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Block-1 

Metric Spaces-I 

Set theory has a great importance in the study of mathematics and computer sciences. A 

German mathematician Georg Cantor (1845-1918) introduce the idea of set theory. The concept 

of set theory has a great contribution in analysis. In this unit we shall discuss some basic concepts 

of Sets such as subsets, multi set, empty set, singleton set, finite and infinite set, universal set, 

comparable and non-comparable sets, set of sets, subset, power set, venn diagrams, operations 

on sets, cardinality of a set, ordered pairs, cartesian product of sets and some algebraic properties. 

In our daily life we usually use the word ‘set’ as set of natural numbers, set of real numbers, set 

of integers, tea set, set of books of an author, set of an examination papers, set of authors of this 

book, etc.  In all of these, the meaning of the word ‘set’ is a collection of well-defined objects.In 

the set theory of real numbers, R can be geometrically demonstrated through the points on a 

straight line. Set theory and real number system are the fundamental of the Mathematics. The 

key concept of analysis must be based on an exactly defined on the concept of number. 

Metric spaces are essential in mathematics, especially in analysis and its practical 

applications. Metric spaces have numerous applications in various fields, including physics, 

computer science, and engineering. For example, they are used in algorithms for data analysis, 

optimization, and machine learning.Metric spaces are crucial in the study of analysis, particularly 

in real and complex analysis. They provide a framework for defining limits, continuity, and 

convergence, which are central concepts in analysis. Metric spaces are the foundation of 

topology, a branch of mathematics that deals with the properties of spaces that are preserved 

under continuous transformations.  

In the first unit, we shall discussed the Sets, subset, index set, power set, operations on set, 

relations, functions, finite and infinite sets, Countable and uncountable sets.In the second unit 

we shall discuss the Metric space, Pseudo Metric Space, Discrete Metric Space, Bounded and 

Unbounded Metric Space, Usual and Quasi Metric Space, inequalities. Bounded and unbounded 

metric space, Usual and Quasi Metric Space, inequalities with details are discussed in unit third. 



UNIT-1: Elementary of Set Theory 

Structure 
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1.15  Terminal Questions 



1.1 Introduction 

 

In modern mathematics, the words set and element are very common and appear in most texts. 

They are even overused. There are instances when it is not appropriate to use them. For example, 

it is not good to use the word element as a replacement for other, more meaningful words. When 

you call something an element, then the set whose element is this one should be clear. The word 

element makes sense only in combination with the word set, unless we deal with a 

nonmathematical term (like chemical element), or a rare old-fashioned exception from the 

common mathematical terminology (sometimes the expression under the sign of integral is called 

an infinitesimal element; lines, planes, and other geometric images are also called elements). In 

dictionary the word set is defined as a collection, a group, a class or an assemblage etc.  

Finite sets are very important for the study of combinatory theory of counting. George 

Cantor (1874) discussed the term of countable set. Countable sets have great importance in real 

and discrete mathematics.  

 

 

1.2 Objectives 

 

After reading this unit the learner should be able to understand about the: 

 the introductory concepts about sets 

 the subsets, superset, proper subsets and improper subsets 

 the index set and power set 

 the operations on set 

 the relations and types of relations 

 the functions and types of functions 

 the finite and infinite sets 

 the countable and uncountable sets 

 

 



1.3 Set 

A set is a well defined collection of objects. The objects in a set are known as members or 

elements or points. Suppose A is a set and a is an element of A, then we write aA (a belongs 

to A). If a is not an element of A, then we write aA (a does not belongs to A).  

Let A be the set 

A= {1, 3, 5, 7, 9, 11}      ….. (i) 

Here 1A, 3A, 5A, 7A, 9A, 11A but 2A. The form of presentation of set A in 

(i) is known as tabular method or roster method. Also the equation (i) can be written as  

   A= {xx is an odd positive integer and x13}   .… (ii) 

It means that A is the set of all odd positive integers which are less than 11. The form of 

presentation of set A in (ii) is known as set-builder method or rule method. 

For example: The set consisting of all the letters in the word “DELHI” can be written as 

    {D, E, L, H, I} or  

   {xx is a letter in the word “DELHI”}. 

Sets are denoted by capital letters and their element by lower case letter. Some notations 

o standard sets are given below: 

 C: the set of complex numbers. 

 R: the set of real number. 

 Q: the set of rational numbers. 

 I: the set of integers. 

 N: the set of natural numbers. 

 



For example:. The set consisting of all even positive integers is denoted by {2, 4, 6, 8, ……….} 

or {xx is an even positive integer}. 

For example:The set consisting of fourth roots of unity is denoted by {1, -1, i, -i} or {xx4 = 1}. 

Empty Set 

A set is said to be empty set or null set or void set if it contains no element. It is denoted by  or 

{}. Let A ={xx is a real number and x2 =-1}, B = {xx x} and C = {xxI and 1x2}. Here 

A, B and C are empty set. 

Singleton Set 

A set is said to be singleton set or unit set if it contains only one element. Let A ={xx is a 

positive integer and x2 = 4} and B = {0}. Here A and B are singleton set. 

Comparable and Non-comparable Set 

Let A and B be any two sets. Then A and B are said to be comparable if all the elements of A 

belongs to B or all the elements of B belongs to A (i.e., AB or BA). But if AB or BA, 

then A and B are known as non-comparable set.  

Note: Every set is comparable with itself, i.e., AA, therefore A and A (itself) are comparable 

sets. 

For example: Let A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {1, 3, 5, 7} and C = {2, 5, 6, 7, 9}.  

Here we see that all the elements of B belongs to A, i.e., BA, therefore A and B are comparable 

sets. Also CA, therefore A and C are comparable sets. But CB or BC, therefore B and C 

are non-comparable sets. 

For example: Let A = {a, m, a, r, j, e, e, t} and B = {a, j, e, e, t}.  

Here we see that all the elements of B belongs to A, i.e., BA, therefore A and B both are 

comparable sets.  

Equality of Sets 

Let A and B be any two sets. If all the elements of A belongs to B and all the elements of B belongs 



to A, (i.e., A  B and B  A) then A and B are said to be equal set and written as A = B.          

Consider two sets A = {N, I, R, A, N, J, A, N} and B = {N, I, R, A, J}. Here A and B are equal set, 

i.e., A = B. 

Multi Set 

A multi set is an unordered collection of objects in which an object can appear more than once. Let 

A = {a, a, b, b, b, c}. Here a appears two times, b appears three times and c appear one time. 

Universal Set 

A set under consideration in the problem is a fixed set in which includes each given set known 

as universal set.  

For example: For the sets of numbers, the set of complex number (C) will be the universal set. 

It is denoted by U. 

Disjoint Set 

Let A and B be any two sets. Then A and B are said to be disjoint sets if they have no common 

elements.  

For example: Let A = {1, 3, 5, 7} and  B = {2, 4, 6, 8}. Here A and B have no common elements.  

Therefore A and B are disjoint sets. 

Venn Diagram 

A venn diagram is a pictorial representation of sets in which it represented by a rectangle and 

the sets with by circle. 

For example: Let A = {1, 2, 3} and            

U = {1, 2, 3, 4, 5, 6, 7, 8}.  

 

 



1.4   Subset 

 

Let A and B be any two sets. If all the elements of A belong to B, then A is said to be subset of 

B. It is denoted as AB, read as “A is a subset of B” or “A is contained in B”. 

For example: Let A be the set A= {a, b, c}. Then , {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and A 

are all subsets of A. 

For example: If A= {a, b, c}, then {b, d} is not a subset of A because dA. 

Superset  

Let A and B be any two sets. AB is also expressed by writing as BA and is read as “B contains 

A” or B is a super set of A. 

For example: Let A = {1, 2, 3} and B = {1, 2, 3, 4}.  

Here we see that all elements of set A belong to set B, i.e., AB, i.e., B contains A. Therefore B 

is a super set of A. 

Proper Subset  

Let A and B be any two sets. Then A is said to be proper subset of B if AB, A≠ and A≠B. 

Improper Subset  

Let A be any set then  and itself A are improper subsets of A.  

For example: Let A be the set A= {a, b, c}. Then the all subsets of A are , {a}, {b}, {c}, {a, 

b}, {a, c}, {b, c} and A. Here {a}, {b}, {c}, {a, b}, {a, c} and {b, c} are all subsets of A.  and 

A are improper subsets of A. 

 

1.5  Index Set 

 

Index set is a set whose elements are used as names. It is usually denoted by . An index set may 

be finite or infinite.  

For example: Let A={a, b, c, ……..}, B={, , , ….…..} and C={i,  j, k, ……..} be any three 



sets. Here we see that the all elements of A, B and C are used as names. Therefore A, B and C 

are index sets. 

Cardinality of a set 

Let A be any finite sets. The number of distinct elements contained in A is known as cardinality 

of the set A. It is denoted by n(A) or  

For example: Let A be the set: A= {1, 2, 3, 4, 5}. Then n(A)  = 5. For a empty set, n() = 0. 

 

1.6  Power Set 

 

Let A be any set. The power set of A is the set of all subsets of A. It is denoted by P(A). 

Let A = {a, b, c} be the set. Then the power set of A is 

P(A) ={, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. 

The number of elements in a P(A) is 2 raised to the cardinality of A i.e.,  

Number of P(A) = 2n(A). 

For example: If A = {a, b, c}, then number of P(A) = 23 = 8. 

Set of Sets 

If a set contains a number of sets as its elements then it is known as set of sets or family of sets 

or class of sets. 

For example: Let A = {{a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, d, e}} and B = {{0}, {0, 1}, 

{0, 1, 2}}.  

Here A and B are set of sets. 

 

.A



1.7   Operations on Set 

 

Complement of a Set 

Let U be the universal set. The complement of a set A with respect to U is the set of elements 

which belong to U but do not belong to A. It is denoted by U-A or  or Ac and is defined 

as   = {x: xU and xA}. 

For example: Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 3, 5, 7, 9}.  Then = {2, 4, 6, 8}.                                                                                                                  

For example: Let U= {x: x is a letter in English alphabet} and A = {x: x is a vowel}. Then 

= {x: x is a consonant}. 

 

Union of Sets 

Let A and B be any two sets. The union of A and B is the set of all elements which belong to A 

or to B and is denoted by AB. Thus AB = {x: xA or xB}. 

For example: Let A = {1, 2, 3, 4, 5} and  B = {2, 4, 6, 8, 10}. Then the union of A and B is 

                       AB = {1, 2, 3, 4, 5, 6, 8, 10}. 

 Intersection of Sets 

Let A and B be any two sets. The intersection of A and B is the set of elements which belong to 

both A and B and is denoted by AB. Thus AB = {x: xA and xB}. 

For example: Let A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10}. Then the intersection of A and B is                        

                                    AB = {2, 4}. 

Difference of Sets 

Let A and B be any two sets. The difference of A and B is the set of elements which belong to A 

AorA 

A

A

A



but do not belong to B. It is denoted by A-B or AB or A/B= {x: xA and xB}. 

For example: Let A = {1, 2, 3, 4, 5, 6} and B = {3, 4, 5, 6, 7, 8}.Then the difference of A and 

B is   

                A-B = {1, 2}  

and the difference of B and A is  

               B-A={7, 8}. 

Symmetric Difference of Sets 

Let A and B be any two sets. The symmetric difference of A and B is the set of elements which 

belong to A or B but do not belong to A and B. It is denoted by AB and defined as 

 AB= {x: (xA and xB) or (xA and xB)} or AB=(A-B)(B-A). 

For example:Let A = {1, 2, 3, 4, 5} and B = {1, 3, 5, 7}.Then AB = {2, 4, 7}. 

 

1.8   Relation  

 

In our day to life, a word used relation means something like as marriage and friendship, etc. “Is 

the mother of”, “is the father of”, “is the sister of”, is the brother of”, “is the friend of”, are all 

relations over the set of men. Similarly, “is equal to”, is less than”, “is greater than”, “is the 

divisor of” are relations on the set of numbers. In this book we study binary relations. A binary 

relation is the relation between two objects.  

For example, “is the son of” is a relation between two men a and b. Therefore the binary relation 

involves certain ordered pair (a, b) in which the first element a is related to the second element 

b.  

Let A and B be any two sets. A relation R from a set A to set B is a subset of A × B and defined 

as  



       xRy if and only if (x, y) R, x A and y B 

or       xRy ⇔(x, y)R 

and   x R y⇔(x, y) ∉R,  

x R y reads “x is R-related to y”.  

Note: (i) If R is a relation from A to A then R is known as relation on A. 

(ii) A binary relation on a set A is a subset of A × A. 

For example: Let A = {a, b, c} and B = {1, 2, 3} be any two sets. 

Then R = {(a, 1), (a, 2), (b, 2), (c, 3)} is a relation from A to B.  

 

Inverse Relation 

Let R be a relation from a set A to a set B. Then R–1 from B to A is known as the inverse relation 

of R if and only if  

R−1 = {(y, x) : (x, y)R}.  

For example: Let A = {1, 2, 3} and B = {2, 4, 6} be any two sets.  

Then R = {(1, 2), (1, 4), (2, 4), (3, 6)} is a relation from A to B 

and R–1 = {(2, 1), (4, 1), (4, 2), (6, 3)} is an inverse relation from B to A.  

Note: (i) Every relation has an inverse relation. 

 



Identity Relation 

Let A = {a, b, c} be any set. Then a relation R on a set A is known as an identity relation if R = 

{(a, a) : aA}.  

For example: Let A = {a, b, c, d} be any set. Then the relation R = {(a, a), (b, b), (c, c), (d, d)} 

is an identity relation on A.  

Universal Relation 

Let A = {a, b, c} be any set. Then a relation R on a set A is called as universal relation if  

       R = A × A   

or   R = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} is a universal relation on A.  

For example: Let A = {a, b} be any set. Then the relation R = {(a, a), (a, b), (b, a), (b, b)} is a 

universal relation on A.  

Note:(i) If R is a relation from A to A then R is known as relation on A.  

(ii) A binary relation on a set A is a subset of A × A.  

(iii) Every relation has an inverse relation.  

(iv) Let A={1, 2, 3, 4} and R be the relation > (is greater than). Then we have 

R={(2, 1), (3, 2), (3, 1), (4, 3), (4, 2), (4, 1)}.  

 

1.9    Types of Relation 

 

Some important types of relations are as follows: 

(i) Reflexive Relation 

A relation R on a set A is known as reflexive relation if and only if  

aRa, ∀aA.  



(ii) Symmetric Relation 

A relation R on a set A is known as symmetric relation if and only if  

aRb ⇒bRa, ∀(a, b)R.  

(iii) Anti-symmetric Relation 

A relation R on a set A is known as anti-symmetric relation if and only if 

 aRb, bRa ⇒ a =b,  ∀(a, b)R.  

(iv) Transitive Relation 

A relation R on a set A is known as transitive relation if and only if aRb, bRc ⇒aRc, (a, b, cA).  

Note: (i) In R, the relation “is equal to” is reflexive, symmetric and transitive.  

(ii) In R, the relation “less than” is anti-symmetric and transitive.  

(iii) The relation “is the friend of” on the set of all human beings is reflexive.  

(iv) The relation “less than”, “greater than”, “is the father of”, “is the wife of” on the set of people 

are not reflexive.  

(v) The relation “a divides b” on set of natural numbers is anti-symmetric for a divides b and b 

divides a if and only if a = b.  

(vi) The relation “is the brother of” on any set of men is transitive for a is brother of b, b is 

brother of c then a is brother of c.  

(vii) The relation “is the father of” is not transitive.  

 

Example.1. Write a relation which is reflexive but neither symmetric nor transitive. 

Solution: Let A = {a, b, c} be any set and the relation R on A defined as 

R = {(a, a), (a, c), (b, a), (b, b), (c, b), (c, c)}.  

Then (i) Reflexive: We have (a, a)R, aA.  



Therefore R is reflexive on A, i.e.,(a, a), (b, b), (c, c)R. 

(ii) Symmetric: We have (a, c)R but (c, a)R.  

Therefore R is not symmetric on A, i.e., (a, c), (b, a), (c, b)R but (c, a), (a, b), (b, c)R. 

(iii) Transitive: We have (a, c), (c, b)R but (a, b)R.  

Therefore R is not transitive on A. Hence R is reflexive but neither symmetric nor transitive. 

Equivalence Relation 

A relation R on a set A is known as an equivalence relation if and only if it is reflexive, symmetric 

and transitive. Equivalence relation is denoted by ~.  

Note: A universal relation R on any set A always satisfied the properties of equivalence relation. 

For example: Let A = {a, b, c} and the relation R on a set A is defined as  

R = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} is an equivalence relation.  

 

Example.2. Let I be an integer set and R is a relation on I defined as  

R = {(a, b): a<b and a, bI} is not an equivalence relation.  

Solution: Let R = {(a, b): a<b and a, bI}. 

Then (i) Reflexive: We have (a, a)R, i.e., a is not less than a,aI.  

Therefore R is not reflexive on I. 

(ii) Symmetric: Suppose (a, b)R i.e., a<b (b, a)R, i.e., b is not less than a.  

Therefore R is not symmetric on I, i.e., (a, b)R (b, a)R (because if a is less than b then b is 

not less than a) 

(iii) Transitive: We have (a, b), (b, c)R  (a, c)R i.e., a<b and b<c a<c.  

Therefore R is transitive on I. Hence R is transitive but neither reflexive nor symmetric. 

 



Example.3. If R is an equivalence relation on a set A then show that R-1 is also an equivalence 

relation on A. 

Solution: Let A = {a, b, c} be any set and the relation R on a set A. Suppose R is an equivalence 

relation, i.e., R is reflexive, symmetric and transitive.To show that R-1 is an equivalence relation. 

Then (i) R is reflexive: We have (a, a)R, aA  

 (a, a)R-1, aA 

Therefore R-1 is reflexive on A. 

(ii) R is symmetric: We have (a, b)R  (b, a)R. 

Now we have (a, b)R-1  (b, a)R  

 (a, b)R 

 (b, a)R-1. 

Therefore (a, b)R-1 (b, a)R-1, i.e., R-1 is symmetric on A. 

(iii) R is transitive: We have (a, b), (b, c)R  (a, c)R.  

Now we have (a, b), (b, c)R-1 (b, a), (c, b)R  

     (c, b), (b, a)R 

     (c, a)R 

     (a, c)R-1 

Therefore (a, b), (b, c)R-1 (a, c)R-1, i.e., R-1 is transitive on A. 

Hence R-1 is reflexive on A i.e., R-1 is reflexive, symmetric and transitive. 

Equivalence Classes 

Let R be an equivalence relation on a set A. Let a be any arbitrary element of A. The set of all 

element x A such that xRa constitute a subset of A (say [a]). Thus subset [a] is known as 

equivalence class of a with respect to R, denoted as  



[a]={x : xA and xRa}.  

Order Relation 

A relation which is transitive but not an equivalence relation is known as an order relation.  

If R is an order relation on a set X, then  

xRy and yRz ⇒ xRz, ∀x, y, z∈ X.  

Partial Order Relation 

A relation R on a set X is said to be a partial order relation if it is at the same time  

(i) Reflexive  

(ii) Anti-symmetric and  

(ii) Transitive.  

It is denoted by the symbol ≤. A set X together with a partial order relation defined on it, i.e.,(X, 

≤) is known as a partial ordered set.  

For example: The relation “x divides y” on the set of natural numbers is a partial order relation. 

The relation “sub-set of” on the set of all sub-sets of a set is a partial order relation.  

 

1.10    Function 

 

Let A and B be any two non-empty sets. If there exists a rule or a correspondence f which 

associate each element of A has a unique image in B then f is a function or mapping from A to B. 

This mapping is denoted by  

f : A→B  

or A B.  

Here the set A is known as domain and the set B is known as co-domain of the function f.  

 f



For example: Let A = {1, 2, 3}, B = {2, 4, 6, 8} and f : A → B is defined as  

 

 

 

 

 

 

Here range is {2, 4, 6}. We know that the range is a subset of co-domain.  

 

Example.4. If A = {1, 2, 3} and B = {a, b, c, d} then does  

(i) {(1, a), (2, c), (3, d)} 

(ii)  {(1, a), (2, b), (2, c), (3, d)} 

(iii)  {(1, a), (2, b)} 

(iv)  {(1, a), (2, b), (3, a)} represent a function from f : A → B. 

Solution:  (i) Here we see that f(1)=a, f(2)=c and f(3)=d. Therefore f is a function from A to B 

because every element of A has a unique image in B. 

(ii) Here we see that f(1)=a, f(2)=b, f(2)=c and f(3)=d. Therefore f is not a function from A to B 

because every element of A has not a unique image in B, i.e., one element (2) of A has two 

images (b, c) in B. 

