a limit pointin X .
Therefore compact topological space has BWP.

Theorem 8: Prove that a metric space is sequentially compact if it satisfies the BWP.
Proof: Let (X,d) be a metric space. Also X is sequentially compact and Ac X .

To show that it has a BWP.
Let Ac X be an infinite set.

To show that A has a limit point in X.

Since A is an infinite set this implies there exists any collection {Xn} of distinct points in A also

it is given that the space is sequentially compact.
This implies {X,} has a sequence {X, } which converges to a point xin X .

We know that if a convergence sequence in a metric space has infinitly distinct points then its

limit is a limit pointin x.

Thus, set of the points of the sequence of this x converges this implies xis the limit point

of the set of point of the subsequence and since the set is a subset of A i.e., also a limit point of
A.

Conversely, let every infinite subset of X has a limit point then to show that X is sequentially

compact. Let {Xn} is a sequence in X . Then



1) This sequence may have a point which is infinitely repeated its implies it has a constant

subsequence which is convergent.
2 If no point of {Xn} is infinitely repeated i.e., {Xn} has infinitly distinct points.
The set A of this sequence is inifinite it is given infinite set has a limit point xin X .

This implies there exist a sequence {Xn} which converge to x. Hence, X is sequentially compact.

14.10 Uniformly Continuous

Uniform continuity is an important concept in analysis and topology that helps us to understand
the behavior of functions in a controlled and uniform manner. Uniformly continuous functions
behave well with respect to compact sets. Specifically, a uniformly continuous function maps

compact sets to compact sets.

Let (X,d,)and (Y,d,)be two metric space. A mapping f defined on a metric space X and Y

is uniformly continuous if > 0then there exist o >0 depending on < alone such that

(X, dy) f (Y, d,)

Note: In case of continuity ¢ depends upon <and point a. But in case of uniformly continuous ¢

depending upone e alone. Using definition, for given



x—a|<Jif >0 implies [T (x)- f(a)|<e

14.11 Lebesgue Covering Lemma

The Lebesgue Covering Lemma is a fundamental result in topology that provides a way to cover

a compact set with a collection of open sets, while controlling the size of the covering sets.

Every open cover of a sequentially compact metric space has a lebesgue number.

Note: Let (X,d)be a metric space and C ={G, : & € A} be an open cover of X.A real number
| >0is said to be a lebesgul number for C if and only if every subset of X with diameter less

than is contained in at least one G, .

14.12 Heine-Borel Theorem

Heine-Borel Theorem is a key result in topology and analysis that provides a fundamental
characterization of compact sets in Euclidean space, with wide-ranging applications in

mathematics.

A subset of the real line is compact if and only if it is closed and bounded.
Proof: Let (R,U )be the usual topological space and let A R is compact.
Let us consider the family of open sets (open intervals) defined as
{G,:aeAand G, =]a—La+1[} 1)

Clearly this is an open cover of A . Sinceitis given A is compact this implies there exist a finite

subcover of A



AcU{G, .G, .G, || ®)
Let M, =max{a,,a,,....a, }

m, =min{e,, a,,...., }

= Ac[m,,,m,]

—> Aiis bounded.

Let (R,U )be a T, -space and we know that a compact subset of a T, -space is closed.

This implies A is closed. Conversely, let A be bounded and closed.

To show that Ais compact.We know that every bounded and closed interval on R is

compact.Thus, A is compact.

Theorem 9: Prove that any continuous mapping of a compact metric space into a metric

space is uniformly continuous.

Proof: Let f be a continuous mapping from a compact metric space X into a metric space Y

with metric d1 and d2 respectively.

(X, dy) f (Y, d,)

Continuous



Since <> 0 then for each point X € X then there exist an open ball S_, [ f (x)] centred at the pont

f (x)This implies inverse image of all these open balls are open setin X .
This implies class of all such images is an open cover for X and it is given X is compact.

= Open cover has a lebesgue number §if xand X, € X such that

d, (X, % ), & then the set {X, X, } is the set with diameter <. Also both the points xand X;

belongs to the inverse image of the open ball centred at f(x)and f(x,)

=d,{f(x),f(x)}.0

Hence, the mapping f is uniformly continuous.

14.13 Product Topology

The product topology is a fundamental concept in topology that allows us to study the properties
of product spaces and is used in various areas of mathematics. The product topology is used in
algebraic topology to define the product of topological spaces, which is important for defining
operations on homology and cohomology groups. The product topology allows us to study the
properties of product spaces, which are used in various branches of mathematics. For example,
in functional analysis, the product of Banach spaces is a common construction. The product
topology is a way to construct a topology on the Cartesian product of two or more topological

spaces.

Let X;and X, be any two sets. Then the Cartesian product of X, and X, written as X;x X, is the

set of all ordered paris (X, X, )such that X, € X, and X, € X,

ie., X, x X, ={(X,%,) 1% € X;, X, € X, |



Let (X, 3,)and (X, J,)be two topological spaces. The topology I whose base is
B={G,xG,:G, eJ,and G,€3J,}is said to be product topology for X;xX,=X . The

corresponding topological space (X , S) is known as product space of X,and X, ..

Examples

Example. 2: Let 3J,={X,4{l}} be a topology for X, ={123}and
3, ={X.4.{a},{b}.{a,b},{c,d}.{a,c,d},{b,c,d}} be atopology for X, ={a,b,c,d}.Finda

base for the product topology of N, XN, .

Solution: We know that

B, ={{1},{1,2,3}} is a base for 3,
And B, ={{a},{b}.{c,d}}is a base for 3,
Hence, a base for the product topology is given by

B = {{L)xa {1} x {b}; {1} x{c,d}; {1, 2,3} x{a}; {1,2,3) x{b}; {1,2,3} x{c, d}}

—{{La):{Lb) i{ze).(Lb)}i{La)i(2.).(3.2)}:{(1b).(20).(3b)}i{(Le).(d) (2.0). {2.d).{3.0).{3.0)}}

14.14 Projection Mappings

Projection mappings are used extensively in topology and related areas of mathematics. They
play a crucial role in defining and studying product spaces, and they provide a way to decompose
a product space into its component spaces. They are also used in algebraic topology to define

operations on homotopy and homology groups, and in functional analysis to define operations



on function spaces.Projection mappings are a fundamental concept in mathematics, particularly

in the context of Cartesian products and product topologies.

The mappings

7, . X xY = X such that
7, (% Y)=%Y(%y)in XxY
And 7, XxY =Y such that

7, (% Y)=Y;V (X y)in XxY

Are called projection mappings of the product X xY .
Embeddings
An embedding of a topological space Xinto another space Y, we mean a mapping f : X —Y

which defines a homeomorphism of X onto f(X).

Theorem 10: If {XxY,T)is the product space of (X,3)and (Y,v)then the projection

mapping 7, and 7, are continuous and open.

Proof: Let G be any 3 -open subsets of X .Then by definition of 7, , we have

Xfl(G)=G><Y

X

Which is a basic T —open subset of X xY . For Ge 3,Y ev=GxY < Bwhere B is a base for
T. Hence 7y is T —Jcontinuous. Similarly it can be proved that 7, is T —v continuous. Hence,

the projection mapping X, , 7z, are continuous. Now we shall to show that 7, and 7, are also open.

Suppose W be a T —open subset of X xY . Then by definition of base B for T, we have



W =[U{GxH:GeT,Hevand GxHeB'}|
Now we have

X,(W)=7,[U{GxH:Ge3,Hevand GxHeB'}]
Where B* Bsince G=U {B,,B; = B}

=U{7,[GxH]:Ge3J,Hevand GxHeB*}

=U {G:G e Jand GxH e B*} {using definition of 7, }
7 (w)e3
Hence, 7, is an open mapping. Similarly 7, is also an open mapping.

Theorem 11: The product of two second countable space is a second countable space.

Proof: Let (X,,3,)and (X,,3,)be two second countable spaces to show that (X, xX,,T)is

also a second countable space.

Let ZZ ={B =ieN}and 22, = {C, : je N} be countable bases for J,and J, respectively.