(iii) Here we see that f(1)=a and f(2)=b. Therefore f is not a function from A to B because every 

element of A has not a unique image in B, i.e., one element (3) of A has  not any image in B. 

(iv) Here we see that f(1)=a, f(2)=b and f(3)=a. Therefore f is a function from A to B because 

every element of A has a unique image in B. 
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Example.5. If A = {1, 2, 3, 4} and f(1)=2, f(2)=3, f(3)=4 and f(4)=2, then does f represent a 

function. 

Solution:  (i) We have A = {1, 2, 3, 4} and B = {2, 3, 4}.  

Here we see that every element of A has a unique image in B. Therefore f is a function from A 

to B. 

 

1.11   Types of Function 

 

Here we discuss some types of functions which as follows: 

(i) One-One Function 

A function f: A→B is called one-one if x1, x2A, we have  

   x1 = x2 ⇒ f (x1 ) = f (x2 )  

or            x1≠ x2 ⇒ f (x1) ≠ f (x2).  

 

For example: Let A = {1, 2, 3}, B = {a, b, c, d} and f : A → B is defined as  

 

 

 

 

 

 

Here f is known as one-one function and range of f is {a, b, c}.  
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Example.6. If A = {1, 2, 3, 4, 5}, B = {a, b, c} and fis defined as f(1)=a, f(2)=b, f(3)=a,f(4)=a 

and f(5)=c, then state whether f is a function from A to B or not, if yes write its type. 

Solution: Here we see that f(1)=a, f(2)=b, f(3)=a,f(4)=a and f(5)=c, 

therefore f is a function from A to B because every element of A has a unique image in B.  

Hence f is a function from A to B. 

Also we see that three elements (1, 3, 4) of A has same image (a) in B. Hence f is not one-one 

function from A to B, i.e., one element (2) of A has two images (b, c) in B. 

(ii) Many-One Function 

A function f : A → B is said to be many-one if at least one element of B has two or more than 

two pre-image in A. 

For example: Let A = {1, 2, 3, 4}, B = {a, b, c, d} and f : A → B is defined as 

 

 

 

 

 

 

Here f is known as many-one function and range of f is {a, b, c}.  

(iii) Into Function 

A function f : A → B is said to be into if there is at least one element of B, has no pre-image in 

A.  

For example: Let A = {1, 2, 3}, B = {a, b, c, d} and f : A → B is defined as  
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Here one element d of the set B has no pre-image in the set A. Then f is known as into function 

and range of f is {a, b, c}.  

(iv) Onto Function 

A function f : A → B is said to be onto if there is no element of B, which is not an image of some 

element of A.  

For example:Let A {1, 2, 3}, B = {a, b, c} and f : A → B is defined as  

 

 

 

 

 

 

Here f is known as onto function and range of f is {a, b, c}.  

Inverse of a Mapping 

Let f : X→Y be a one-one ontomapping and f (x)=y, ∀xX, ∀yY.  

Now we define a mapping f −1:y→X such that f −1(y)=x, ∀xX, ∀yY,  
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where f–1 is called the inverse of f. Here f is inversible mapping because inverse of f is exists.  

 

Example.7. Let f be a function f : R → R is defined as f(x)=x2, xR, where R is the set of real 

numbers. Find the value of f -1(9). 

Solution:  It is given that f be a function f : R → R is defined as f(x)=x2, xR. 

We have f -1(9) = {xR: f(x) = 9}= {xR: x2 = 9} 

= {xR: x =3, -3}= {3, -3}. 

 

Inclusion Mapping 

Let X be any subset of Y. Then the mapping f:X → Y is said to be inclusion mapping if  

f (x) = x, ∀xX. 

For example: Let A = {1, 2, 3}, B = {1, 2, 3, 4} and f : A → B is defined as  

 

 

 

 

 

 

Here f is known as inclusion mapping. 

Identity Mapping 

Let f : X → X be a mapping. Then f is said to be identity mapping if f (x) = x, ∀xX.  
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For example: Let A = {1, 2, 3} and f : A → A is defined as  

 

 

 

 

 

 

Here f is known as identity mapping. 

 

Constant Function 

Let f:X → Y be a function. Then f is said to be constant function if f (x) = a, ∀xX  

i.e., a function f :X → Y is known as constant function if each element of X is mapped onto a 

single element of Y.  

For example: Let A = {1, 2, 3}, B={a, b, c} and f : A → B is defined as  

 

 

 

 

 

 

Here f is known as constant function, i.e., f (1) = b,  f (2) = b, f (3) = b. 
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Real Valued Mapping 

A mapping f  : X → R, where R is the set of real numbers, is known as real valued mapping.  

Characteristic Function 

Let U be the universal set and A be a subset of U. Then the real valued function f: U→ {0, 1} 

such that  is known as characteristic function of A. 

Zero Function 

The function f : X → Y is known as zero function if the image of each element of X under f is 

zero i.e.,f(x) = 0.  

Injective (or Injection) Mapping 

A mapping f is said to be injective (or injection) which is either one-one into or one-one onto.  

Bijective (or Bijection) Mapping 

A mapping f is said to be bijective (or bijection) which is both one-one and onto.  

Equality of Mapping 

Let f : X → and g : X → Y be two mapping. Then the mapping f and g are said to be equal 

mapping if and only if f (x) = g(x) ∀xX.  

In case of equal mappings, the domains of mappings must be the same.  

Composition of Functions or Product of Functions 

Let f : X →Y and g : Y→ Z be any two mapping. Then a function gof : X → Z is defined as  

 









Ax

Ax
xf A

if,0

if,1



gof = g[ f (x)], ∀xX is known as composition of functions.  

Example.8. Let f(x)=x2, g(x)=x+3, ∀xR. Find gof and fog. 

Solution:Here gof=g[f(x)]= g(x2)= x2 + 3  

and                        fog = f[g(x)]= f(x + 3)= (x + 3)2= x2 + 6x + 9. 

Example.9. Let f : X →Y and g : Y→ Z be any two mapping such that f(x)=log (1+x), g(x)=ex, 

then find the value of gof (x) and fog (x). 

Solution: Here we have gof : X →Z is a mapping such that  

gof (x) = g[f(x)]  = g[log(1+x)]  = elog(1+x)  = (1+x). 

Now we have        fog (x)= f[g(x)]   = f(ex) = log(1+ ex). 

Example.10. Let f : R →R and g : R→ R be any two mapping such that f(x)=x2, g(x)= x3, ∀xR. 

Find the values of gof (x) and fog (x). 

Solution: Here we have gof : R →R is a mapping such that  

gof (x) = g[f(x)]  = g(x2)  = (x2)3  = x6. 

and                        fog = f[g(x)]= f(x3)= (x3)2  = x6. 

 

1.12    Finite and Infinite Sets 

 

A set is said to be finite set if it contains finite number of elements, otherwise it is infinite. Let A 

be the set of all students of an engineering college, B is the set of vowels and N is the set of 

natural numbers.  Here A and B are finite set and N is infinite set. 



1.13    Contable and Uncountable Sets 

 

A set which is either finite of denumerable is called a countable set. An infinite set is said to be 

denumerable or enumerable if it equivalent to the set N, the set of all natural number. For 

example, Let . Then A is finite so that by definition A is countable. A set A 

is called on uncountable set if A is an infinite set and A is not cardinally equivalent to N. Here 

we state the following theorem without proof: 

1. Every infinite set contains an enumerable set. 

2. The open interval (0, 1) is not enumerable. 

3. The set of all irrational numbers is uncountable. 

Note: 1. R and C are uncountable sets.  

 

1.14 Summary 

 

A set is a well-defined collection of objects. The objects in a set are known as members or 

elements or points. A multi set is an unordered collection of objects in which an object can appear 

more than once.  A set is said to be empty set or null set or void set if it contains no element. It 

is denoted by  or {}. Let A and B be any two sets. If all the element of A belongs to B, then A 

is said to be subset of B. If a set contains a number of sets as its elements then it is known as set 

of sets or family of sets or class of sets. Two sets A and B are said to be disjoint sets if they have 

no common elements. 

A set is said to be finite set if it contains finite number of elements, otherwise it is infinite.Let A 

be any set. The power set of A is the set of all subsets of A.Index set is a set whose elements are 

used as names. The difference of A and B is the set of elements which belong to A but do not 

belong to B. The symmetric difference of A and B is the set of elements which belong to A or B 

but do not belong to A and B. 

The Cartesian products of A and B is the set of all ordered pairs (a, b) such that a∈A and b∈B 

 6,5,4,3,2,1A



i.e.,AB ={(a, b) : a∈A, b∈B} and B A ={(b, a) : b∈B, a∈A}. Let R be a relation from a set A to 

a set B. Then R–1 from B to A is known as the inverse relation of R if and only if R−1 ={(y, x) : (x, 

y)R}. Let A = {a, b, c} be any set. Then a relation R on a set A is known as an identity relation 

if R ={(a, a) : aA}. 

A relation R on a set A is known as reflexive relation if and only if aRa, ∀aA. A relation R on 

a set A is known as symmetric relation if and only if aRb ⇒bRa ∀(a, b)R. A relation R on a set 

A is known as anti-symmetric relation if and only if aRb, bRa ⇒a =b ∀(a, b)R. A relation R on 

a set A is known as transitive relation if and only if aRb, bRc ⇒aRc, (a, b, cA). A relation R on 

a set A is known as an equivalence relation if and only if it is reflexive, symmetric and transitive.  

A relation which is transitive but not an equivalence relation is known as an order relation. If R 

is an order relation on a set X, then xRy and yRz⇒xRz, ∀x, y, z∈ X. A relation R on a set X is said 

to be a partial order relation if it is at the same time (i) Reflexive (ii) Anti-symmetric and (ii) 

Transitive. A set X together with a partial order relation defined on it, i.e.,(X, ≤) is known as a 

partial ordered set. 

Let A and B be any two non-empty sets. If there exists a rule or a correspondence f which 

associate each element of A has a unique image in B then f is a function or mapping from A to B. 

A function f: A→B is called one-one if x1, x2A, we have x1 = x2⇒f (x1 ) = f (x2 ) or x1≠ x2⇒f (x1) 

≠ f (x2). 

A function f : A → B is said to be many-one if at least one element of B has two or more than 

two pre-image in A. A function f : A → B is said to be many-one if at least one element of B has 

two or more than two pre-image in A. A function f : A → B is said to be into if there is at least 

one element of B, has no pre-image in A. 

A function f : A → B is said to be onto if there is no element of B, which is not an image of some 

element of A. Let f:X→Y be a one-one onto mapping and f (x)=y, ∀xX, ∀yY. Now we define 

a mapping  f −1:y→X such that f −1(y)=x, ∀xX, ∀yY, where f–1 is called the inverse of f. 

 

 

 



1.15 Terminal Questions 

 

Q.1. List of elements of the following sets: 

   (a) {x : x ∈I , x2<11}      (b) {x : x ∈N, x is even and x <17} 

   (c) {x : x ∈N, x is prime and x < 21}    (d) {x : x is a solution of x2 + 3x + 2 = 0} 

Q.2 Let U = {1, 2, 3, …., 9, 10} be the universal set and A = {1, 2, 3, 4}, B = {3, 4, 7. 9}, C =   

{2, 5, 6, 8}. Find 

  (a) A′, B′, C′      (b) A∪B, B ∪C, and A∪C 

  (c) A∩ B, B ∩C, A∩C    (d) A – B, B – A, B – C, C – B, A – C and C – A. 

  (e) A⊕B, B ⊕C, and A⊕C 

Q.3 Which of the sets are equal? 

   (a) {x : x is a letter in the word ‘wolf ’}    (b) {x : x is a letter in the word ‘follow’} 

   (c) The lettters f, l, o, w.      (d) The letters which appear in the word ‘flow’. 

Q.4 Is a set A comparable with itself? 

Q.5. Find the power set of {1, 2} 

Q.6. Let A = {a, b, c} and B = {c, d, e, f}. Find the A – B, B – A and A ⊕B. 

Q.7. Prove that A∩(B − C) = A∩ B) − (A∩C) 

Q.8. If A = {a, b, c}. find all the subsets of A. 



Q.9. Let A = {1, 2,} and B = {3, 4}. Find A × B and B × A. 

Q.10. Give an example of a relation which is symmetric and transitive but not reflexive. 

Q.11. Give an example of a relation that is reflexive but neither symmetric nor transitive. 

Q.12. Give an example of a relation which is transitive but not reflexive or symmetric. 

Q.13. If the function f : R → R be defined by f(x) = x2, find f–1(g) and f–1(–g). 

Q.14. If the function f : R → R be defined by f(x) = x2 – 1 then find f–1(–2) and f–1 {8, 15}. 

 

Answers 

1. {a) {–3, –2, –1, 0, 1, 2, 3}      (b) {2, 4, 6, 8, 10, 12, 14, 16} 

    (c) {2, 3, 5, 7, 11, 13, 17, 19}     (d) {–1, –2} 

2. (a) A′ = {5, 6, 7, 8, 9, 10}, B′ = 1, 2, 5, 6, 8, 10}, C′ = {1, 3, 4, 7, 9, 10} 

    (b) A∪B={1, 2, 3, 4, 7, 9}, B∪C={2, 3, 4, 5, 6, 7, 8, 9} and A∪C={1, 2, 3, 4, 5, 6, 8} 

    (c) A ∩ B = {3, 4}, B ∩ C = φ and A ∩ C = {2}. 

    (d) A – B = {1, 2}, B – A = {7, 9}, B – C = {3, 4, 7, 9}, C – B ={2, 5, 6, 8}, 

          A – C = {1, 3, 4} and C – A = {5, 6, 8}. 

      (e) A ⊕B = {1, 2, 7, 9}, B ⊕C = {2, 3, 4, 5, 6, 7, 8, 9} and A⊕C = {1, 3, 4, 5, 6, 8}. 

3. All the given sets are equal. 



4. Yes 

5. , {1}, {2}, {1, 2}. 

6. {a, b}, (d, e, f} and {a, b, d, e, f} 

8.  A, , {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c} 

9.  A × B = {(1, 3}, (1, 4), (2, 3), (2, 4)} and      B × A = {(3, 1), {3, 2}, (4, 1), (4, 2)} 

10.  A = {a, b, c} and R = {(a, a), {b, b), (a, b), {b, a)}. 

11.  A = {a, b, c} and R = {(a, a), (b, b), (c, c), (a, b), (b, c)}. 

12.  A = {a, b, c, d} and R = {(a, b), (b, c), (a, c)} 

13 {3, –3},  

14. , {3, –3, 4, – 4}. 
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2.1 Introduction 

 

Metric spaces play a crucial role in the realms of topology and analysis. In mathematics, a metric 

space consists of a set endowed with a metric, a function that establishes the distance between 

each pair of elements within the set. These spaces serve as a foundation for defining key concepts 

like convergence, continuity, and completeness, which are essential in both analysis and 

topology. By providing a framework for studying properties of spaces broader than Euclidean 

realms, metric spaces allow mathematicians to extend classical geometric ideas to more abstract 

settings. While the most familiar example is Euclidean space, where distance is measured by the 

Euclidean metric, numerous other examples exist. These include spaces of real numbers, where 

the metric is the absolute difference, as well as more abstract spaces like function spaces, where 

the metric is defined through integrals or other methods. 

 

 

2.2 Objectives 

 

After studying this unit, the learner will be able to understand the : 

 Metric spaces and Pseudo Metric Space 

 Discrete Metric Space or Trivial Metric Space 

 Metrizable and Usual Metric and Norm 

 Inequality, Triangular Inequality and An Auxilary Inequality 

 Holder Inequality and Cauchy Schwarz-Inequality 

 Minkowski’s Inequality and Minkowski’s Inequality in terms of norms 

 

 

 



2.3 Metric Spaces 

 

Metric spaces are fundamental in the study of topology and analysis. In mathematics, a metric 

space is a set equipped with a metric, which is a function that defines a distance between each 

pair of elements in the set. Let X be a non-empty set and is a distance function. 

A real valued function  which satisfies the following axioms: 

(i) . 

(ii) (symmetric property) 

(iii) (Triangular in equality) 

(iv) If  

(v) If . 

Then  is said to be metric on and the pair  is called a metric space. The real number 

is called the distance of to . 

The first axiom means that the distance between any two points and  of is a non-negative 

real number.The second axiom means that the distance does not depend on the order of the points 

and . The third axiom means that in the triangle, the sum of the length of two sides is greater 

than the length of the third side and equal sign shows that three points are in a straight line.The 

fourth axiom means that if two points and  are the same then the distance between and is 

equal to zero. 

The fifth axiom means that if the distance between two points and y is equal to zero then the 

points and is equal to zero then the points and are the same. 
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Examples 

 

Example.1. Let be the set of real numbers and let  be the function defined 

by     . 

Then show that  is a metric on  

Solution: It is given that defined by  

       ….(1) 

To show that is a metric on if it satisfies all the following five axioms:  

(i)  

 is always a non-negative real number. 

(ii)   

We have 

 

 

 

 

(iii)  

We have 

R d :d R R R 

 , , ,d x y x y x y R   

d .R

:d R R R 

 , , ,d x y x y x y R   

d R

 , 0, ,d x y x y R  

0x y 

   , , , ,d x y d y x x y R  

 ,d x y x y 

 y x  

y x 

 , , ,d y x x y R  

     , , , , , ,d x y d x z d z y x y z R   



 

 

 

i.e.,  

(iv) If  

We have 

 

 

 

(v) If  

We have 

 

 

 

 

Hence is a metric on R. Also the above metric  is known as 

usual metric for reals. 

 

 ,d x y x y 

   x z z y   

x z z y   

     , , , , , ,d x y d x z d z y x y z R   

 , 0, ,x y d x y x y R    

0x y x y   

0x y  

 , 0, ,d x y x y R   

 , 0 , ,d x y x y x y R    

 , 0d x y 

0x y  

0x y  

, ,x y x y R   

d  , , ,d x y x y x y R   



2.4 Pseudometric Space 

 

A pseudometric space is a generalization of the concept of a metric space, where the distance 

function (called a pseudometric) satisfies all the properties of a metric except possibly the 

requirement that the distance between distinct points must be positive.The key difference 

between a pseudometric and a metric is that in a pseudometric space, the distance between 

distinct points can be zero. This means that two different points can be "infinitesimally close" to 

each other, but not necessarily equal.  

Pseudometric spaces are particularly useful in situations where a notion of distance that allows 

for such "coincidence" is desirable, such as in certain areas of analysis, geometry, and topology. 

Let us consider X be a non-empty set. If a real valued function satisfies the 

following axioms:  

(i) . 

(ii)  (symmetric property) 

(iii)  (Triangular inequality) 

(iv) If  

then  is known as pseudometric on and the pair is known as a pseudometric space.  

Note: Every metric on is pseudometric on but a pseudometric on X is not necessarily a 

metric on . 

 

Examples 

 

Example.2. Give an example of a pseudo metric which is not metric,  

Solution: Consider a mapping defined by  

:d X X R 

 , 0, ,d x y x y X  

   , , , ,d x y d x y x y X  

     , , , , , ,d x y d x z d z y x y z X   

 , 0x y d x y  

d X  ,X d

X X

X

:d R R R 



       …(1) 

To show that is a metric on if it satisfies all the following five axioms:  

(i)  

 is always a non-negative real number. 

(ii)   

We have 

 

 

 

 

(iii)  

We have 

 

 

 

i.e.,  

  2 2, , ,d x y x y x y R   

d R

 , 0, ,d x y x y R  

2 2 0x y 

   , , , ,d x y d y x x y R  

  2 2,d x y x y 

 2 2y x  

2 2y x 

 , , ,d y x x y R  

     , , , , , ,d x y d x z d z y x y z R   

  2 2,d x y x y 

   2 2 2 2x z z y   

2 2 2 2 , , ,x z z y x y z R     

     , , , , , ,d x y d x z d z y x y z R   



(iv) If  

We have 

 

 

 

 

(v) If  

We have 

 

 

 

 

i.e., property is not hold good. 

Therefore does not necessarily imply that  

For example, we have 

 while  

Hence is not a metric on . 

 

 , 0, ,x y d x y x y R    

2 2x y x y  

2 2 0x y  

2 2 0x y  

 , 0, ,d x y x y R   

 , 0 , ,d x y x y x y R    

 , 0d x y 

2 2 0x y  

2 2 0x y  

2 2x y 

,x y  

 , 0d x y  .x y

     
2 2

2, 2 2 2 0d      2 2. 

d R



2.5 Discrete Metric Space or Trivial Metric Space 

 

In mathematics, a discrete metric space is a metric space in which the distance between any two 

distinct points is either 0 or 1. This metric essentially measures whether two points are the same 

(distance 0) or different (distance 1). The discrete metric induces the discrete topology on the 

set, where every subset is open, making the space a particularly simple and well-behaved 

example in topology. Let be any non-empty set and be the function defined by  

  

Then  is said to be metric on and is called discrete metric space or trivial metric 

space. 

 

Examples 

 

Example.3. Let be a non-empty set and let be defined by 

 

Then show that is a metric on  

Solution: Using definition of we have  

(i)  

or 1, i.e., always a non-negative real number.  

(ii)  

When  

X d

 
0, if

,
1, if

x y
d x y

x y


 



d X  ,X d

X :d X X R 

 
1, if

,
0, if

x y
d x y

x y


 



d .X

,d

 , 0, ,d x y x y X  

0

   , , , .d x y d y x x y X  

x y



 

and when  

 

(iii)  

If then we have 

 

i.e., . 

But if then we have 

 

i.e., . 

(iv) If  

It is given that  

(v)  

It is given that  

Hence, is a metric on . The space  is known as discrete metric space. 

 

   , 0 ,d x y d y x  

x y

   , 1 , , ,d x y d y x x y X    

     , , , , , ,d x y d x z d z y x y z X   

z y z 

     , , , 1d x y d x z d z y  

     , , ,d x y d x z d z y 

0x y z  

     , , , 0d x y d x z d z y  

     , , ,d x y d x z d z y 

 , 0, ,x y d x y x y X    

 
1, if

, .
0, if

x y
d x y

x y


 



 , 0 ,d x y x y x y X    

 
1, if

, .
0, if

x y
d x y

x y


 



d X  ,X d



2.6 Metrizable and Usual Metric  

 

Metrizable metrics are significant because they allow us to use the tools and concepts of metric 

spaces in the study of topological spaces, providing a bridge between the more concrete world 

of distances and the more abstract world of topologies.A set is said to be metrizable if and 

only if a metric can be defined on . 

The term "usual metric space" typically refers to a specific metric space that is commonly 

associated with a particular set.The metric defined on a real line is called usual metric or 

euclidean metric on . 

For example: 1.The usual metric space on the set of real numbers  R  is the space where the 

metric is the absolute difference, given by , . 

2.The usual metric space on the set of complex numbers C is the space where the metric is the 

modulus of the difference, given by 

. 

 

2.7 Norm  

 

The size of an element is a real number denoted by and is called as norm (which is 

distance if satisfies the following properties: 

(i)  

(ii) if and only if  

(iii)  

X

X

R

 ,d x y x y  ,x y R 

 , ,d z w z w  ,z w C 

x x

 ,0d x

0x 

0x  0x 

 .kx k x x x  



(iv)  

Now we define a metric for a set with the help of norm as follows: 

   ,  

This metric is known as metric induced by the norm. Let and be two real bounded functions 

defined on the closed interval Define the norms of and by  

   
1

0
f f x dx     and  

 

The induced metric is defined by   

   

   .  

 

2.8 Inequality  

 

Suppose a number then we say that a number is known as conjugate index of if  

 for  

  for  

     for    

The graph of  

x y x y  

d X

 ,d x y x y  ,x y X 

f g

 0,1 . f g

   
1

0
0,1g g x dx x  

 ,d f g f g 

   
1

0
f x g x dx 

1p  q p

1 1
1

p q
  1 p  

q   1p 

1q  q  



   for  

For the first condition in the above combination can be put in any one of the form  

   

where and  

 

Hence only 2 is number which has it own conjugate 1 and are considered to be conjugate 

index. 

 

2.9 Triangular Inequality  

 

If and  are two real numbers, then we have  

     

If and  are two complex numbers, then we have  

 

In general, we have  

 

where are complex numbers. 

1 1
1

2P
  1 ,p q 

1 , ,p q  

1 1
1

p q
 

  1 1 1,p q   
1

q
p

q


 1

p
q

p




p q pq  



1x 2x

1 2 1 2x x x x  

1z 2z

1 2 1 2z z z z  

1 2 1 2..... ....n nz z z z z z      

1 2 3, , ,........, nz z z z



Note: If and are two complex numbers, then we have 

  

 

2.10 An Auxilary Inequality  

 

If 1  and then where are two non-negative real number. 

Proof: Suppose if or , the result is obvious. Now let us consider a case, when 

 

Suppose  for      …(1) 

Then         …(2) 

For minimum, we have   

 

where  

          …(3) 

From equation (2), we have   

        …(4) 

At , we have 

1z 2z

1 2 1 2

1 2 1 21 1 1

z z z z

z z z z


 

   
 1 2 1 2z z z z  

p  
1 1

1
p q
 

2

,
pa b

ab
p q

  ,a b

0a  0b 

0, 0.a b 

  21f t t t     0 1 

  1'f t t   

 ' 0f t 

1 0t     , 1 0   

1t 

    2" 1f t t    

1t 



   

    

    

   = Positive as  

Hence,  at  

Thus, is minimum at    

 

This implies   

or     

         …(5) 

Putting in the equation we get  

        …(6) 

But  

 

Substituting these value in equation (6) we get  

    
2

" 1 1f t


 


  

 1   

 1  

0 1 

   ' 0, " 0f t f t  1t 

 f t 1,t 

   1f f t 

1 1 1 t t         

1 0t t    

 1 t t   

1

p
  (5),

1/1 1
1 pt t

p p

 
   

 

1 1
1

p q
 

1 1
1

p q
  



   

         …(7) 

Put in the equation (7), we get  

   

or    

or    

or         ….(8) 

or     

 

or   

Where  are two non-negative real number.  

 

1/1 1
1 1 pt t

q p

 
    

 

1/1 1 pt t
q p
 

p

q

a
t

b


1/

1 1
.

p
p p

q q

a a

q b p b

 
   

 

/

1 p

q q p

a a

q pb b
 

/

q p q

q p

b a ab

q p b
 

qq p q
pb a

ab
q p



 

q pb a
ab

q p
 

1 1
1

1 1

p q pq
p q

q q
q q

p p

 
     

 
 
      
  

p qa b
ab

p q
 

,a b



2.11 Holder Inequality  

If are non-negative real numbers, then  

where and . 

Proof: To prove this inequality, first we prove an auxilary inequality follows as:  

   `      …(1) 

Now put and in equation (1), we get, 

      

Taking sum of the result from to . 

   

or   1

1/ 1/

1 1

n

i i

i

p q

p q

i i

i i

a b

p q
a b

 
   
   
   



 

 

'i ia b
1/ 1/

1 1 1

p q
n n n

p q

i i i i

i i i

a b a b
  

   
    
   

  

1 1
1

p q
  1p 

p qA B
AB

p q
 

1

i

p
p

i

i

a
A

a



 
 
 


1

i

q
q

i

i

b
B

b



 
 
 


1/ 1/

1 1
p q

i i i i

p qq
p i p q
i i i i

i i i

a b a b

p q b
a a b

 
     
          

  

1i  n

1 1 1

1/ 1/

1 1

n n n
p q

i i i i

i i i

p qq
p i p q
i i i i

i i i

a b a b

p q b
a a b

   
     
          

  

  



       

Hence, 

 

Note: 1. Holder’s inequality for complex numbers, we have 

   

 

2. Holder inequality for integrals, we have 

     

3. If we put (i.e., ) in holder inequality, we get  

     

Where are non-negative real numbers. This inequality known as cauchy’s inequality. 

 

2.12 Cauchy Schwarz-Inequality 

If are real or complex numbers, then  

   

 1

1/ 1/
1

n

i i

i

p q

p q

i i

i i

a b

a b


   
   
   



 

1 1
1

p q

 
  

 

1/ 1/

1 1 1

p q
n n n

p q

i i i i

i i i

a b a b
  

   
   

   
  

1/ 1/

1 1 1

p q
n n n

p q

i i i i

i i i

a b a b
  

   
    
   

  

   
1/ 1/p q

b b b
p q

a a a
fgdx f dx g dx  

2p  2q 

1/2 1/2

2 2

1 1 1

n n n

i i i i

i i i

a b a b
  

   
    
   

  

'i ia b

 ' 1,2,3,.....,i ia b i n

1/2 1/2

2 2

1 1 1

n n n

i i i i

i i i

a b a b
  

   
    
   

  



or     

Proof: Here we have 

   and        ….(1) 

The magnitudes of these above vectors are given as  

   

2 2

1

2 2

1

and 

n

i

i

n

i

i

a a

b b






 









   ….(2) 

If we take or then the inequality reduces to equality. So we let and we 

know that    

Geometric mean Arithmetic mean  

 

Putting and , then we get 

    

or    

or     {using equation (2)} 

1

n
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i
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


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1 2 3
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

2

x y
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2
2

i i i ia b a b

a b ba
 

2 2

2 2
1

2
n

i ii i

i

a ba b

a b a b
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 



1

2 1 1
n

i i

i

a b

a b

 



or    

or     

 

2.13  Minkowski’s Inequality  

If and are non-negative real numbers, then  

   

Proof: We know that the holder inequality is 

      …(1) 

Where and  

For    

 

         ….(2) 

Now, we have   

   

1

.
n

i i

i

a b a b




1/2 1/2

2 2

1 1 1

n n n

i i i i

i i i

a b a b
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By equation (1), we have 

   

By equation (2), we have 

   

Dividing by both sides, we get 

   

or   

Note: Minkowski’s inequality for integrals 

   

Where and are non-negative real valued function defined on and  
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2.14  Minkowski’s Inequality in terms of norms 

Let be two tuples of real or complex numbers, then  

   

or     

Proof: We know that  

               

     

     

     

Using cauchy-Suchwarz inequality, we have  

   

or    

or   
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or   

 

Examples 

 

 

Example.4:  Let be the set of all ordered pairs of real numbers and let 

defined by  then show that is a metric on . 

Solution : Using definition of we have  

(i) where and  

is always a non- negative real number. 

(ii)  

We have 

 

 

 

(iii)  

We have 
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   (Using Minkowski’s inequality) 

i.e.,  

(iv) If  

We have 

 

and  

  and  

   

 

 

(v) If  

We have 
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and  

and  

 

. 

Hence, is a metric on The metric space  is known as the Euclidean metric space.  

 

Example.5: The usual metric for  is defined by 

   or  

Where To show that is metric on  

Solution: Using definition of we have  

(i)  

is always a non-negative real number.  

(ii)  

We have 
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(iii)  

We have 

 

 

 

      (Using minkowski’s enequality) 

i.e.,  
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(v) If  

We have 

 

  

 

and  

and  

 

. 

Hence, is ba metric on  The metric space is known as the Euclidean plane space.  

 

2.15 Summary 

 

Let X be a non-empty set and is a distance function. A real valued function 

 which satisfies the following axioms: 

(1) . 

(2) . (symmetric property) 

(3) (Triangular in equality) 
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(4) If . 

(5) If . 

Every metric on is pseudo metric on but a pseudo metric on X is not necessarily a metric 

on . 

Let  be any non-empty set and  be the function defined by  then 

 is said to be metric on and is called discrete metric space or trivial metric space. A 

set is said to be metrizable if and only if a metric can be defined on . The metric defined on 

a real line is called usual metric or Euclidean metric on . 

The size of an element is a real number denoted by and is called norm (which is distance 

if satisfies the following properties. 

(1)  

(2) if and only if  

(3)  

(4)  

Now we define a metric for a set with the help of norm as follows: 

   ,  

This metric is known as metric induced by the norm. 

If and are two complex numbers, then we have 
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If 1  and then where are two non-negative real number. 

If  are non-negative real numbers, then  

where and . 

If are real or complex numbers, then  

or  

If and are non-negative real numbers, then  

   

 

2.16 Terminal Questions 

 

Q.1.Explain the metric spaces. 

Q.2. What do you mean by Pseudo metric space. 

Q.3. Give an example of a pseudometric which is not a metric. Is every metric a pseudo-metric? 

Q.4.State and prove Holder’s ineuality. 
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Q.5. State and prove Minkowski’s inequality. 

Q.6. State and prove Cauchy-schwarz inequality. 

Q.7.Does define a metric on the set of the real numbers? Give reason for your 

answer. 

Q.8. Show that defines a metric on the set of all real numbers. 

Q.9. Let  denotes the class of all Reimann integrable function from into 

. Let a mapping defined by 

. Then to show that is pseudometric but not metric on  

Answers 

3. A function defined by is a pseudometric on but 

not metric on . Yes, every metric is a pseudometric but converse is not true. 

12. not define a matric on the set of all real number because triangular 

inequality is not satisfied as: 

Hence , which is not true. 
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UNIT- 3: Bounded and Unbounded Metric Spaces 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3  Bounded and Unbounded Metric Sapces 

3.4 Quasi Metric 

3.5  Summary 

3.6 Terminal Questions 



3.1 Introduction 

 

In mathematics, the concepts of bounded and unbounded metric spaces are related to the behavior 

of distances within the space.A metric space is said to be bounded if there exists a real number 

M such that the distance between any two points in the space is less than or equal to M. Formally, 

a metric space   is bounded if there exists a real number M such that for all 

Conversely, a metric space is said to be unbounded if it is not 

bounded, meaning that there is no such real number  M that satisfies the above condition for all 

pairs of points in the space. 

For example, the real line  R with the usual metric is an unbounded metric space, as there is no 

finite value of  M that bounds the distances between all pairs of points on the real line. On the 

other hand, the closed interval [0,1] in  R with the usual metric is a bounded metric space, as the 

distances between any two points in the interval are always less than or equal to 1. 

In this unit we shall discuss about the bounded and unbounded metric spaces, and Quasi metric 

with their applications in details. 

 

3.2 Objectives 

 

After studying this unit the learner will be able to understand the: 

 Bounded and unbounded metric spaces 

 Quasi Metric and their applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ,X d
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3.3 Bounded and Unbounded Metric Space 

 

The concepts of boundedness and unboundedness in metric spaces relate directly to the distances 

between points in the space. In a bounded metric space, there is a finite upper bound on the 

distances between any two points, meaning that no two points are "too far apart." In contrast, an 

unbounded metric space lacks such a finite bound, allowing for the possibility of arbitrarily large 

distances between points.  

Let be a metric space and let be a positive real number. If there exists a number such 

that   

    

Then is known as bounded metric space.A metric space which is not bounded known as 

unbounded metric space. 

 

Examples 

 

Example.1. Let be a metric space and consider

Show that is a bounded metric on X.  

Solution: Consider  a metric space and  

Using definition of we have  

(i)   

is always a non-negative real number. 
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(ii)  

We have  

 

 

(iii)  

We have  

  

  

i.e.,  

(iv) If  

We have  

 

(v) If  

We have  
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Hence is a metric on  

Now we have  

  

 

 

Hence the given metric is bounded metric on .  

 

3.4 Quasi Metric 

 

A quasi-metric (or semimetric) is a generalization of the concept of a metric that relaxes the 

requirement that the distance between distinct points must be positive.Consider be a non-

empty set and suppose be arbitrary. A mapping  satisfies the 

following axioms:  

(i)  

(ii)  

(iii)  
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is known as quasi-metric on The set together with the quasi-metric  is called auasi-

metric space denoted by . The quasi-metric is said to be finite if and only if 

. 

Hence the key difference between a quasi-metric and a metric is that in a quasi-metric space, the 

distance between distinct points can be zero, meaning that two different points can be 

"infinitesimally close" to each other but not necessarily equal. Quasi-metrics are used in 

situations where a notion of distance that allows for such "coincidence" is desirable, such as in 

certain areas of analysis, geometry, and topology. 

 

Examples 

 

Example.2. Let be a metric space and let  be any three points of . Then  

show that 

 . 

Solution: Using definition of we have  

    (Using triangular inequality) 

     (Using symmetric property) 

Thus we have      ….(1) 

Now we have   

     (Using triangular inequality) 

      (Using symmetric property) 

.X X d
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 ,X d , ,x y z X
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   , ,d x y d z y 

     , , ,d x y d x z d z y 

     , , ,d z y d z x d x y 

   , ,d x z d x y 



    

 i.e.      ….(2) 

From theequations (1) and (2), we have  

    

 

Example.3. Let be a metric space and let be defined by  

   

Show that is a metric space. 

Solution: Using definition of  we have  

1.  

is always a non-negative real number.  

2.  

 

3.  

Suppose if then we get 

   

If then we get 

     , , ,d x y d z y d x z 

    , , ) ,d x y d x z d z y    

     , , ,d x y d x z d z y 
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  min , ,1 0d x y 

   1 1, , , ,d x y d y x x y X  

     min , ,1 min , ,1 , , ,d x y d y x x y z X   

     1 1 1, , , , , ,d x y d x z d z y x y z X   

    1 , min , ,1 1d x y d x y 

1 1 1 

      1 , min , ,1 ,d x y d x y d x y 



   

4. If  

We have    

 

. 

5. If then  

 

 

Hence is a metric on and is a metric space.  

 

Example.4. Suppose metric on  Determine the all constant such that:  

(i)  (ii) is a metric on . 

Solution: Given that  is a metric space i.e., it satisfies all the axioms of metric. To 

determine all constants we have 

     

1. Using first axiom of metric, we have  

 

 

     , , , , , ,d x y d x z d z y x y z X   

 1 , 0x y d x y   ,x y X 

 , 0x y d x y  

    min , ,1 min 0,1 0d x y  

 1 , 0, ,d x y x y X   

 1 , 0d x y  x y
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Now we let  

2. Using fifth axiom of metric, we have  

if  

if  

 

 

Example.5. Let denote the set of all ordered pairs of real numbers. Show that the 

mapping (function)    defined by  

 where  

Is a metric on  

Solution: Using definition of we have  

1. is always a non-negative real number.  

2.  

3.  

 

 

     (Using triangular inequality) 

0.k 

   * , ,d x y d x y k 

 * , 0d x y  x y

 , 0d x y k   x y

0.k 

2R

2 2 0:d R R R 

  1 1 2 2, ,d x y x y x y        2
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1 1 2 2 1 1 2 2 ,x y x y y x y x x y R         

      2, , , , , ,d x y d x z d z y x y z R   

       1 1 2 2 1 1 1 1 2 2 2 2x y x y x z z y x z z y          

   1 1 1 1 2 2 2 2x z z y x z z y       



 

i.e.,  

      4.  If  

  and  

  and  

         5.    If and  

 

  and  

  and  

   

Hence, is a metric on  

 

Example.6. Let be the set of all ordered pairs of real numbers and let be 

defined by  

Where  

Is a metric on . 

Solution: Using definition of we have  

   1 1 2 2 1 1 2 2x z x z z y z y       
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   1 2 1 2 1 1, , 0x x y y x y     2 2 0x y 

1 1 0x y   2 2 1 1 2 20 0,x y x y x y     
2,x y R 
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1. is always a non-negative real 

number.  

2. 

 

3.  

therefore 

 

i.e,  

4. If   

and  

and  

 

 

5. If  
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 1 1 2 2. 0x y x y   



and  

and  

 

Hence, is a metric on . 

 

Example.7: The usual metric for is defined by such that  

 

 Where  

To show that is metric on . 

Solution: Using definition of we have 

(1)  

is always a non-negative real number.  

(2)  

 

(3) 

1 1 0x y   2 2 0x y 
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     (Using Minkowski’s inequality) 

(4) If  
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Hence,  is a metric on The metric space is called the real Euclidean space.  

 

Example.8. Let where and  are metric spaces with metrics and  

respectively. Show that a metric  is defined by  

Where and is a product metric space.  

Solution: Using definition of we have  

1. is always a non-negative real number. 

2. 

 

3.  

 

i.e.,  

4. If  

and  

 

5. If  
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,d

 , 0, ,d x y x y X      1 1 1 2 2 2, 0d x y d x y  

   , , , ,d x y d y x x y X  
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 , 0, ,x y d x y x y z    

     1 2 1 2 1 1 1, , , 0x y x x y y d x y       2 2 2, 0d x y 

     1 1 1 2 2 2, , 0 , 0, ,d x y d x y d x y x y X      

 , 0 , ,d x y x y x y X    



 

and  

and  

  

 . 

Hence,  is a metric on  and  is a product metric space. 

 

3.7 Summary 

 

Let be a metric space and let be a positive real number. If there exists a number such 

that then is said to be a bounded metric space. A metric said 

which is not bounded known as unbounded metric space. 