Consider the countable collection

C={BxC;:ieN,jeN}
Let (X, X, )be any point of X;x X,and let N be a neighbourhood of (X;, X, )

Since Z ={G,xG,:G, €3J,,G, €T, } is a base for the prodecut topology there exists a

member G, xG,of Z such that (xx,)xG,xG, = N

Since G, € Jand Z7 is a base for J; there exist some B, € ZZ such that



x €B cG
Similarly, X, €C, cG

(%, X%,)€B; xC; =G, xG,
Thus, (%.,%,)eBxC; <N
Hence, {B,xC; :i, j & N} is a base for the product topology T.

Therefore product space of two second countable space is also a second countable space.

Theorem 12: Product of two Housdorff spaces is a Hausdorff space.

Proof: Let (X,3)and (y,v)be two T, -spaces. Suppose (x,, ;) and (x,,y,)are two distinct

points of X xY.Then either X, # X,or y, # Y,
Suppose X #X,.
Since (X, 3J)is a T, -space then there exist I—open disjoint subsets G, and G, such that
X €G,
And X, €G,
Then G, xY and G, xY are open subsets of X xY such that
(X, Y,) G, xY
(%, Y,)€G,xY

And (G, xY)N(G,xY)=(G,NG,)xY



=¢
Hence, product of two T, spaces is a T, —space.

Theorem 13: Each projection 7,:X — X_on a product space X =7ri{Xi}is an open

mapping.

Proof: Let G be an open subset of the product space X =, {Xi}.Forevery point P in G there

exists a member B of the defining B base for the product topology T such that

peBcG
Thus, for any projection r, X=X,
r,(p)er,[B]cr,[G]

Since B belongs to the definiting base for X .
B=r{X, :a#A, b Ay dn}*x{G, ,xG, xG, ,....xG, |

Where G, is an open subset of X,

Thus, for any projection 7:X, = X,

7, (B)=

G, if a={A, 2yl

{xa if a# {4, Ay Ay} }
J

In either case 7, [B]is open set. Hence , 7, [B]is open set, i.e., each point 7, [ p]in 7, [G]

belong to an open set

ﬂa[B]Cﬂa[B]



Therefore, 7, [G] IS an open set. Hence, each projection mapping 7, is an open mapping.

Theorem 14: Let X and Y be two topological spaces. Then the product space X xY is
connected if and only if X and Y are connected.

Prof:Let X xY be connected space.

Since the projection mapping 7, and 7, are onto and continuous it follows that X and Y are also

connected spaces.

Conversely, let X and Y are connected space. Then we have to prove that X xY is also connected.

Let (X, Y;)and (X,,Y,)be any two elements of XxY . Then (X}xY is homeomorphic to Y and

X x{Y, } is homeomorphic to X .

It follows that {X,}xY and X x{y, } are connected spaces. Since these two spaces interseat at the

point (X1 yz). It follows the their union is a connected space.

Conversely, let X and Y are connected space. Then we have to prove that X xY is also

connected. Let (X, Y;)and (X,, Y,)be any two elements of X xY . Then (x}xy is homeomorphic

to Y and X x{y,}is homeomorphic to X.
It follows that {X,}xY and X x{y, }are connected spaces.

Since these two spaces intersect at the point (X1 yz) it follows the their union is a connected

space. Since the union contains {Xl, yl) and (xz, y2) it follows that X xY is connected.

Theorem 15: The product space X =X{X, : 1€ A} is Housdorff if and only if each space

X, is Housedorff.



Proof: Let each co-ordinate space X ; be T, space and let x={X, : A€ A}and y={y, : A €A}
be two distinct points of the product space X.Then X, # Y, for some # €A, where X, € Xﬂ and

y, € X, since X ,is T, -space there exist open sets G,and H ,in X, such that
XﬂeGﬂ,yﬂeHﬂ,and XﬂeGu,yﬂeHﬂ, 1)

Since 7, (X)=x,and 7,(y)=y

U

Using (1) , we have xer,'[G,].yer,![H,]
And 7! G,nH, =7} [s]=¢
or 76, ]=7/[H,]=¢

But z,'[G, |and z,'[ H, ]are open in X being sub-baisc members of the product topology.