Consider be a non-empty set and suppose be arbitrary. A mapping 

 satisfies the following axioms:  

(i)  

(ii)  

(iii)  

is known as quasi-metric on The set together with the quasi-metric  is called quasi-

metric space denoted by . The quasi-metric is said to be finite if and only if 

   1 1 1 2 2 2, , 0d x y d x y  

 1 1 1, 0d x y   2 2 2, 0d x y 

1 1x y  2 2x y

   1 2 1 2, ,x x y y 

, ,x y x y X   

d X  ,X d

 ,X d k

 , , ,d x y k x y X    ,X d

X , ,x y z X

: [0, )d X X  

 , 0d x x 

   , ,d x y d y x

     , , ,d x y d x z d z y 

.X X d

 ,X d



. 

 

3.8 Terminal Questions 

 

Q.1. What do you mean by Bounded and Unbounded Metric Spaces. 

Q.2. Explain the Quasi metric space. 

Q.3. Let be a metric space and let . Then show that 

. 

Q.4. Give two different matrices for the set of real numbers. 

Q.5. Let be a metric for a non-empty set . Show that defined as is 

also a metric for . 

Q.6. Let be a non-empty set and let be a real valued function of ordered pairs of elements 

of which satisfies the following conditions:  

(i) if and only if  

(ii) . Show that is a metric on . 

Q.7. Let be any metric space and let be a positive number, then there exists a metric  

for such that the metric space is bounded with . 

Q.8. If is a metric for a non-empty set , then show that the function defined by 

 is a metric for . 

 , , ,d x y x y X   

 ,X d
1 2 1 2, , ,x x y y X

       1 1 2 2 1 2 1 2, , , ,d x y d x y d x x d y y  

R

b X 1d    1 , 2 ,d x y d x y

X

X d

X

 ,d x y x y

     , , , , , ,d x y d x z d y z x y z X    d X

 ,X d k 1d

X  1,X d  X k 

d X 1d

   1 , min 2,d x y x y  X



Q.9. Let be a metric space and let be any point of . Then 

 

Answer 

4. (i) Consider a function  defined by  

(ii) Consider a function  defined by  

 ,X d , , ,x y z w X

       , , , , .d x y d z w d x z d y w  

:d R R R   , , , .d x y x y x y R   

:d R R R   
0, if

, .
1, if

x y
d x y

x y


 
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Metric spaces are used in engineering for tasks such as optimization, control theory, and signal 
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mathematicians to explore properties of spaces in more abstract settings. Metric spaces are 
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4.1 Introduction 

 

Sequence spaces are a specific type of metric space that is particularly useful in analysis and 

functional analysis. In sequence spaces, the elements are sequences of real or complex numbers, 

and the metric is often defined in terms of a norm. Sequence spaces and their properties are 

important in the study of functional analysis, especially in the context of studying the 

convergence and properties of sequences of functions.  

Function spaces in the context of metric spaces refer to spaces where the elements are functions 

and the metric is used to define distances between these functions. These spaces are fundamental 

in various areas of mathematics, especially in analysis and functional analysis. 

 

 

4.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

 Sequence spaces l and Function Spaces  

 Sequence Spaces  

 Space B(A) or Bounded Function 

 Sequence space lp 

 Hilbert sequence space l2 

 Open Ball, closed ball and sphere 

 Neighbourhood of a point, limit point of A Set 

 Equivalent matrices 

 

 

 

 ,C A B
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4.3 Sequence Spaces l 

 
 

Sequence spaces are a significant concept in functional analysis and various branches of 

mathematics. Let be a non-empty set. Then a sequence in a set is any mapping from the set 

of natural numbers into . Here we shall discuss some examples of metric sequence spaces 

which are following:  

Sequence Spaces  

Let be the set of all bounded sequences of complex number i.e., every element of is a 

complex sequence  

  i.e.,  

For all     we have  

      

Where  is a real number which may depend on but does not depend on then the metric 

dfined by  

     

Where and  

Now we shall show that the function  satisfies all the five axioms of a metric on .  

1.  

is always a non-negative real number.  

2.  

X X

X



X X

 1 2, ,....x x x  ix x

1,2,3,...,i 

i xx C

xC x i

 , sup i i
i N

d x y x y


 

 iy y X   1,2,3, ,...N 

d X

 , 0, ,d x y x y X  

sup 0i i
i N

x y


  

   , , , ,d x y d y x x y X  



 

3.  

 

 

4. If  

 

 

5. If  

  

 

Hence, is a metric on and is called metric space. This metric space is denoted by 

Thus, is a sequence space because each element of is a sequence. 

 

4.4  Function Spaces  

 
 

Sequence spaces are fundamental in the study of linear operators and functional spaces. Let 

be the set of all real valued functions which are functions of independent real 

variable and are defined and continuous on a given closed interval . Then the metric 

defined by  

sup sup , ,i i i i
i N i N

x y y x x y X
 

     

     , , , , , ,d x y d x z d z y x y z X   

   sup supi i i i i i
i N i N

x y x z z y
 

     

sup sup , , ,i i i i
i N i N

x z z y x y z X
 

     

 , 0, ,x y d x y x y X    

0i i i ix y x y x y      

0 sup 0, ,i i i i
i N

x y x y x y X


       

 , 0 , ,d x y x y x y X    

sup 0 0 0i i i i i i
i N

x y x y x y


        

, ,i ix y x y x y X     

d X  ,X d

. 
X

 ,C A B

X

, , ,....,x y z

t  ,I a b



     

 Now we shall show that the function satisfies all the five axioms of a metric on .  

1.  

is always a non-negative real number.  

2.  

 

3.  

 

. 

4. If  

 

  

5. If  

 

 

 

     , max
t I

d x y x t y t


 

d X

 , 0, ,d x y x y X  

   max 0
t I

x t y t


  

   , , ,d x y d y x x y X  

       max max , .
t I t I

x t y t y t x t x y X
 

    

     , , , , , ,d x y d x z d z y x y z X   

             max max
t I t I

x t y t y t z t z t y t
 

     

       max max , ,
t I t I

x t z t z t y t x y X
 

     

 , 0, ,x y d x y x y X    

        0x y x t y t x t y t      

       0 max 0 ,
t I

x t y t x t y t x y X


      

 , 0 ,d x y x y x y X    

       max 0 0
t I

x t y t x t y t


     

    0 0x t y t x y     

,x y x y X   



Hence, is metric on and is called metric space. This metric space is denoted by 

 

Note: is also known as function space because every point of is a function.  

 

4.5  Sequence Spaces  

 
 

Let X be the set of all (bounded or unbounded) sequences of complex numbers and the metric 

 is defined by  

     

Where and  

Now we shall show that the function  satisfies all the five axioms of a metric on  

1.  

is always a non-negative real number. 

2.  

 

3.  

 

d X  ,X d

 , .C a b
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




 

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




 

 


   , , , ,d x y d y x x y X  

1 1

1 1
,

2 1 2 1
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x y X
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 

 

 
   

   
 

     , , , , , ,d x y d x z d z y x y z X   

   

   1 1

1 1

2 1 2 1

i i i ii i

i i
i ii i i i i i

x z z yx y

x y x z z y

 

 

  
 

     
 



 

. 

4. If  

 

 

. 

5. If  

 

. 

Hence, is metric on and  is called metric space. This metric space is denoted by 

or (Frechet space). 

 

4.6  Space B(A) or Bounded Function 

 
 

The space B(A) or the space of bounded functions on a set A is a fundamental concept in 

functional analysis.  Let be a non-empty set and be a subset of . Each element 

 
   1 1

1 1

2 2 11

i i i i

i i
i i i i i ii i i i

x z z y

x z z yx z z y

 

 

 
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x y z X

z z z yx z
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 
   

  
 

 , 0, ,x y d x y x y X    

0 0i i i ix y x y x y       

1
0 0

1 2 1
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i
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 
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1
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x y z X
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
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d X  ,X d S

F
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is a function defined and bounded on a given set and the metric defined by  

     

If in a case of an interval we write in place of . 

Now we shall show that the function  satisfies all the five axioms of a metric on .  

1.  

is always a non-negative real number  

2.  

 

3.  

 

.  

4. If  

 

. 

5. If  

 

A

     , sup
t A

d x y x t y t


 

 , ,A a b R  ,B a b  B A

d X

 , 0, ,d x y x y X  
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x t y t


  
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   , , , ,d x y d x y x y X  

     , , , , ,d x y d x z d z y x y z X   

             sup sup
t A t A

x t y t x t z t z t y t
 

     

        sup sup , ,
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x t z t z t y t x y z X
 
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 , 0, ,x y d x y x y X    

        0x y x t y t x t y t      

       0 sup 0, ,
t A

x t y t x t y t x y X

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       sup 0 0
t A

x t y t x t y t


     



   

  . 

This show that is bounded on . Hence  is metric on and is called metric 

space. This metric space is denoted by . 

 

4.7  Sequence Space  

 
 

Space is also Banach space. Suppose is a fixed real number and each element in the 

pace is a sequence of numbers such that converges. 

Thus,  

       

The metric defined by  

    

Where and  

Now we shall show that the function  satisfies all the five axioms: 

(i)  

is always a non-negative real number for . 

     0 ,x t y t x y y t    
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(ii)  

.  

(iii)  

 

      (Using Minkowski inequality)  

. 

(iv) If  

 

 

. 

(v) If . 

 

 

   . 
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Hence, is a metric space. 

 

4.8  Hilbert-Sequence Space  

 
 

The Hilbert-sequence space  is a fundamental example of a Hilbert space, which is a complete 

inner product space. If we put , in sequence space  then the metric becomes  

  . 

This is known as Hilbert-sequence space . Now we shall show that the function satisfies all 

the following axioms of a metric on . 

(1)  

is always a non-negative real number. 

(2)  

. 

(3)  

 

      (Using Minkowski inequality) 
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(4) If  

 

 

(v) If  

  

  

  

Hence is a Hilbert space. 

 

4.9  Open Ball, Closed Ball and Sphere 

 
 

Let be a metric space. Let and  the  is an 

open ball centered at with radius . It is also denoted by . 

Let be a metric space. Let and then  is a 

closed ball centered at  with radius . It is also denoted by or .  
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Let be a metric space. Let and then  

is a shpere centered at with radius . 

Distance Between Sets 

Let and is two non-empty subset of a metric space . The distance between and 

denoted by and defined as  

   

Obviously, 

(i)  

(ii) if  

However, it is not necssary that if  then . For example, let a metric space 

, where is a usual metric on and let and . We have 

 but  

Distance of a point from a given set 

Let be a metric space and . Let be arbitrary. Then the distance between 

and the set  is denoted by  and defined as  

     

i.e.,  is the greatest lower bound of the distance between and point of . Obviously,  
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(i)  

(ii)  

However, it is not necessary that if then . For example, let a metric space 

where  is usual metric on and let = . We have but 

.  

Diameter of A set 

Let be a metric space. Let be a non-empty subset of . Then the diameter of is 

denoted by  and defined as  

    

Obviously,(i)  

(ii) If is finite then is said to be bounded otherwise unbounded. 

 

Examples 

 

Example.1. Let and . Find the distance between 1 

and A.  

Solution: We know that  

Here    
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    . 

Example.2: Let be the usual metric defined on  i.e., 

     

If and , find the diameters of and . 

Solution: Given that and  

  
 

    

   = 1 

   

    

   = 2. 

 

4.10  Neighbourhood of a point 

 

Let be a metric space. Let . A subset of x is said to be a neighbourhood of if 
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there exist an open set  such that 

    

or 

Let  then is said be a neighbourhood of , if and is an open set such that  

    

 

4.11  Limit point of aset 

 
 

Let be a subset of a metric space . Then a point of  (which may be on may not be 

a point ) is called an limit point of  if each open ball centered at  contains at least one 

point of  different from . 

Derived set 

The collection of all limit points of a set is called derived set of . It is denoted by or 

.  

Isolated set 

Let  be a subset of a metric space . A point is said to be an isolated point of if 

and only if it is not an limit point of . 

Discrete set 

Let  be a subset of a metric space . A set is said to be a discrete set if each point of 
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 is an isolated point of . 

Dense-In-Itself 

Let be a subset of a metric space . is said to be dense-in-itself if and only if every 

point of  is a limit point of . 

Perfect Set 

Let  be a subset of a metric space . Then is said to be perfect set if and only if  

     

Closure 

Let be a subset of a metric space the closure of , is the union of  and all its limit 

points, i.e., 

     

Note:  

1.  

2.  is closed if and only if  

3.  

4. is the set of all adherent points of a given subset of . 

5. is the smallest closed set containing . 
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Interior Point 

Let be a subset of a metric space . The interior of  is the union of all open sets 

contained in i.e., 

     

Note: 

1. is open set if and only if . 

2. . 

 

Exterior Point 

Let be a subset of a metric space . The exterior point of , is the interior of the 

complement of i.e., 

     

 or    . 

Boundary point 

Let be a subset of a metric space . The boundary point of , is the set of all those 

elements of which neither belong to or nor to exterior. 

Dense set and Separable Space 

Let be a subset of a metric space. Then  is said to be dense in if . And is said to 
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be separable if it has a countable subset which is dense in . 

 

Examples 

 

Example.3: Show that the closure of an open ball in a metric space can 

differ from the closed ball . 

Solution: We know that the distance of a point from a set is given by  

    

    if  

Let be a discrete metric space 

   

Suppose if we have  

    

i.e.,  or 1 for each of which is  
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To show that closure  of an open ball in a metric space can differ from the 

closed ball . Let be a discrete metric space and then  

         …(1) 

But the closed ball  

    

Also consider any other metric space  

Let          …(2) 

Then      

This implies that there exist any and such that 

    

   

    

   

        (3) 
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This implies closure of an open ball is subset of closed ball but not both are equal.  

 

4.12  Equivalent Metrics 

Two metrics  and on the same set  are said to be equivalent metrics if and only if every 

open set is open and every open set is open. 

For example: Let be a metric space and let  

    

Then  is also a metric on  and the two metrics and are equivalent. 

 

Examples 

 

Example.4: The space  is not separable. 

Solution: Let be a sequence of zeros and ones. They with , we 

associate a real number whose binary representation is . Now we 

consider the set of points in interval is uncountable each has a binary 

representation and different s have different binary representation. Hence, there are 

uncountably many sequences of zeros and ones. The metric on shows that any two of them 
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which are not equal must be of distance 1 apart. If we let each of these sequences be the center 

of a small ball say, of radius 1/3, these balls do not interest and we have uncountable many of 

them. If is any dense set in each of these non-intersecting balls must contains an element 

of .  

Hence, cannot be countable. Since was an arbitrary dense set, this show that cannot 

have dense subsets which are countable consequently, is not separable. 

 

Example.5: The space  with is separable. 

Solution: Let be a set of all sequences of the form 

    

Where is a positive integer and the ’s are rational. Let is countable. To show that is 

dense in . Let be arbitrary. 

Then for every there is an (depends on ) such that 

     

Since the rationals are dense in , for each  there is a rational close to it. Hence, we can 

find satisfies. 
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Thus, we obtained and is dense in . 

 

4.13 Summary 

 

Let be a metric space. Let and  the  is an 

open ball centered at with radius . It is also denoted by . 

Let be a metric space. Let and then  is a 

closed ball centered at  with radius . It is also denoted by or .  

Let be a metric space. Let and then  is a 

shpere centered at with radius . 

Let and is two non-empty subset of a metric space . The distance between and 

denoted by and defined as  

Let be a metric space and . Let be arbitrary. Then the distance between 

and the set  is denoted by  and defined as   

Let be a metric space. Let be a non-empty subset of . Then the diameter of is 

denoted by  and defined as  

Let be a metric space. Let . A subset of X is said to be a neighborhood of if 
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there exist an open set  such that . 

Let be a subset of a metric space . Then a point of  (which may be on may not be 

a point ) is called an limit point of  if each open ball centered at contains at least one point 

of  different from . 

The collection of all limit points of a set is called derived set of . It is denoted by or 

.  

Let  be a subset of a metric space . A point is said to be an isolated point of if 

and only if it is not an limit point of . 

Let  be a subset of a metric space . A set is said to be a discrete set if each point of 

 is an isolated point of . 

Let be a subset of a metric space . is said to be dense-in-itself if and only if every 

point of  is a limit point of . 

Let  be a subset of a metric space . Then is said to be perfect set if and only if  

     

Let be a subset of a metric space the closure of , is the union of  and all its limit 

points, i.e.,  

Let be a subset of a metric space . The interior of is the union of all open sets 

contained is i.e.,  

Let be a subset of a metric space . The exterior point of , is the interior of the 
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complement of i.e.,  or  . 

Let be a subset of a metric space . The boundary point of , is the set of all those 

elements of which neither belong to or nor to exterior. 

Let be a subset of a metric space. Then  is said to be dense in if . And is said to 

be separable if it has a countable subset which is dense in . 

Two metrics  and on the same set  are said to be equivalent metrics if and only if every 

open set is open and every open set is open. 

           

4.14 Terminal Questions 

 

Q.1. To show that is a metric space. 

Q.2. Define Hilbert-sequence space. 

Q.3. Show that another metric on the set in  is 

defined by  

Q.4. Let denote the family of all Riemann integrable function from into show that 

the mapping  defined by    

 

 Where  is a pseudometric on but not a metric on . 
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Q.5. Show that the set of all complex numbers is a metric space under  

 

Q.6. Prove that the sequence space is a metric space. 

Q.7. Define open and closed balls. 

Q.8. In a metric space, every open ball is an open set. 

Q.9. Show that a finite set in a metric space has no limit point. 

Q.10. Let  be a metric space. Let . Show that is a metric 

for . Also show that the two metrics and are equivalent. 
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5.1 Introduction 

 

Cauchy sequence is one in which the terms become arbitrarily close to each other as the sequence 

progresses. This concept is important in the study of metric spaces, particularly in understanding 

the completeness of a metric space. A metric space is said to be complete if every Cauchy 

sequence in the space converges to a point in the space. A function  between metric 

spaces is a homeomorphism if it is bijective, continuous, and its inverse is also continuous. 

In simpler terms, a homeomorphism is a function that preserves both continuity and openness, 

meaning that it maps open sets to open sets and vice versa.  

Continuity in metric spaces have a great importance in analysis and topology, as it helps in 

studying the properties of functions and spaces, including the convergence, limits, and 

topological properties. 

 

5.2       Objectives 

 

After reading this unit the learner should be able to understand aboutthe 

 Sequence in metric space 

 Convergent sequence in metric space 

 Bounded Set and their important theorem 

 Cauchy Sequence and important theorems 

 Continuity in Metric Spaces and important theorems 

 Open mapping, Closed mapping and Bicontinuous mapping 

 Homomorphism andHomomorphism Spaces 

:f X Y

1f 



5.3 Sequence in Metric Space 

Let  be a metric space. A sequence in is a function from N to X. 

 

 

 

  

The sequence  is also denoted by or etc., and 

they need not be distinct. 

 

5.4 Convergent Sequence in a Metric Space 

Let be a metric space. A sequence in is said to be convergent sequence if it 

converges to a point such that  

     

and is called the limit of . 

Now we write  or as . 

 

 ,X d nx  X
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 ,X d nx  X

x X

 lim , 0n
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d x x




x  nx

lim n
n

x x


 nx x n 



5.5 Bounded Set 

A non-empty subset is a bounded set if its diameter 

  is finite. 

 

Theorem 1: Let be a metric space. Then  

(i) A convergent sequence in is bounded and its limit is unique. 

(ii) If and in then  

 

Proof: (i) Let be a convergent sequence in i.e., Then we take find an such 

that  

    

Using triangular inequality , we have 

    

Where  

i.e., is bounded. 
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Now we assume 

   and  

Using triangular inequality, we have 

    

i.e., uniqueness of limit point. Hence, a convergent sequence in is bounded and its 

limit is unique. 

(ii) It is given that . 

This implies, for a given there exits a positive integer such that  

   for  

Also given that . 

This implies for a given , there exist a positive integer such that 

   for  

If then   

   and  

   for  

nx x nx z
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Now we have 

  

     

     

     

Hence  converges to . 

 

5.6 Cauchy Sequence 

Let  be a sequence in a metric space  then is said to be cauchy sequence if 

given any there exist  such that  

  

 

Theorem 2: Every convergent sequence in a metric space is a Cauchy sequence. 

Proof: Let be a convergent sequence in a metric space . 

To show that  is also a Cauchy sequence. Since a convergent sequence then 

converges to a point say i.e., is the limit point of . 
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Then for a given there exist such that 

    

For , using triangular inequality, we have 

    

     

 

Thus for any given  there exist such that  

    

Hence, is a cauchy sequence in . 

 

Examples 

Example.1: To show that Cauchy sequence is not necessarily convergent. 

Solution: Let and  

Consider a sequence , where  

   is sequence in . 
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To show that is a Cauchy sequence but it does not converges in . 

Let and be a positive number such that  

     

Now     

     

 

    

If so that  

Similarly, we have   

  

Thus,    

Hence,  is a Cauchy sequence. Obviously the limit of this sequence is 0 which does not 

belong to i.e.,  does not converge in . 
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5.7 Continuity in Metric Spaces 

 

Let  and  be two metric spaces and be a mapping of into . 

Then  is said to be continuous at a point if for every there exist such that 

    

 

 

 

 

or 

Let  and  be two metric spaces. mapping is said to be continuous, if at a point  

. 

     

   

      

   

 

 

 

Theorem.3: A mapping of a metric space into a metric space is continuous if and 

only if the inverse image of any open subset of is an open subset of . 
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Proof: Let be continuous and let be open and be the inverse of . 

    

 

 

 

To show that  is open set in . 

(1) Suppose if   then it is open set. 

(2) If  then  or  

It is given that is an open set then it contains an -neighbouhood  of . Since is 

continuous then has a -neighbourhood which is mapped into  Since we have 

. So that  is open in because  coversely, let the inverse image of every open 

set in is an open set in . 

Then for every and any -neighbourhood  of the inverse image of of is open. 

Since is open and contains . Thus, also contains a neighbourhood of which is 

mapped into , because  is mapped into . Using definition, is continuous at  since 

was arbitrary. 

Hence, is a continuous mapping from into . 
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Theorem.4: A mapping  of a metric space into a metric space is 

continuous at a point if and only if 

    

i.e., is continuous iff is sequentially continuous. 

Proof: Let be continuous at . Let be a sequence in  such that 

    

To show that is sequentially continuous or Using continuity of at we 

have given there exist such that 

     ….(1) 

Since   

So given  there exists such that  

       ….(2) 

Using equation (1) and (2), we get the given  this implies there exist such that 
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Using definition, we have . 

Conversely, let . 

To show that is continuous at suppose if possible, let is not continuous at then given 

 there exist such that 

     

   

or      

 

Now consider the sequence of open ball such that 

    

Take but  

From the sequence , we have  

As     

Also . This is contradiction. Hence is continuous at . 
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5.8 Open Mapping, Closed Mapping and Bicontinuous Mapping 

 

Let and be two metric spaces. A mapping is said to be open 

mapping if is -open where is -open. 

Let and  be two metric spaces. A mapping is said to be closed 

mapping if is -closed whenever is -closed. 

Let and be two metric spaces. A mapping is said to be bicontinuous 

mapping if is open and continuous. 

 

5.9 Homomorphism 

 

Let and be two metric spaces. A mapping  is said to be 

homeomorphism if  

(i)  is one-one, onto or is bijective. 

(ii) is continuous 

(iii) -1 is continuous. 

 

5.10 Homomorphism Spaces 

 

Let and be two metric spaces. space is said to be homeomorphic to another 

space  if there exists a homeomorphism of  onto and then is said to be 

 1 1,X d  2 2,X d 1 2:f X X
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homeomorphic image of  or simply a homeomorph of . If is homeomorphic to  we 

write  

Note: 1. Let and  be two metric spaces and let  be a bijective mapping of 

onto . Then the following statements are equavelent 

(i) is homeomorphism 

(ii) is continuous and open 

(iii) is continuous and closed 

2. Homeomorphism is an equivalence relation in the collection of all metric spaces. 

 

5.9 Summary 

 

A non-empty subset is a bounded set if its diameter  is finite. Let 

 be a sequence in a metric space  then  is said to be Cauchy sequence if 

given any  there exist such that  

Every convergent sequence in a metric space is a Cauchy sequence. 

A mapping  of a metric space into a metric space is continuous at a 

point if and only if   . Let and be two 

metric spaces. A mapping is said to be open mapping if is -open where 

is -open. 

Let and  be two metric spaces. A mapping  is said to be closed 

1X 1X 1X 2 ,X

1 2.X X

 1 1,X d  2 2,X d f ,X

2X

f

f

f

M X    
,

sup ,
x y M

M d x y




nx   ,X d nx 

0 0n N  0, , .m nm n n d x x  

:f X Y  1,X d  2,Y d

0x X    0 0n nx x f x f x    1 1,X d  2 2,X d
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mapping if is -closed whenever is -closed. Let and be two metric 

spaces. A mapping  is said to be bicontinuous mapping if is open and continuous. 

Let and be two metric spaces. A mapping  is said to be 

homeomorphism if (i)  is one-one onto or is bijective (ii) is continuous (iii) -1 is 

continuous. 

Homeomorphism is an equivalence relation in the collection of all metric spaces. 

 

5.10 Terminal Questions 

 

Q.1. Define the convergent sequence in metric space.  

Q.2. Explain the Cauchy sequence in metric space. 

Q.3. Give an example of a function which is continuous and closed but not open. 

Q.4. Let and be two metric spaces and let be a mapping of into Then 

is continuous if and only if the inverse image of under of every -closed set is -closed 

set. 

Q.5. Let  and be two metric space and let the mapping be one-one 

onto. Then is a homeomorphism if and only if 

for every  

Answer 

3. A function such that . 
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6.1 Introduction 

 

The completeness of a metric space is a fundamental property with several important 

consequences and applications in mathematics, particularly in analysis and topology. A metric 

space is said to be complete if every Cauchy sequence in the space converges to a point in the 

space. Completeness is an important property in analysis and topology, as it allows for certain 

convergence properties to hold, and it helps distinguish between different types of metric spaces. 

For example, the real numbers  R are complete, while the rational numbers Q are not complete. 

Completeness is closely related to the topological properties of a space. Complete metric spaces 

are often easier to work with in terms of continuity, compactness, and connectedness. Many 

fundamental results in analysis, such as the Bolzano-Weierstrass Theorem and the Heine-Borel 

Theorem rely on the completeness of Rn. Completeness of a metric space is a fundamental 

concept that underpins many important results and ideas in mathematics, making it a central 

notion in the study of spaces and functions. 

 

6.2       Objectives 

After reading this unit the learner should be able to understand about the: 

 Complete metric space and Incomplete metric space 

 Contor’s Intersection theorem 

 Baire Category Theorem 

 Contracting Mapping 

 Banach Fixed Point Theorem 

 Isometric Mapping 

 Completeness of C 

 



6.3    Complete Metric Space 

 

Let be a meric space. Then  is said to be complete metric space if and only if 

every Cauchy sequence  in  converges to a point in . 

For example: Let be the set of real numbers and  be the usual metric on i.e., 

    

The metric space  is a complete metric space. 

 

6.4    Incomplete Metric Space 

 

Let be a metric space. Then is said to be incomplete metric space if and only if there 

exists some cauchy sequence in which does not converge to a point in . 

For example: Let and be the usual metric on i.e., 

      

The metric space is incomplete. 

 

Theorem.1: Let  be a sub-space of a complete metric space . Then  is complete 

if and only if  is closed. 

Proof: Let  be a complete metric space. Let  be also complete.  

To show that  is closed in  
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i.e., show that . 

Suppose to show that  

Now we assume is a limit point of so that  

    

 is a limit point of  is the limit of the sequence .  

Using a theorem, let be matrix space and is said to be limit of  if and only if 

there exist sequence of distinct point converge to . 

  is convergent sequence which converges to .  

  is a Cauchy sequence which converges to . 

 

In a metric space , a Cauchy sequence converges to . is a complete 

metric space. A Cauchy sequence  in is complete . Also Y is complete 

Hence  is closed. 

Conversely, let is closed subset of a complete metric space. To show that  is complete. Let 

be a cauchy sequence in . Then is also a cauchy sequence in for .  

Since is complete and  converges to some point, say . 

Case (1): When  has infinity many distinct points  converges to . This implies the 

limit of the sequence is . 

  the limit point of the set is  
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 . 

Case 2: When has finitely many distinct points is repeated an infinite number of times 

in the sequence . This implies . 

In either case . Thus, an arbitrary Cauchy sequence in  converges to a point 

. This implies every Cauchy sequence in is convergent. Using definition, this prove that 

 is complete metric space. 

 

6.5 Contor’s Intersection Theorem 

 

Let  be a decreasing sequence of non-empty closed subsets of a complete metric space 

 such that as . Then contains exactly one point. 

Proof: Let be a complete metric space and be a decreasing sequence. 

We know that a sequence  of subsets of is said to be monotonic decreasing sequence if 

and only if  

     

Since then cannot contain more than one point. So we have to show that  

is non-empty. 
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Since each is non-empty there exists a sequence such that  for For 

for , there exist a positive integer say such that  

    

Again, because  is a decreasing sequence. 

  

     

     

i.e., is a Cauchy sequence. 

It is given  is complete,  must converge to some point, say in . We show that  

     

Suppose, if possible  

   for some  

Since each is a closed set, is also a closed set, therefore  cannot be a cluster point of 

, and so  

      

Suppose      
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Then       

Thus,      for  

    

But it is impossible for . 

Hence, . 

 

6.6 Baire Category Theorem 

 

Let be a metric space. A subset  of a metric space is said to be the first category if and 

only if it can be written as the union of a countable family of nowhere dense sets; otherwise is 

known as second category. 

Before Baire category theorem, we give some preliminary theorems: 

(1) Let be a subset of a metric space . Then the following statements are equivalent  

(a) A isnon-dense in . 

(b) contains no neighbouhood. 

(c)  is dense in . 

(2) If is nowhere dense, then is not the entire space . 

(3) The union of a finite number of nowhere dense sets in nowhere dense. 

(4) If is non-dense in , then each open sphere contains a closed sphere which contains no 

points of . 
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Theorem.2: Every complete metric space is of the second category as a subset of itself. 

Proof: Suppose  is a complete metric space. To show that  is of second category. Let, if 

possible  is not of second category, then  may be of first category so that is the union of a 

countable family of nowhere-dense sets. Suppose this family denoted as . Since is non-

dense using theorem (iv), there exists a closed sphere  with radius  such that  

Let  denoted the open sphere having the same centre and radius as . In , we can determine 

a closed sphere  of radius such that 

and so on. 

In this manner, we construct a nested sequence of closed sphere having the following two 

properties:  

(i) For each positive integer does not intersect .  

(ii) The radius of as . 

It is given that is complete, it follows by using cantor’s intersection theorem that 

consists of a single point  which does not belong to any of the nowhere dense sets by (i). 

But this is not possible since  is the union of this family. It follows that the metric space is 

not of first category. Hence X must be of second category. 

 
 

6.7 Contracting Mapping 

Let be a complete metric space. A mapping  is said to be contracting mapping 

if there exist a real number   with 0 1    such that  
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  . 

 

6.8  Banach Fixed Point Theorem 

Let be a complete metric space and is a contracting mapping on . Then there exist 

one and only one point in  such that  

. 

 

6.9    Isometric Mapping 

Let and be two metric space. A mapping is said to be isometric on an 

isometry of preserves distances i.e., if . 

    

Where and  are the images of  and  respectively. 
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Theorem.3: The metric space is complete, where  is usual on .  

Proof: Let be arbitrary then is defined.  

       …(1) 

Suppose is a cauchy sequence in . We define a sequence  of positive numbers 

by induction as follows: 

    

     

        ….(2) 

This is possible because is a Cauchy sequence. Let  be the closed interval  

     

Then  is closed interval. Let,  denote length of . Then 

    

or      so that  

This implies consist of exactly only one point say . 

Using Cantor’s intersection theorem, we have 
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This implies  

      ….(3) 

Using equations (2) and (3), we have  

    

     

     

(say) 

Thus,      

This implies     

i.e., every Cauchy sequence in  converges to a point in . Hence, is complete.  

 

Theorem.4: The set  of complex numbers with usual metric is complete metric space.  

Proof: Suppose and be arbitrary elements of  so that 

.  The usual metric is defined by  

. 

Suppose is a cauchy sequence in . So that given , there exist such that  
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From this we can conclude that 

   where  

It follows that and are Cauchy sequence in . But is complete so that  

    

Consequently,  . 

Therefore every Cauchy sequence in  converges to a point . 

Hence, is complete metric space. 

 

Examples 

 

Example.1: The metric space is complete, where  is usual metric on . 

Solution: Let  be arbitrary elements of . Then is 

defined  as  

n mz z  

 n n m mx iy x iy    

   
2 2

n m n mx x i y y    

   
2 2 2

n m n mx x y y    

', 'n m n mx x y y    ' / 2 

nx  ny  R R

,n nx x R y y R   

nz x iy z C   

nz  C z C

 ,C d

 ,nR d d
nR

   1 2 1 2, ,..... , , ,.....n nx x x x y y y y  nR d



     ….(1)  

Suppose an element  can be regarded as a real function defined on 

. Thus, for we write 

    

Now suppose be a cauchy sequence in  so that given there exist such that  

    

    

This implies  

i.e., we have  where .  

This implies is a cauchy sequence and also  is complete.  

Then the sequence converges point-wise to a limit function, say .  

This implies for  

Since is finite and hence this convergence is uniform. 

   

Taking sum with squaring and adding, we get. 
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This show that the Cauchy sequence in converges to . Hence, is 

complete metric space. 

 

Example.2: The space is complete. 

Solution: Suppose be a Cauchy sequence in , where 

   such that 

    

Then for each , there exist a positive integer  such that  

   

    …(1) 

This implies for each fixed  the sequence is a Cauchy sequence in 

. Since is complete, it converges in . Let as . Now we define 

and show that and  

Suppose in equation (1), we get  
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Since , there is a real number such that  

Therefore, we have  

    

      (Using traingular in equality) 

     

This inequality is true for each  and right hand side is independent of . It means is a 

bounded sequence of numbers 

 

Using equation (2), we have 

    

in  

Hence, is a complete metric space. 

 

6.10 Completeness of C 

 

The space consists of all convergent sequences of complex number, with the metric 

induced from the space .  
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Examples 

Example.3: The space  is complete. 

Solution: We know that  is a subspace of . To show that is closed in . 

Also we know that a subspace  of a complete metric space  is itself complete if and only if 

the set  is closed in . 

We take    

We know that if and only if there is a sequence in such that  

    

Such that . 

Give there is an  such that for and for all we have  

    

In particular for  and . 

Since , its terms from a convergent sequence, such a sequence is Cauchy. Hence, 

there is an such that 

    

Using triangular inequality,  
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This implies is convergent. Hence, . Since was arbitrary is closed in 

. Hence, the space  complete. 

 

Example.4: The space  is complete, here is fixed and  

Solution: Let be a Cauchy sequence in where 

  such that 

   

Then for each there exist a positive integer such that 

     (1) 

 

This implies for each the sequence is a Cauchy sequence in or 

since is complete it converges in . 

 Suppose as  

Now we define  and show that and . Using equation (1) we get  

   

Letting , we get  
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Now suppose then for  

    

    

Since it follows that using Minkowski inequality we get  

    

     

From equation (2), we get   

Which verify that in  

Hence, is a complete metric space. 

 

Example.5: The function space is complete, here  is any given closed 

interval on .  

Solution: Suppose  is a Cauchy sequence in . Then for each , there exist a 

positive integer  such that  

   where  

For any fixed  we get  
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       ….(1)  

This implies is a Cauchy sequence in  But  is complete, this sequence 

converges. Now we let. 

   as  

We can associate to each a unique . This show that a function  on  is pointwise 

and  

From equation (1) we have 

  and  

Take , we get and     ….(2) 

This implies the sequence  of continuous functions converges uniformly to the function  

on  and hence the limit function is a continuous function on as such . 

Using equation (2), we have 

   

    

   in  

Hence, is a complete metric space. 

Example.6: Let be the set of all continuous real valued function on and let  
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Show that this metric space is not complete. 

Solution: Suppose the function  from a Cauchy sequence because  is the area 

of the triangle and for every given  

   where  

  

   

   

 

 

 

To show that this cauchy sequence does not converge we have 

     if  

     if  

Where     

Now we have  
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Since the intergrands are non-negative so is each integral on the right, i.e., woulf 

imply that each integral approaches to zero. Since is continuous, we have 

    

i.e., contradiction for a continuous function. Hence, does not converges ot do not have a 

limit in .Hence, is not complete and is not complete metric space. 

 

Example.7: Consider the usual metric  for  and the mapping  such that  

    

Where . Then  is a contraction on . 

Solution: Given that  
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We have    
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Hence, is contracting mapping because 

  . 

 

6.11   Summary 

 

Let be a meric space. Then  is said to be complete metric space if and only if 

every Cauchy sequence  in  converges to a point in . 

Let be a metric space. Then is said to be incomplete metric space if and only if there 

exists some cauchy sequence in which does not converge to a point in . 

Let  be a decreasing sequence of non-empty closed subsets of a complete metric space 

 such that as . Then contains exactly one point. 
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Let be a metric space. A subset  of a metric space is said to be the first category if and 

only if it can be written as the union of a countable family of nowhere dense sets; otherwise is 

known as second category. 

Let be a complete metric space. A mapping  is said to be contracting mapping 

if there exist a real number  with  such that  

  . 

Let be a complete metric space and is a contracting mapping on . Then there exist 

one and only one point in  such that 

     . 

Let and be two metric space. A mapping is said to be isometric on an 

isometry of preserves distances i.e., if . 

    

where and  are the images of  and  respectively. 

The space consists of all convergent sequence of complex number, with the metric 

induced from the space .  

 

6.12   Terminal Questions 

 

Q.1  Define complete metric space with examples. 

Q.2. Explain the Contor’s intersection theorem. 
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Q.3.  To show that every contracting mapping is continuous. 

Q.4.  Let  be the set of all positive integers and . Show that is not 

complete. 

Q.5. The metric space of rational numbers with the usual metric is incomplete. 

Q.6. Show that the set of all integers with metric  defined by is a 

complete metric space. 
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Block-3 

Introduction to Topological Spaces 

 

Topology plays a crucial role in various areas of mathematics, science, and engineering due to 

its ability to capture essential geometric and topological properties of spaces. It is concerned with 

the study of shapes and spaces, focusing on the concepts of continuity and connectivity. Topology 

seeks to understand the underlying structure of spaces and the relationships between different 

spaces, often using concepts like open sets, closed sets, neighborhoods, and continuous functions. 

In 1872, Cantor introduced the concept of the first derived set, or set of limit points, of a set. He 

also defined certain closed subsets of the real line as subsets that contain their first derived set. 

Cantor also introduced the concept of an open set, another fundamental concept in point-set 

topology. In 1902, Hilbert used the idea of a neighborhood. In 1914, Felix Hausdorff coined the 

term "Topological Space" and provided the definition for what is now known as a Hausdorff 

space. In its current usage, a topological space is a slight generalization of Hausdorff spaces, as 

formalized by Kazimierz Kuratowski in 1922. 

In the seventh unit, we shall discussed about  Topological Spaces, Trivial topology, Non-Trivial 

topologies, Comparison of Topologies, Algebra of Topologies, Open Set, Neighbourhood, Usual 

Topology, Limit Points, Derived Set, Closed Sets, Door Space, and in the eighth unitwe deal with 

Closure of a Set, Separated Set, Interior points and the Interior of a Set, Exterior of a Set, 

Boundary Points, Dense Set. 

Ninth unit deals with Relative Topology, Subspace, Base for a topology, Sub-bases, Local base, 

First Countable Space, Second Countable Space, Topologies Generated by Classes of Sets, 

Separable Space, Cover of a Space, LindelöfSpace. In the tenth unit we shall discuss about the 

Continuous Function, Open Mapping, Closed Mapping, Bicontinuous Mapping, Bijective 

Mapping, Sequential Continuity, The pasting Lemma, Homeomorphism. 

 

  



UNIT-7: Topological Spaces-I 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Topological Spaces 

7.4     Trivial topology 

7.5 Non-Trivial topologies 
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7.11 Limit Points 

7.12 Derived Set 

7.13 Closed Sets 
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7.15 Summary 
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7.1  Introduction 

 

Topology is a mathematical field that explores the properties of space that remain unchanged 

under continuous transformations like stretching, twisting, and bending, without tearing or 

gluing. This unit covers topics such as topological spaces, trivial topology (discrete and 

indiscrete topology), comparison of topologies, algebra of topologies, open sets, neighborhoods 

and neighborhood systems of a point, usual topology, limit points, closed sets, and door spaces. 

In 1872, Cantor introduced the concept of the first derived set, or set of limit points, of a set. He 

also defined some closed subsets of the real line as subsets containing their first derived set. 

Cantor also introduced the concept of an open set, another fundamental concept in point set 

topology.  