Thus, we have to show that each pair X, Y of distinct points of X there exist two disjoint open

sets one containing xand the other containing Y.

It follows that the product space X is T, -space conversely, let the product space X be

T, -space. We shall show that the co-ordinate space X .. 18 Housdorff for arbitrary 4 €A

Let @, and bﬂ be any two distinct points of Xﬂ choose xand yin X such that xand Yy differ only

in the 4 th co-ordinate and such that X,=a,and Yy, = bﬂ

Since space is T, there exist open sets §and H in X such that

XeGand yeHand GAH =¢

There exist basic open sets U=x{U,:1en}



And V=x{V,:dlen}

Such that xeUcGand yeVcHand U cV =¢

It is follows that U, and V, are open sets in X, such that X, =a, €U ,and Y, =b, €V, and
U,nV,=¢

Hence, Xﬂ is Housdorff space.

14.6 Summary

Let (X : S)be a topological space. Let A be a subset of X. A family &# of subsets of X is said

to be cover for (X, 3J)if only if U (viveo#) = X . Alsoif Z2 c o# suchthat Zisalso

a cover for X then ZZ is a subcover of &#.

An open cover of A is a family {v:ve o#} of 3—open subset of X such that each pointin X

belongs to at least one number of the class{v:ve o#}ie., Ac{viveo#}.

A cover of a topological space ( X, J)is said to be a finite cover if it has only a finite number of

member.

Let (X, 3)be a topological space. Then (X, 3J) is said to be compact if and only if every open

cover has a finite subcover.

(i) U{G,:iel}=X (open cover)
(i) U{G, :ie(1,2,...,N)} = X (finite subcover)

Let (X, 3)be a topological space. A set A of X is said to be compact if every 3 -open cover



of A has a finite subcover.

A collection of subsets of X is said to have finite intersection property if and only if the

intersection of member of each finite sub-collection is non-empty.

Let (X, 3)be a topological space. Then (X, J)is said to be locally compact space if and only if

every point of the set has at least one neighbourhood whose closure is compact.

Let (X, 3)be atopological space. Then (X, 3J)is said to be lindelof space if every open cover of

X has a countable sub cover.

Let (X, 3)be a topological space. Then (X, 3) is said to have the Bolzano-Weiertrass property

if every infinite subset of X has a limit point. Any space with Bolzano-weiertrass property is

called Frechet compact space.

Let (X,d)be ametric space. Then (X, d)is said to be sequentially compact if every sequence

in X has a convergent sub-sequence. For example, the set of all real number in(O,l) is not

other hand [ O,1] is sequentially compact.

Let (X,d;)and (Y,d,)be two metric spaces. A mapping f defined on a metric space X and Y

is uniformly continuous if > 0then there exist o >0 depending on < alone such that
d,(f(x),f(a))<e and  d,(xa)<s

Every open cover of a sequentially compact metric space has a Lebasque number.

A subset of the real line is compact if and only if it is closed and bounded.

Let (X, 3,)and (X, J,)be two topological spaces. The topology I whose base is

B={G,xG,:G,eJ,and G, €3J,}is said to be product topology for X;xX,=X . The



corresponding topological space (X, J)is known as product space of X;and X, ..
The mappings z, - XxY = X such that
T (X% Y) =% V(X y)in XxY
And 7, XxY =Y such that
T, (X Y)=Y;V(Xy)in XxY

are called projection mappings of the product X xY .

An embedding of a topological space xinto another space Y we mean a mapping f : X —Y

which defines a homeomorphism of X onto f(X).

14.7 Terminal Questions

Q.1. Write the Bolzano Weiertrass property.

Q.2. Explain the Heine-Borel theorem.

Q.3. What do you mean by Heine-Borel theorem?

Q.4. Define compact space and compact set.

Q5 Let X={abcdland 3I={X,4{a}{d}.{bc}.{abc} {ad} {becd}}. Let

C={{a,b},{b,c},{d}}is an open cover of X and {{a,d},{b,c}} is a finite subcover of C.To

show that (X, J)is compact space.
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