 

7.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Introduction about Topology and Topological Spaces,  

 Trivial topology and Non-Trivial topologies 

 Comparison of Topologies 

 Algebra of Topologies 

 Open Set and Neighbourhood, Neighborhood system of that point 

 Usual Topology or standard Topology 

 Limit Points and Derived Set 

 Closed Sets and Door Space 

 



7.3  Topological Spaces 

 

Topology is a mathematical discipline concerned with the properties of shapes and spaces that 

remain unchanged under continuous transformations like stretching, bending, and twisting, 

without tearing or gluing. It is a foundational field with broad applications in mathematics, 

physics, biology, and computer science. Topological spaces are structures that generalize notions 

of proximity and include sets of points along with collections of open sets satisfying specific 

properties. This branch of mathematics provides a framework for analyzing properties that 

endure through continuous transformations, making it a potent tool in mathematical analysis and 

various other fields. 

Let us consider X be a non-empty set and  be the collection of subsets of X. Then  is said to 

be a topology on X, if  the following properties are satisfied: 

 X  and . 

 Let a, b  then ab, hence it is closed under the operation of finite intersection. 

 Let {Ai: iI} then {Ai: iI}, hence it is closed under the operation of arbitrary 

union. 

The members of  are known as open sets of the topology  and the pair (X, ) is known as a 

topological space.  

Note: A subset of X may be open, closed, both or neither. 

 

Examples 

 

Example.1. Consider X= {a, b, c} and  ={X, , {a}, {b}, {a, b}}. Then show that  is a 

topology on X. 

Solution. It is given that X= {a, b, c}  



and ={X, , {a}, {b}, {a, b}} 

(i) X    and  . 

(ii) We have {a} {b} =,  X {b} = {b}, 

  X {a} = {a}, {b} = ,  

{a} = ,  X  = . 

i.e., it is closed under the operation of finite intersection. 

(iii) We have {a} {b} ={a, b},  X {b} = X, 

  X {a} = X, X   = X, 

  {a}   = {a},  {b}   = {b}. 

i.e., it is closed under the operation of arbitrary union. Hence  is a topology on X. 

Example.2. Consider X= {a, b} and ={X, , {a}, {b}}. Then show that  is a topology on 

X. 

Solution. It is given that X= {a, b}  

and  = {X, , {a}, {b}} 

(i) X    and  . 

(ii) We have {a} {b} =, X {b} = {b}, 

 X {a} = {a},  {b} = ,  

 {a} = ,  X   = . 

i.e., it is closed under the operation of finite intersection. 

(iii)We have {a} {b} =X, X {b} = X, 

  X {a} = X, X  = X, 

 {a}  = {a},  {b}  = {b}. 



i.e., it is closed under the operation of arbitrary union. Hence  is a topology on X. 

Example.3. Determine all the topologies on X= {a, b}. 

Solution. It is given that X= {a, b}.  

Then  1 ={X, }, 

 2={X, , {a}},  

3={X, , {b}}  

and 4={X, , {a}, {b}} are all topologies on X={a, b}. 

Example.4. Consider X= {a, b, c, d, e} and ={X, , {a}, {b, c}, {c, d, e}}. Then show that  

is not a topology on X. 

Solution. It is given that X= {a, b, c, d, e}  

and ={X, , {a}, {b, c}, {c, d, e}} 

(i) X  and . 

(ii) We have {b, c} {c, d, e}={c} 

i.e., it is not closed under the operation of finite intersection. 

Hence  is not a topology on X. 

Example.5. Consider X= {a, b, c} and ={, {a}, {b}, {a, b}}. Write down why  is not a 

topology on X. 

Solution. It is given that X= {a, b, c}  

and ={, {a}, {b}, {a, b}} 

Here  but X 



i.e., is not a topology on X because it’s not contains X. 

Hence  is not a topology on X. 

 

7.4    Trivial Topology 

 

The trivial topology satisfies the axioms of a topology, namely that the empty set and the whole 

space are open, the intersection of any finite number of open sets is open, and the union of any 

collection of open sets is open.There are two types of trivial topology: 

(i) Indiscrete Topology 

(ii) Discrete Topology 

 

(i) Indiscrete Topology 

Let X be a non empty set. Then the collection  ={X, }, (consisting of only empty set and the 

whole space) is always a topology for X,  is called the indiscrete topology. The pair (X,) is 

called an indiscrete topological space.  

Indiscrete topology is also denoted by I. For any set X, the indiscrete topology I is coarser or 

smaller or weaker topology. 

(ii) Discrete Topology 

Let X be a non empty set. Then the collection  = {consisting of all the subsets of X} is always 

a topology for X, called the discrete topology. The pair (X,) is called discrete topological space. 

Discrete topology is also denoted by D. For any set X, the discrete topology D is finer or stronger 

or larger topology. 

For example, we haveX= {a, b, c} then we have 

1 ={X, } is the indiscrete topology for X 



and 2={X, , {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} is the discrete topology on X.    

3={X, , {a}} 

4={X, , {b}} 

5={X, , {c}} 

6={X, , {a}, {a, b}} 

7={X, , {a}, {b, c}} 

8={X, , {a}, {a, c}} 

9={X, , {b}, {a, b}} 

10={X, , {b}, {b, c}} 

11={X, , {b}, {a, c}} 

12={X, , {c}, {a, b}} 

13={X, , {c}, {b, c}} 

14={X, , {c}, {a, c}} 

15={X, , {a}, {b}, {a, b}} 

16={X, , {a}, {c}, {a, c}} 

17={X, , {b}, {c}, {b, c}} 

18={X, , {a}, {a, b}, {a, c}} 



19={X, , {b}, {a, b}, {b, c}} 

    and 20={X, , {c}, {a, c}, {b, c}} are all non-trivial topologies on X. 

 

7.5    Non-Trivial Topologies 

 

Non-trivial topologies are topologies on a set that are not the trivial topology. In other words, 

they are topologies that contain open sets other than the empty set and the entire space. Non-

trivial topologies are often used to define interesting and useful topological properties on 

sets.Topologies defined on X other than trivial topology (Indiscrete and Discrete topology) are 

known as non-trivial topologies. 

 

7.6    Comparison of Topologies 

 

Comparing topologies involves understanding how one topology relates to another in terms of 

their open sets and the properties they induce on a space. 

Let X be a non-empty set and 1, 2 are two topologies on X then either 12 and 21, the 

topologies 1 and 2 are comparable. If 12 and 21 then the topologies 1and 2 are not 

comparable. 

Examples 

 

Example.6. Consider X= {a, b, c}. Find the three topologies 1, 2 and 3 for such that 

123. 

Solution. Given that X= {a, b, c}.  



Then 1 ={X, },  

2={X, , {a}}  

and 3={X, , {a}, {b}, {a, b}} are topologies on X. Hence 123. 

Example.7. Let X= {a, b, c}. Find indiscrete and discrete topologies on X. 

Solution. Given thatX= {a, b, c} then  

1 ={X, } is an indiscrete topology for X 

    and 2={X, , {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} is a discrete topology on X. 

Example.8. Find two mutually comparable topologies for the set X= {a, b, c}. 

Solution. Given that X= {a, b, c}.  

Then 1 ={X, , {a}},  

2={X, , {b}}  

and 3={X, , {a}, {b}, {a, b}}. 

Hence the above two topologies 1 and 3, 2 and 3 are comparable because 13 and 23. 

Example.9. Give five distinct non-trivial topologies for the set X= {a, b, c}. 

Solution. Given that X= {a, b, c}.  

Then 1 ={X, , {a}},  

2={X, , {b}},  

3={X, , {c}} 

4={X, , {a}, {a, b}} 



and 5={X, , {a}, {b}, {a, b}} are all five distinct non-trivial topologies on X. 

Example.10. Find three mutually non-comparable topologies for the set X = {a, b, c}. 

Solution. Given that X= {a, b, c}.  

Then 1 ={X, , {a}},  

2={X, , {b}}  

and 3={X, , {c}} are all three mutually non-comparable topologies for the set X 

because 12, 13 and 23. 

Hence 1, 2 and 3 are non-comparable topologies for the set X. 

 

7.7    Algebra of Topologies 

 

The algebra of topologies refers to the operations and properties that arise when combining or 

manipulating topological spaces and their associated topologies. These operations include the 

intersection, union, and product of topologies, as well as the generation of new topologies from 

existing ones through operations like closure and interior. 

Theorem.1. Prove that the finite intersection of two topology on X is again a topology on X. 

Proof. Let (X, 1) and (X, 2) are two topological space. To show that (12) is again a 

topology on X. 

(i) Since 1 and 2 ate two topology on X such that  

  X 1 and 1 

      Similarly, X 2 and 2. 

 X 12 and 12. 



(ii) Let a, b12 

  a12 i.e., a1, a2 

and b12 i.e., b1, b2 

Now we have a1, b1 ab 1 

  a2, b2 ab 2 

Since ab 1, ab 2   ab12 

i.e., it is closed under the operation of finite intersection. 

    (iii) Let {Ai : iI}12. 

 {Ai : iI}1 and {Ai : iI}2 

{Ai : iI}1 and{Ai : iI}2 {since 1 and 2 are topology on X}  

{Ai : iI}12. 

i.e., it is closed under the operation of arbitrary union. Hence 12 is a topology on X. 

Theorem.2. Prove that the intersection of any number of topologies on X is again a topology 

on X. 

Proof. Let X be a non-empty set and collection of topologies {i : iI} is a topology on X. To 

show that {i : iI} is a topology on X. 

(i) Since X, i.  

X{i : iI} and {i : iI} 

(ii) Let G1 and G2{i : iI} 

 Since G1 and G2 each i 



G1G2 each i 

i.e., it is closed under the operation of finite intersection. 

(iii) Let {G:I}{i : iI} 

 Since {G:I}each i 

 and each i is a topology on X. 

 {G:I}{i : iI} 

i.e., it is closed under the operation of arbitrary union. Hence {i : iI}is a topology on X. 

Theorem.3. Prove that the union of two topologies on X is again a topology if X consists of 

at most two elements. 

Proof. Suppose if possible X={a, b, c},     

1={X, , {a}}  

and         2={X, , {b}} 

 Then 12 ={X, , {a}, {b}} 

(i)Since X, 1 and X, 2 

 X, 12 

(ii)Let {a}, {b}12 

{a} {b}=12 

i.e., it is closed under the operation of finite intersection. 

(iii)Let {a}, {b}12 

{a} {b}={a, b}12 

i.e., it is not closed under the operation of arbitrary union.  



Hence 12 is not a topology on X because it consists more than two elements. 

Now we suppose X= {a, b},     

1={X, , {a}}  

and         2={X, , {b}} 

 Then 12 ={X, , {a}, {b}} 

Here (i) and (ii) are satisfied as above. 

Now let {a}, {b}12 

 {a} {b}=X12 

i.e., it is closed under the operation of arbitrary union.  

Hence 12 is a topology on X if it consists of at most two elements. 

 

7.8    Open Set 

 

The concept of an open set is important because it allows us to define continuity, convergence, 

and many other fundamental properties in topology.  

If X is a non empty set and  is a topology on X, then every member of  is called open set. 

Some properties of open set 

(i) The empty set  is open. 

(ii) The whole space X is open. 

(iii) The intersection of two open set is open. 

(iv) Arbitrary union of open set is open. 



(v) A finite set is not an open set. 

(vi) R is an open set. 

(vii) Q is neither open nor closed. 

(viii) The complement of a closed set is open set. 

(ix) Every neighbourhood is an open set. 

For example, the set {xR: x3} is open set but the set {xR: x21} is not open set. 

 

7.9    Neighborhood 

 

Neighborhoods are important in topology because they allow us to define and study the notion 

of "closeness" of points in a topological space. In topology, a neighborhood of a point in a 

topological space is an open set that contains that point. 

Let (X, ) be a topological space. A subset N of X is said to be a neighborhood of point x if it 

contain an open set G to with the point xG such that xGN. 

    or 

Let (X, ) be a topological space and xX. A subset N of whole space X is said to be a -

neighborhood of x if and only if there exist a -open set G such that xGN. 

Neighborhood system of that point 

The neighborhood system of a point in a topological space is a fundamental concept that 

describes the local structure of the space around that point. It plays a crucial role in defining 

continuity, convergence, and other important concepts in topology.The neighborhood system of 

a point in a topological space is the collection of all neighborhoods of that point.The collection 

of all the neighborhood of a point is called the Neighborhood system of that point. 



Note. 1. Since every set is a subset of itself therefore open set is the neighborhood each of its 

point. 

2. A –open set is a -neighborhood of each of its points but a -neighborhood of a point need 

not be an open set. 

3. Let us consider (X,) be a topological space. Then  

(i) For each point xX and each -neighborhood N of x, xN. 

(ii) For each point xX, there is at least one -neighborhood of x. 

(iii) If N is any -neighborhoods of xX and M is a superset of N, then M is also -

neighborhood of x for all xX. 

(iv) If M and N are any two -neighborhoods of xX then MN is also -neighborhood of x 

for all xX. 

Theorem.4. Let us consider (X, ) be a topological space and AX. The set A is a -open 

set if and only if it is a -neighborhood of each of its points. 

Proof. Let (X, ) be a topological space and A be any subset of X. 

If A is -open set then xA and AA.  

Therefore A is neighborhood of each of its points. 

Conversely, let A is a neighborhood of each of its points, then we have  

(i) A=, this implies, it is open. 

(ii) A, then to each xA  

 there exist an open set Ax of x such that 

                          x AxA 



          A={ Ax : xA} 

          A is a union of open sets. 

          A is open.  

 

7.10    Usual Topology or Standard Topology 

 

The term "usual topology" is often used to refer to the standard topology on a particular space, 

especially in contexts where there may be multiple possible topologies under consideration.  

Let R be a set of real numbers and U be the collection of subsets of R and if U satisfies all the 

properties of topology then U is a topology on R and pair (R, U) is called usual topological space 

or standard topological space. 

Theorem.5. Let U be a collection of null set and all those subset of R such that xG there 

exist 0 such that  ]x-, x+[GR. Then show that U is a topology on R. 

Proof. (i) Given that U  and RU   

(because to each xR i.e.,]x-, x+[R) 

(ii) Let G1, G2U. 

Case.1. If G1G2, then G1G2U. 

Case.2. If G1G2, then  

  xG1, xG2 

 there exist 1, 20 such that 



 ]x-1, x+1[G1, ]x-2, x+2[G2 

Let = min(1, 2) 

0 such that ] x-, x+[ G1G2 

 G1G2U. 

(iii) Let {Gi: iI}U. 

Since ]x-, x+[{Gi: iI} 

Also {Gi: iI}{Gi: iI} 

  ]x-, x+[{Gi: iI} 

  {Gi: iI}U 

Hence U is a topology on R. 

Theorem.6. Let f be a mapping from X to Y, where X is a non-empty set and Y is a 

topological space if   is a topology on Y then prove that 1={f-1(G): G} is a topology on 

X. 

Proof. Let us consider 1= {f-1(G): G}.To show that 1 is a topology on X. 

(i) Since  is a topology on Y then  

  Y, , therefore 

  f-1(Y)=X1 

     and f-1()= 1 

Therefore X, 1 



(ii) Let f-1(G1), f
-1(G2)1 

  f-1(G1) f-1(G2)1 

  f-1(G1G2)1 {because G1, G2 G1G2 } 

i.e., it is closed under the operation of finite intersection. 

(iii)Let f-1{Gi  : iI}1 

Using definition of topology, we have 

   f-1{Gi : iI}1 

i.e., it is closed under the operation of arbitrary union. Hence 1 is a topology on X. 

 

7.11    Limit Point 

 

Limit points are important in topology because they tell us about how points in a set relate to 

each other and to the space around them. They help us to understand when a set is closed, which 

is a key concept in topology. Limit points also help us to define when functions are continuous 

and when sets are compact.  

Let (X,) be a topological space and A be a subset of X. Then a point xX is a limit point of A 

if each neighborhood of x contains at least one point of A other than x. 

 

7.12    Derived Set 

 

A derived set, also known as the derived set or set of limit points, of a set A in a topological 

space X is the set of all limit points of A. The derived set is important in topology because it 

helps us to define the closure of a set. The derived set also plays a role in characterizing the 



properties of a set, such as whether it is closed or dense in the space X.A collection of all the 

limit points of a set A is called thederived set of A denoted by or D (A). 

Note. A limit point may or may not belong to the set. 

Theorem.7. Let A and B be subsets of topological space (X, ). Then  

Proof. Let (X, ) be a topological space and A,BX. 

We know that AAB       {AB then } 

BAB     

        ...(1)  

Now to show that  

Let if possible x x and x  

   x is not limit point of A and B 

   there exist a neighborhood Ux which contains no point of A other then x (by definition) and 

Vx which contains no point of B other then x (by definition) 

i.e., x  

Now if x  x  

    Therefore         ...(2) 

Uging (1) and (2), we get  

 

A

  .BABA 




  .


 BAA A B

  .


 BAB

  .


 BABA

BABA  )(

BA  A B

 BA 

BA   BA 

BABA  )(

  .BABA 






Examples 

 

Example.11. Let X= {a, b} and ={X, , {a}, {b}}. Find -neighborhood of (i) a and (ii) b. 

Solution. Given thatX= {a, b} and ={X, , {a}, {b}}. 

(i) -open sets containing a are X, {a} 

            Superset of X is X. 

Superset of {a} are {a}, X. 

Hence -neighborhoods of a are {a}, X. 

(ii) -open sets containing b are X, {b} 

            Superset of X is X. 

Superset of {b} are {b}, X. 

Hence -neighborhoods of b are {b}, X. 

 

Example.12. Let X= {a, b, c, d} and ={X, , {b}, {a, b}, {a, b, d}}. Find -neighborhood of 

(i) a (ii) b and (iii) c. 

Solution. Given thatX= {a, b, c, d} and ={X, , {b}, {a, b}, {a, b, d}}. 

(i) -open set containing a are X, {a, b}, {a, b, d}. 

         Superset of X is X. 

         Superset of {a, b} are {a, b}, {a, b, c}, {a, b, d}, X. 

         Superset of {a, b, d} are {a, b, d}, X. 



         Hence -neighborhoods of a are  

   {a, b}, {a, b, c}, {a, b, d}, X. 

(ii) -open set containing b are X, {b}, {a, b}, {a, b, d}. 

         Superset of X is X. 

         Superset of {b} are {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X. 

         Superset of {a, b, d} are {a, b, d}, X. 

         Hence -neighborhoods of b are  

{b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, X. 

(iii) -open set containing c is X. 

         Superset of X is X. 

         Hence -neighborhoods of c is X. 

Example.13. Let X= {a, b, c} and ={X, , {a},{b}, {c}, {a, b}, {b, c}, {a, c}} is a discrete 

topology on X. Find -neighborhood system of (i) a (ii) b and (iii) c. 

Solution. Given thatX= {a, b, c}  

and ={X, , {a},{b}, {c}, {a, b}, {b, c}, {a, c}} 

(i) -open sets containing a are X, {a}, {a, b}, {a, c} 

-neighborhoods of a are {a}, {a, b}, {a, c}, X. 

Hence neighborhood system of a is 

 a= {{a}, {a, b}, {a, c}, X}. 

(ii) -open sets containing b are  X, {b}, {a, b}, {b, c} 



-neighborhoods of b are {b}, {a, b}, {b, c}, X. 

Hence neighborhood system of b is 

 b= {{b}, {a, b}, {b, c}, X}. 

(iii) -open sets containing c are X, {c}, {a, c}, {b, c} 

-neighborhoods of a are {c}, {a, c}, {b, c}, X. 

Hence neighborhood system of c is 

 c= {{c}, {a, c}, {b, c}, X}. 

Example.14. Let X= {a, b, c, d, e}  and   ={X, , {a}, {a, b}, {a, b, c}, {a, c, d}, {a, b, c, d}, 

{a, b, e}}. Find -neighborhood system of (i) c and (ii) e. 

Solution. Given thatX= {a, b, c, d, e} 

 and ={X, , {a}, {a, b}, {a, b, c}, {a, c, d}, {a, b, c, d}, {a, b, e}}. 

(i) -open set containing c are X, {a, b, c}, {a, c, d}, {a, b, c, d}. 

           Superset of X is X. 

           Superset of {a, b, c} are {a, b, c}, {a, b, c, d}, {a, b, c, e}, X. 

           Superset of {a, c, d} are {a, c, d}, {a, b, c, d}, {a, c, d, e}, X. 

           Superset of {a, b, c, d} are {a, b, c, d}, X. 

 -neighborhoods of c are {a, b, c}, {a, c, d}, {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, X. 

Hence neighborhood system of c is 

  c= {{a, b, c}, {a, c, d}, {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, X}. 

(ii) -open set containing e are X, {a, b, e}. 



          Superset of X is X. 

          Superset of {a, b, e} are {a, b, e}, {a, b, c, e}, {a, b, d, e}, X. 

-neighborhoods of e are a, b, e}, {a, b, c, e}, {a, b, d, e}, X.  

 Hence neighborhood system of e is 

  c= {{a, b, e}, {a, b, c, e}, {a, b, d, e}, X}. 

Example.15. Let X= {a, b, c}, ={X, , {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} and A = {a, b}. Find 

all the limit points of A. 

Solution. Given thatX= {a, b, c}, ={X, , {a},{b}, {c}, {a, b}, {b, c}, {a, c}} 

and A ={a, b}. 

          (i) Neighborhoods of a are X, {a}, {a, b}, {a, c}. 

Here a is not a limit point of A because {a} is singleton and cA. 

(ii) Neighborhoods of b are X, {b}, {a, b}, {b, c}. 

Here b is not a limit point of A because {b} is singleton and cA. 

(iii) Neighborhoods of c are X, {c}, {b, c}, {a, c} 

Here c is not a limit point of A because {c} is singleton. 

Example.16. Let X= {a, b, c}, ={X, , {a}, {a, b}, {a, c}} and A ={a, c}. Find all the limit 

points of A and hence determine . 

Solution. Given thatX= {a, b, c}, ={X, , {a}, {a, b}, {a, c}} and A ={a, c}. 

          (i)  Neighborhoods of a are X, {a}, {a, b}, {a, c}. 

               Here a is not a limit point of A because {a} is singleton. 

A



Neighborhoods of b are  X, {a, b}. 

  Here b is a limit point of A. 

Neighborhoods of c are X, {a, c}. 

                Here c is a limit point of A. 

       (ii) The derived set of A is = {b, c} 

Example.17. Let X= {a, b, c, d, e}, ={X, , {a}, {c, d}, {a, c, d}, {b, c, d, e}} and A={a, b, c} 

Find the derived set of A. 

Solution. Given thatX= {a, b, c, d, e}, ={X, , {a}, {c, d}, {a, c, d}, {b, c, d, e}}  

and A={a, b, c}. 

-neighborhoods of a are X, {a}, {a, c, d}. 

Here a is not a limit point of A because {a} is singleton. 

-neighborhoods of b are X, {b, c, d, e}. 

Here b is a limit point of A. 

-neighborhoods of c are X, {c, d}, {a, c, d}, {b, c, d, e}. 

Here c is not a limit point of A because dA. 

-neighborhoods of d are X, {c, d}, {a, c, d}, {b, c, d, e}. 

Here d is a limit point of A. 

-neighborhoods of e are X, {b, c, d, e} 

Here e is a limit point of A. 

    The derived set of A is i.e., ={b, d, e}. 

A

A



Example.18. Let X= {a, b, c, d, e}, ={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}},  

(i) A ={ c, d, e} and (ii) B={b}. Find and . 

Solution. Given thatX= {a, b, c, d, e},  

={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} 

 (i) It is also given that A ={c, d, e}. 

-neighborhoods of a are X, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}. 

 Here a is not limit point of A because {a} is singleton and bA. 

-neighborhoods of b are X, {a, b}, {a, b, c, d}, {a, b, e}. 

 Here b is not limit point of A because aA. 

-neighborhoods of c are  X, {a, c, d}, {a, b, c, d}. 

Here c is limit point of A. 

-neighborhoods of d are X, {a, c, d}, {a, b, c, d}. 

Here d is limit point of A. 

-neighborhoods of e are X, {a, b, e}. 

Here e is not limit point of A because a, bA. 

        Hence ={c, d}. 

(ii) It is also given that B ={b}. 

        Using (i) we see that a, b, c, and d are not limit point of B. 

-neighborhoods of e are X, {a, b, e} 

A B

A



       Here e is limit point of B. Hence ={e} 

 

7.13    Closed Sets 

 

Closed sets are a fundamental concept in topology that complement the notion of open sets. A 

set is considered closed if it contains all its limit points. In other words, a set is closed if it 

includes the points it converges to.Closed sets is crucial in topology as they help define the 

structure of a space and its relationship with its subsets. They also play a key role in defining 

continuity, compactness, and other important concepts in topology. 

A set A is said to be closed if every limit point of A belong to the set A itself i.e., a set A is said 

to be closed if D(A)A. 

Some properties of closed set 

(i) Every singleton is a closed set. 

(ii) The empty set  is closed for D(). 

(iii) The complements of open sets are closed sets. 

(iv) A closed interval is always a closed set. 

(v) The set A=  is a closed set. 

(vi) The set A= is aclosed set. 
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7.14    Door Space 

A door space is a topological space that has a special type of open set called a "door". In a door 

space, each point has a neighborhood that behaves like a closed interval in the real numbers. 

Let (X,) be a topological space. Then (X,) is said to be door space if every subset of X is 

either open or closed. 

Theorem.8. Prove that the intersection of arbitrary number of closed sets is closed and the 

union of finite number of closed sets is closed. 

Proof. Let {Ai : iI} is a closed set in X.  

To show that {Ai : iI} is closed in X. 

We have {XAi : iI} is open set in X 

{XAi : iI} is open set in X 

Now X{Ai : iI}={XAi : iI} (using demorgan law) 

 X{Ai : iI} is open set in X 

{Ai : iI} is closed set in X. 

   i.e., intersection of arbitrary number of closed sets is closed. 

Now we let {Ai : iJn} is a closed set in X 

To show that {Ai : iJn} is closed in X. 

We have {XAi : iJn} is open set in X 



{XAi : iJn} is open set in X 

X{Ai : iJn} is open set in X (using demorgan law) 

{Ai : iJn} is closed set in X. 

 i.e., union of finite number of closed sets is closed. 

Theorem.9. Prove that in a topological space (X,), a subset Hof X is closed if and only if it 

contains the set of its limit point. 

Proof. Let (X,) be a topological space. Given H is closed if and only if H. 

We will prove this theorem by contradiction method. 

       Let x and suppose if possible xH. 

           Since xH xXH 

       H is closed set   XH is open set. 

Using definition, every open set contains neighborhood of each of its point therefore there exist 

a neighborhood Ux of x such that UxXH 

 Ux contains no point of H 

 x is not limit point of H 

 x  

  

H 

H 

H 

.HH 



   Conversely, suppose  To show that H is closed or XH is open set. 

   Let xXH   xH.  It is also given that  x  

 x is not limit point of H 

 {If AB= then AXB} 

 UxXH 

Using definition, XH is open set 

 H is open set.     Hence His closed if and only if  

Theorem.10. Prove that in a topological space (X,), the union of a set A and the set of its 

limit points is closed i.e., A is closed. 

Proof. Let (X,) be a two topological space and A be any subset of X. To show thatA is 

closed or X(A ) is open set. 

Let x A i.e., xA, x

 x is not limit point of A 

 there exist a neighborhood Ux of x which contains no point of A. 

 UxA= and Ux = 

 Ux(A )= 

 UxX (A ) 

.HH 

HH  H 

 HH

.HH 

A

A

A

A A

A

A

A



 X(A ) is open set because Ux is open set. 

  A is closed. 

 

Examples 

Example.19. Give two examples of a proper non-empty subset of a topological space which 

are both open and closed. 

Solution. (i) Suppose thatX= {a, b, c},  

={X, , {a}, {b, c}} and (X,)  is a topological space.  

We know that every member of - are open sets 

  X, , {a}, {b, c}. 

    And we know that complements of open sets are closed sets 

 , X, {b, c}, {a}. 

    Here X, , {a}, {b, c}are both open and closed. 

   Hence all proper subsets of (X,) are open and closed. 

(ii) Suppose thatX= {a, b, c}, ={X, , {a}, {b}, {c}, {a, b}, {b, c},{a, c}} and (X,)  is a   

      topological space.  

We know that every member of - are open sets 

A

A



  X, , {a}, {b}, {c}, {a, b}, {a, c},{b, c}. 

     And we know that complements of open sets are closed sets 

 , X, {b, c}, {a, c}, {a, b}, {c}, {a}, {b}. 

      Hence each proper subsets of (X,) are open as well as closed. 

 

7.7  Summary 

Let X be a non-empty set and  be a collection of subset of X. Then  is a topology for X, if  the 

following properties are satisfied: (i) X  and . (ii) Let a, b  then ab, hence it is 

closed under the operation of finite intersection. (iii) Let {Ai: iI} then {Ai: iI}, hence 

it is closed under the operation of arbitrary union. 

The members of  are called open sets of the topology  and the pair (X,) is called a topological 

space.There are two types of trivial topology: (i) Indiscrete Topology (ii) Discrete Topology. Let 

X be a non empty set. Then the collection  ={X, }, (consisting of only empty set and the whole 

space) is always a topology for X,  is called the indiscrete topology. The pair (X,) is called an 

indiscrete topological space.  

Let X be a non empty set. Then the collection  = {consisting of all subsets of X} is always a 

topology for X, called the discrete topology. The pair (X,) is called discrete topological space. 

Topologies defined on X other than trivial topology (Indiscrete and Discrete topology) are known 

as non-trivial topologies. 

Let X be a non-empty set and 1, 2 are two topologies on X. Then either 12 and 21, 

the topologies 1 and 2 are comparable. If 12 and 21 then the topologies 1and 2 are 

not comparable.Let X be a non empty set and  be a topology on X. Then every member of  is 



called open set.Let (X,) be a topological space. A subset N of X is said to be a neighborhood 

of a point x if it contains an open set G to with the point xG such that xGN. 

Let R be a set of real numbers and Ube the collection of subset of R and if U satisfies all the 

properties of topology then U is a topology on R and pair (R, U) is called usual topological space 

or standard topological space. 

Let (X,) be a topological space and A be a subset of X. Then a point xX is a limit point of A 

if each neighborhood of x contains at least one point of A other than x.A collection of the limit 

points of a set A is called the derived set of A denoted by or D (A). 

A set A is said to be closed if every limiting point of A belong to the set A itself i.e., A set A is 

said to be closed if D(A)A.Let (X,) be a topological space. Then (X,) is said to be door 

space if every subset of X is either open or closed. 

 

7.8 Terminal Questions 

Q.1. Define the topological space  

Q.2. What do yo mean by trivial and non-trivial topologies ? 

Q.3. Find four mutually non-comparable topologies for X= {a, b, c, d}. 

Q.4. Write all the possible topologies for X= {a, b}. 

Q.5.  Prove that the finite intersection of two topologies on X is again a topology on X. 

Q.6. Prove that the intersection of any number of topologies on X is again a topology on X. 

Q.7. Let X= {a, b, c, d, e} and ={X, , {a}, {a, b}, {a, b, e}, {a, c, d}, {a, b, c, d}}. Find -

A



neighborhood of (i) a (ii) b (iii) c (iv) d and (v) e. 

Q.8. Let X= {a, b, c, d, e} and ={X, , {a}, {c, d}, {a, c, d}, {b, c, d, e}}. Show that  is a 

topology for X and find -closed subset of X. 

Q.9. Let X= {a, b, c} and ={X, , {a}, {b}, {a, b}}. Show that  is a topology for X.  Find all 

the limit point of {a, b}. 

Q.10. Let X= {a, b, c, d, e} and ={X, , {a}, {a, b}, {c, d}, {a, b, c, d}}. Find the derived set 

of each of the following sets: (i) {a, b} (ii) {b, d} (iii) {a, b, c} and (iv) {b, c, d}. 

 

Answers 

Q.3.  1={X, , {a}},   2={X, , {b}},   3={X, , {c}}, 4={X, , {d}}, 

Q.4.  1={X, },   2={X, , {a}},   3={X, , {b}}, 4={X, , {a}, {b}}, 

Q.8. , X, {b, c, d, e}, {a, b, e}, {b, e}, {a}. 

Q.9.  

Q.10.(i) {b, e}  (ii) {c, e}      (iii) {b, e}   (iv) {c, d, e}. 
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8.7 Boundary Points 

8.8 Dense Set 

8.9 Summary 

8.10 Terminal Questions 



8.1 Introduction 

In topology, the closure of a set is a fundamental concept that describes the behavior of points 

near the set. The closure of a set can also be defined in terms of the interior of the complement 

of the set. The closure of a set helps in characterizing the behavior of sequences and functions in 

topology, and it plays a crucial role in defining many other concepts, such as closed sets, limit 

points, and continuity of functions. Topology provides a framework for studying geometric 

properties of spaces, such as shape, size, and dimension, without being restricted to specific 

metrics or coordinate systems. It helps in understanding and formalizing concepts related to 

continuity, convergence, and connectedness, which are fundamental in analysis and calculus.  

Many concepts in network theory and graph theory are closely related to topology, making it a 

valuable tool in understanding the structure of complex networks. The importance of topology 

lies in its ability to provide a unified framework for understanding the structure of spaces, making 

it a fundamental area of study with diverse applications across various disciplines. 

 

8.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Closure of a set and properties of closure of a set 

 Separated Set 

 Interior points and the Interior of a Set and their properties 

 Exterior of a Set 

 Boundary Points or Frontier Points 

 Dense Set 

 



8.3 Closure of a Set 

 

The concept of closure is fundamental in topology as it helps define closed sets and provides a 

way to understand the behavior of sets and points in a topological space. 

Let (X,) be a topological space and A be a subsets of X. Then the closure of A, denoted by , 

is defined as 

= {all -closed subsets of X containing A} 

or c(A) is the smallest -closed set of X that contains A. 

Some properties of closure of a set 

(i) A set A is closed set if and only if =A. 

(ii)  is the smallest closed set containing A. 

(iii)  

(iv) =AD(A). 

(v)  

 

8.4 Separated Set 

 

Let (X,) be a topological space and A, B be any non-empty subsets of X. Then A and B are 

said to be separated set if  

(i)A =  (ii) B=. 

 

A

A

A

A

. 

A

.BABA 

B A



Theorem.1. Let (X,) be a topological space and A, BX. Then (i)  (ii) A   (iii) 

AB (iv) AB  . 

Proof. Given that (X,) is a topological space and A, BX. 

 (i)Since  is closed  . 

 (ii)Using definition of closure,  is the smallest closed set containing A. So  A . 

 (iii) Let AB then  

        AB  i.e., A   {using (ii)} 

    Since closure of any set is closed and so is closed set containing A. Also  is the 

smallest closed set containing A. Consequently . 

 (iv)Let x  

 x is a limit point of A 

    We have AB 

 x is a limit point of B 

Then x   . 

Theorem.2. Let (X,) be a topological space and A, B X. Then 

(i) (ii) . 

Proof. Given that (X,) is a topological space and A, BX. 

(i) We know that ABA, ABB 

  A

BA A B

 

A A

B B

B A

BA

A

B A B

BABA  BABA 



  

 . 

(ii) We know that AAB, BAB 

  

                                                      …(1) 

We have A ,  

 AB  

Since , are closed  

 is closed. 

Now let is a closed set containing AB. Also is the smallest closed set 

containing AB, Consequently 

                                                  …(2) 

Hence from (1) and (2), we get  

 

Examples 

 

Example.1. Let X= {a, b, c, d}, ={X, , {a}, {b, c}, {a, d}, {a, b, c}}. Find the closure of  

(i) A ={b},  (ii) B={a, b} and (iii) C={b, c, d}.  

BBAABA  ,

BABA 

BABBAA  ,

BABA 

A BB

BA

A B

BA

BA BA

BABA 

.BABA 



Solution. Given thatX= {a, b, c, d},  

={X, , {a}, {b, c}, {a, d}, {a, b, c}}. 

-open sets are X, , {a}, {b, c}, {a, d}, {a, b, c}. 

-closed sets are , X, {b, c, d}, {a, d}, {b, c}, {d}. 

    (i) It is also given that A = {b}. 

The closure of A is 

={all -closed subsets of X containing A} 

   = {X, {b, c, d}, {b, c}} 

     = {b, c}. 

     (ii) It is also given that B = {a, b}. 

The closure of B is 

={all -closed subsets of X containing B} 

   = {X} 

     = X. 

     (iii) It is also given that C = {b, c, d}. 

The closure of C is 

={all -closed subsets of X containing C} 

   = {X, {b, c, d}} 

     = {b, c, d}. 

A

B

C



Example.2. Let X= {a, b, c, d, e} and ={X, , {a}, {c, d}, {a, c, d}, {a, c, d, e}}. Find the 

closure of (i) A = {b, c}, (ii) B= {a, c}, (iii) C={a, b, c} and (iv) D={d}. 

Solution. Given thatX= {a, b, c, d, e} 

and ={X, , {a}, {c, d}, {a, c, d}, {a, c, d, e}}. 

-closed sets are , X, {b, c, d, e}, {a, b, e}, {b, e} {b}. 

  (i) It is also given that A = {b, c}. 

= {all -closed subsets of X containing A} 

    = {X, {b, c, d, e} 

    = {b, c, d, e}. 

  (ii) It is also given that B = {a, c}. 

= {all -closed subsets of X containing B} 

    = {X} 

    = X. 

 (iii) It is also given that C = {a, b, c}. 

= {all -closed subsets of X containing C} 

    = {X} 

    = X. 

 (iv) It is also given that D = {d}. 

= {all -closed subsets of X containing D} 

A

B

C

D



    = {X, {b, c, d, e} 

    = {b, c, d, e}. 

 

8.5 Interior Points and Interior of a Set 

Interior points of a set play a crucial role in topology, particularly in defining the openness of 

sets and understanding the structure of topological spaces. An interior point of a set is a point 

that has an open neighborhood entirely contained within the set. 

Let (X,) be a topological space and A be any subset of X. A point xA is said to be an interior 

point of A if and only if A is a neighborhood of x. The collection of all interior point of a set is 

called theinterior of A and denoted by A0 or int(A) and defined as  

A0= {all -open subset of X contained in A} 

Some properties of interior of a set 

(i) A set A is open set if and only if A0=A. 

(ii) A0 is the largest open set contained in A. 

(iii)  

(iv) X0=X. 

(v) ABA0B0. 

(vi) A0B0(AB)0. 

(vii) (AB)0=A0B0. 

(viii) =X-A0. 

Theorem.3. Let (X, ) be a topological space and AX. Then show that A is open if and 

only if   

Proof. Given that (X,) is a topological space and AX. 

.0  

A-X

.0 AA 



Suppose that A is open, therefore A0 is itself largest open subset of A. 

 A0=A. 

Conversely, let A0=A. To show that A is open. 

Because A0 is open therefore A is open (by definition). 

Hence A0=A. 

Theorem.4.  Let (X,) be a topological space and A, BX. Then (i) AB

(ii)(AB)0=A0B0 (iii)(A0B0)(AB)0 and (iv) (AB)0A0 B0 . 

Proof. Given that (X,) is a topological space and A, BX. 

(i) Let xA0 A is a neighborhood of x (by definition) 

     Given AB B is a neighborhood of x 

 x is interior point of B 

 xB0 

   Hence AB  

(ii) We have ABA 

 (AB)0A0 

Similarly, (AB)0B0 

(AB)0A0B0                                                      …(1) 

Now to show that A0B0(AB)0 

AA0     (A contained A0)  

00 BA 

.00 BA 



BB0      (B contained B0)      

 ABA0B0 

A0B0 AB 

(A0B0)0 (AB)0 

(A0B0) (AB)0        {because A0A}         ...(2) 

(iii) We have AAB 

 A0(AB)0   (by definition) 

Similarly, BAB 

 B0(AB)0   (by definition) 

A0B0(AB)0 

(iv) using (iii), we have  A0B0(AB)0 

       But here to show that (AB)0A0B0 

We proof this using an example. 

       Let A =[0,1[, and B=[1, 2[ 

       Then A0=]0, 1[, B0=]1, 2[ 

       (AB)0=]0, 2[                                         ….(3) 

      AB=[0, 2[ 

       A0B0=]0, 1[]1, 2[ =]0, 2[-{1}            …(4) 

     Using (3) and (4), we show that  

           (AB)0A0 B0 . 



8.6 Exterior of a Set 

 

The exterior of a set in topology is the set of all points in the topological space that do not belong 

to the closure of the given set.  

Let (X,) be a topological space and A be any subset of X. The set of all those point of A which 

are interior to  X-A  is called theexterior of A and denoted by ext(A) or   (X-A)0  and defined as  

ext(A) =(X-A)0 or X-  

i.e., exterior of A is the complement of closure of A. 

 

8.7 Boundary Points 

 

Boundary points are points that are neither entirely in the interior of a set nor entirely in the 

exterior of the set. In other words, a point is a boundary point of a set if every neighborhood of 

the point contains points both inside and outside the set. 

Let (X,) be a topological space and A be any subset of X. The boundary or frontier of the set 

A in (X,) is the set of all those points which do not belong to the interior or exterior of A and 

is denoted by b(A) or   Fr(A)and defined as  

b =[A0( )0] or  -A0
and =A0b(A). 

 

8.8 Dense Set 

Dense sets are important in topology because they provide a way to approximate any point in a 

space using points from the dense set. For example, the set of rational numbers is dense in the 

real numbers, as every interval contains rational numbers. Similarly, the set of real numbers is 

dense in the complex numbers. 

A

 A A A A A



Let (X,) be a topological space and A be any subset of X. If = X, then A is said to be dense 

in X. 

 

Examples 

Example.3. Let X= {a, b, c, d, e} and ={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} and 

A={c, d, e}. Find the (i) closed set, (ii) closure, (iii) interior and (iv) exterior of A. 

Solution. Given thatX= {a, b, c, d, e} 

and ={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}. 

  (i) We know that every member of  is a open set. 

 X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e} 

-closed sets are , X, {b, c, d, e}, {c, d, e}, {b, e}, {e}, {c, d}. 

  (ii)The closure of A is 

={all -closed subsets of X containing A} 

   = {X, {b, c, d, e}, {c, d, e}} 

     = {c, d, e}. 

  (iii)The interior of A is 

 A0= {all -open subsets of X contained in A} 

     = {} 

A

A



    = . 

    (iv)The exterior of A is 

    ext(A) = {all -open subsets of X contained in X-A} 

      = {, {a}, {a, b}} 

     = {a, b}. 

Example.4. Let X= {a, b, c} and ={X, , {a}, {b}, {a, b}}. Find the limit point, closure, 

interior, exterior and boundary points of the following subsets of X:  

(i) A= {a, c} (ii) B= {b, c}. 

Solution. Given thatX= {a, b, c}and ={X, , {a}, {b}, {a, b}}. 

-closed sets are , X, {b, c}, {a, c}, {c}. 

   (i) It is also given that A = {a, c}. 

-neighborhoods of a are X, {a}, {a, b}. 

     Here a is not limit point of A because {a} is singleton and bA. 

-neighborhoods of b are X, {b}, {a, b}. 

     Here b is not limit point of A because {b} is singleton. 

-neighborhood of c is X. 

                Here c is limit point of A 



       The closure of A is 

={all -closed subsets of X containing A} 

   = {X, {a, c}} 

     = {a, c}. 

       The interior of A is 

 A0= {all -open subsets of X contained in A} 

     = {, {a}} 

    ={a} 

       The exterior of A is 

    ext(A) ={all -open subsets of X contained in X-A} 

      = {, {b}} 

     ={b} 

       The boundary of A is 

b(A) = {The set of all those elements of A which neither belong to A0 nor to  

              ext(A) i.e., {c}} 

            = {c}. 

A



      (i) It is also given that B = {b, c}. 

-neighborhoods of a are X, {a}, {a, b}. 

       Here a is not limit point of A because {a} is singleton. 

-neighborhoods of b are X, {b}, {a, b}. 

         Here b is not limit point of A because {b} is singleton. 

-neighborhoods of c is X. 

                   Here c is limit point of B. 

The closure of B is 

={all -closed subsets of X containing B} 

   = {X, {b, c}} 

     = {b, c}. 

The interior of B is 

 B0= {all -open subsets of X contained in B} 

     = {, {b}} 

    = {b} 

The exterior of B is 

B



      ext(B) = {all -open subsets of X contained in X-B} 

      = {, {a}} 

     = {a} 

The boundary of B is 

     b(B) = {The set of all those elements of A which neither belong to B0 nor to  

                  ext(B) i.e., {c}} 

                 = {c}. 

Example.5. Consider the following topology on X= {a, b, c, d, e} and  

={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}.  

Find (i) Determine the closure of the sets {a}, {b} and {c, e}. 

(ii) Which set in (i) are dense in X. 

Solution. Given thatX= {a, b, c, d, e} 

and ={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}. 

-closed sets are , X, {b, c, d, e}, {c, d, e}, {b, e}, {e}, {c, d}. 

(i) The closure of {a}, denoted by  

={all -closed subsets of X containing {a}} 

1A

1A



   = {X} 

                 = X. 

Hence =X. 

    The closure of {b}, denoted by  

={all -closed subsets of X containing {b}} 

   = {X, {b, c, d, e}, {b, e}} 

    = {b, e}. 

Hence = {b, e}. 

    The closure of {c, e}, denoted by  

   = {all -closed subsets of X containing {c, e}} 

   = {X, {b, c, d, e}, {c, d, e}} 

       = {c, d, e}. 

Hence ={c, d, e}. 

(ii) We know that any set A is dense in X if = X. 

Here = {a} in the given dense set in X because =X. 

1A

2A

2A

2A

3A

3A

3A

A

1A 1A



8.9  Summary 

Let (X,) be a topological space and A be any subset of X. Then closure of A, denoted by , 

defined as = {all -closed subset of X containing A}. 

Let (X,) be a topological space and A, B be any non-empty subsets of X. Then A and B are 

said to be separated set if (i)A = (ii) B=. 

Let (X,) be a topological space and A be any subset of X. A point xA is said to be an interior 

point of A if and only if A is a neighborhood of x. The collection of all interior point of the set 

A is called the interior of A and denoted by A0 or int(A) and defined as  

A0= {all -open subsets of X contained in A} 

Let (X,) be a topological space and A be any subset of X. The set of all those points of A which 

are interior to  X-A  is called theexterior of A and denoted by ext(A) or   (X-A)0  and defined as 

ext(A) =(X-A)0 or X- . 

Let (X,) be a topological space and A be any subset of X. The boundary or frontier of a set in 

(X,) is the set of all those points which do not belong to the interior or exterior of A and is 

denoted by b(A) or   Fr(A)and defined as  

b =[A0( )0]or  -A0
  and =A0b(A). 

Let (X,) be a topological space and A be any subset of X. If = X, then A is said to be dense 

in X. 
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8.10 Terminal Questions 

Q.1. Explain the closure of a set with their properties. 

Q.2. Define the Interior points and the interior of a set. 

Q.3. What do you mean by Exterior of a set  and Boundary points? 

Q.4. To show that  

Q.5. Let (X, ) be a topological space and let AX. Then (i) If A is open, then b (A)=

(ii) b(A) = if and only if A is open as well as closed. 

(iii) A is closed if and only if b(A)A. 

(iv) A is open if and only if Ab(A)=, i.e., if and only if b(A)  

Q.6. Let (X, ) be a topological space and let A, BX. To show that ext(A)ext(B). 

Q.7. Let X= {a, b, c, d, e}, ={X, , {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}} and A={a, b, 

c}. Find (i) Closed set, (ii) Closure, (iii) Interior (iv) Exterior of A and (v) Boundary point. 

Answer 

7. (i) , X, {b, c, d, e}, {c, d, e}, {b, e}, {e}, {c, d}.       (ii) X    

(iii) {a, b}     (iv)        (v) {c}. 

.BABA 

.AA 
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9.1 Introduction 

 

Bases and subbases play a crucial role in defining the topology of a space and understanding its 

properties. In topology, a base (or basis) and a subbase are fundamental concepts used to define 

the topology of a space. Both bases and subbases provide a way to generate a topology on a set 

by specifying a smaller collection of sets that behave nicely with respect to unions and 

intersections. By specifying a base or subbase, one can generate the open sets of the topology 

without needing to explicitly list all open sets, which can be cumbersome for more complex 

spaces. In analysis and geometry, bases and subbases are used to define topologies on spaces 

such as the real numbers or metric spaces. They provide a way to study the properties of these 

spaces using concepts from general topology. Hence the bases and subbases are foundational 

concepts in topology that help define, characterize, and study the properties of topological spaces 

in a concise and systematic manner. 

 

9.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Relative Topology and their applications 

 Subspace and Base for a topology,  

 Sub-bases and Local base,  

 First Countable Space and Second Countable Space,  

 Topologies Generated by Classes of Sets,  

 Separable Space, Cover of a Space and Lindelof Space 

 



9.3 Relative Topology 

 

Relative topology is important in various areas of mathematics, including topology, analysis, and 

geometry.  Relative topology allows for the study of properties of subsets of a space without 

considering the entire space.  Hence the relative topology provides a framework for studying 

subsets of spaces in relation to the larger space's topology, enabling deeper insights into the 

structure and properties of spaces in various mathematical contexts.Let be a topological 

space and be a subset of . The family v of all subsets which are intersection of with 

member of i.e., 

     

or      

is called relative topology on . 

 

 

9.4 Subspace 

 

Subspaces are fundamental objects in mathematics with a wide range of applications in various 

areas of mathematics and its applications.Let be a topological space. If v is a relative 

topology for a subset of then the corresponding topological space is called a subspace 

of . 

 

Examples 

 

Example.1: Let and be a topology for . Find the 

relative topology of where . 

 ,X 

Y X Y



 every member of v Y  

 :v Y A A  

Y

 ,X 

Y X  ,Y v

 ,X 

 ,X a b     , , ,X a b  X

,A X  A a



Solution: Given that  

And    . 

We have  and  

Hence, the relative topology for  is 

    . 

Example 2: Let and to 

be a topology for Let be a subset of Find the relative topology and 

subspace for . 

Solution: Given that   

   

And    

We have   

     

    

    

    

And     

Hence, the relative topology for A is  

    , , , ,X a b X b  

 A a

   ; ;X A A A a A a        b A  

v A

 ,v A 

 1,2,3,4,5X          , , 1 , 3,4 , 1,3,4 , 2,3,4,5X 

.X  1,4,5A  .X

A

 1,2,3,4,5X 

        , , 1 , 3,4 , 1,3,4 , 2,3,4,5X  

 1,4,5A 

;X A A 

;A  

   1 1 ;A 

   3,4 4 ;A 

   1,3,4 1,4A 

   2,3,4,5 4,5A 

v



    

And is a subspace of . 

 

Example 3: Let and 

be a topology for Let be a subset of . Find the relative topology for .  

Solution: Given that ,  

 

and     

We have    

    

    

    

    

    

 And    

Hence, the relavtive topology  for is  

    

Theorem 1: To show that relative topology is a topology for . 

        , , 1 , 4 , 1,4 , 4,5v A 

 ,A v  ,X 

 , , , ,X a b c d e           , , , , , , , , , , , , , ,X a a b a c b a b c d a b e 

.X  , ,A a c e X A

 , , , ,X a b c d e

          , , , , , , , , , , , , , ,X a a b a c d a b c d a b e 

 , ,A a c e

;X A A 

;A  

   ;a A a 

   , ;a b A a 

   , , , ;a c d A a c 

   , , , , ;a b c d A a c 

   , , , ;a b e A a e 

v A

      , , , , , ,v A a a c a e

v Y



Proof: let be a topological space and . Let be a relative topology for of .  

(1) Since    therefore . 

and    therefore  

(2) Let    

To show that  

Let     

     

We have    

    

   every member of  

    

Hence , it is closed under the operation of finite intersection. 

(3) Let  

To show that    

We have  

     

     

      

 ,X  Y X v Y X

,Y X Y  Y v

,Y    v

,A B v  every member of v Y    

A B v 

;A Y C C  

;B Y D D  

   AB Y C Y D   

  since , ,Y C D C D   

Y  

 A B v  

 :iA i I v 

 :iU A i I v 

;i i iA Y U U  

   : :i iU A i I U Y U i I    

 :iY U i I  



Since and is a topology on  

     

     

Therefore,     

i.e., it is closed under the operation of arbitrary union. Hence, is a subspace of , 

which is called relative topology. 

Theorem 2: Let be a subspace of and be a subspace of . Then 

is a subspace of . 

Proof: Given that be a subspace of  

       …(1) 

And is a subspace of  

        …(2) 

From (1) and (2), we have  

. 

Now to show that  is a subspace of if and only if 

Let since is a subspace of there exist such that  

    

Also is a subspace of there exists such that 

    

iU   X

iU 

 [ :iY U i I v    

 :iA i I v  

 ,Y v  ,X 

 ,Y v  ,X   ,Z   ,Y v

 ,Z   ,X 

 ,Y v  ,X 

Y X 

 ,Z   ,Y v

 X Y

Z X

 ,Z   ,X  .z    is topology for Zz

,G   ,Z   ,Y v H v

G H Z 

 ,Y v  ,X  A

H A Y 



Hence,      

    

    

      

Using definition of topology, we have 

 

        …(3) 

Conversely, let then by the definition of thereexist such that 

    

Since is a subspace of we have 

    

Also is a subspace of we have 

    

    

But  

        …(4) 

From equations and , we have . 

 

G H Z 

 A Y Z  

 A Y Z  

A Z   Z Y

z

 z  

zN  z A

N A Z 

 ,Y v  , ,X 

A Y v 

 ,Z   ,Y v

 A Y Z   

A Z   

N A Z N    

z  

 3  4 z  



9.5 Base for a Topology 

The concept of a base for a topology is important in topology and has several applications. Bases 

can simplify the study of topological properties. Instead of considering all open sets in a 

topology, one can often work with a base and still deduce many properties of the space. This can 

lead to more efficient proofs and calculations. 

Let be any topological space. Let be a collection of subsets of such that: 

(i) or subclass of  

(ii) For each and for all neighborhoods of  there exist a member such that  

. 

Then is called a base for topology . 

or 

Note:Let be any topological space. Then is said to be a base for the topology on 

if for this implies thereexist such that . 

 

Examples 

Example.4: Let and be a 

topology for If then show that is a base for . 

Solution: Given that . 

    

And    

 ,X  B X

B   

x X N x B 

x B N 

B 

 ,X  B  ,X

x G  B  x B G 

 , ,X a b c             , , , , , , , , , ,X a b c a b a c b c 

.X       , ,a b c   

 , ,X a b c

            , , , , , , , , , ,X a b c a b a c b c 

      , ,a b c 



To show that is a base for topology . 

(1)  

(2) First we find neighbourhood of and . We have 

 

and          

 

Here  or or  

  or  or  

 or  or  

Hence, for all there exist a member in such that 

   neighbourhood of . 

Therefore, is a base for topology . 

Example.5: Let and be a 

topology for . Show that is a base for . 

Solution: Given that  

   

And     

To show that is a base for topology . 

 

  

,a b c

      , , , , ,a a a b a c X 

      , , , , ,b b a b b c X 

      , , , , ,c c a c b c X 

 a a X     ,a a a b     ,a a a c 

 b a X     ,b b a b     ,b b b c 

 c c X     ,c c a c     ,c c b c 

x X  x 

 x x N   N X

 

 1,2,3,4X              , , 1 , 2 , 1,.2 , 3,4 , 1,3,4 , 2,3,4X  

X       1 , 2 , 3,4  

 1,2,3,4X 

            , , 1 , 2 , 1,2 , 3,4 , 1,3,4 , 2,3,4X  

      1 , 2 , 3,4 

 



(1)  

(2) First we find neighbourhood of and  we have 

 

  each neighbourhood of 1 

i.e., here  

 

  each neighbourhood of 2 

i.e., here  

to find neighbourhood of 3, we have 

  open set containing 3 are  

Superset of is . 

Superset of is . 

Superset of is  

Superset of is . 

            =    

   each neighbourhood of 3  

i.e., here  

  

1,2,3 4,

              1 1 , 1,2 , 1,3 , 1,4 , 1,2,3 , 1,2,4 , 1,3,4 , X 

 1 1  

 1 

              2 1 , 1,2 , 2,3 , 2,4 , 2,3,4 , 1,2,3 , 1,2,4 , X 

 2 2 

 2 

      , 3,4 , 1,3,4 , 2,3,4X

X X

 3,4      3,4 , 1,3,4 , 2,3,4

 1,3, 4  1,3,4 .X

 2,3, 4  2,3, 4 , X

      3,4 , 1,3,4 , 2,3,4 , X

 3 3,4 

 3,4 



Similarly,          =  

 3 

i.e., here  

Hence for all there exist a member or is such that  

  or neighourhood of  

Therefore is a base for topology  

Theorem 3: Let be a topological space and then is a base for iff each open 

set can be expressed as the union of member of . 

Proof: Assume that is a base for . Let be an open set. 

Let . Since is open set then is a neighborhood of therefore using definition of base 

thereexist a member such that 

   

 and  

i.e., each open set is the union of member of . 

 Conversely, suppose that each open set can be expressed as the union of member of 

.Now to show that is a base for . 

 It is given . Let be any neighborhood of then using definition of 

      3,4 , 1,3,4 , 2,3,4 , X

 4 3,4 each neighbourhood of   

 3,4 

x X  x  ,x y 

 x x  ,x y N  N X

 

 ,X      



  G

x G G G x

 B 

,x B G x G   

 :G B B    B G





 

   N x



neighborhood, there exist an open set such that 

     

    

By assumption, for at least one . Therefore is a base for .  

Theorem 4: Let be a topological space and is a base for topology . Then show 

that  for all there exist such that 

(2) For all and every point there exist such that 

    

i.e., the intersection of any two member of is a union of member of . 

Proof: Given that be topological space and is a base for topology . 

(1) Since is a open set then it is the neighborhood of each of its point then using definition 

of the base for every there exist some such that i.e.,  

 

(2) Let then and  are open sets. 

is open set. 

is the neighbourhood of each of its point 

There exsit some such that i.e., the intersection of any two member of 

G

x G N 

 :x B B N   

,x B N  B   

 ,X   

(1) x X B 

1 2,B B  1 2x B B  B 

1 2x B B B  

B 

 ,X   

X

x X B  x B X 

 :X B B   

1 2, ,B B  1B 2B

1 2B B 

1 2B B 

 B  1 2x B B B  



is a union of member of is a union of member of . 

 

9.6 Sub-bases and Local Base 

Sub-bases and local bases are important concepts in topology because they provide ways to 

describe topologies in terms of simpler collections of sets (sub-bases) or to understand the local 

structure of a space around a point (local bases). 

Let be a topological space. A family of subsets of is called a subbase for the 

topology if and only if finite intersections of members of form a base for . 

Let be a topological space. A class of open sets containing is said to be a local base 

at (or base for the neighborhood system of ) if and only if for each open set G containing 

. There exist with . 

 

9.7 First Countable and Second Countable Space 

First countable and second countable spaces are important concepts in topology because they 

provide useful properties that simplify the study and characterization of topological spaces. 

A topological space is said to be the first countable space if and only if every point 

has a countable local base. 

A topological space is said to be second countable space if and only if there exist a 

countable base for the topology . 

 

 B 

 ,X   X

  

 ,X  x x

x x

x x xG B xx G G 

 ,X  x X

 ,X 

 



9.8 Topologies Generated by Classes of Sets 

In topology, topologies can be generated by different classes of sets, such as bases, sub-bases, 

and local bases.Let be a non-empty set and be a non-empty collection of subsets of . 

Then the collection always generates a topology on .  

 

Examples 

Example.6: Let  and . Find the topology on 

generated by . 

Solution: Given that and  

The collection of all finite intersections of sets in is denoted by  

   

Using definition of base . The union of member of gives the class  

 which is the topology on  

generated by  

Theorem 5: Prove that every discrete space is a first countable space. 

Proof: Let  be a discrete topological space. We know that in a discrete topological space 

every subset of is open. Hence, if then is open and contained in every open set 

which contains . Therefore is a first countable space. 

Theorem 6: Prove that each second countable space is a first countable space. 

X A X

A X

 , , , ,X a b c d e A       , , , , , ,a b c c d d e

X A

 , , , ,X a b c d e       , , , , , , ,A a b c c d d e

A

         , , , , , , , , , , }a b c c d d e c d X 

 X  

             { , , , , , , , , , , , , , , , ,X c d a b c c d d e a b c d c d e  X

A

 ,X 

X x X  x G

x  ,X 



Proof: Let be a second countable space and be a countable base for . Let be the 

subfamily of which contains . Then is countable because is countable. Now to show 

that is the local base at .  

Let is the neighbouhood of and an open set  i.e., 

    

    

    

   some  

    

   is countable local base at . Since is arbitrary. 

The given space is first countable space. 

 

9.9 Separable Space 

A separable space is a topological space that contains a countable, dense subset.Separable spaces 

are often used as a convenient assumption in various theorems and proofs. Many important 

spaces studied in topology, such as separable metric spaces, are separable. 

Let be a topological space. Then ) is said to be separable space if and only if there 

exist a finite countable dense subsets of . 

 ,X    

 x  

 x

xN x x G

xx G N  

xx N  

 :i iN N  

x  i xN G N  

x G 

 x x

 ,X  ( ,X 

X



Note:Let be a topological space. Then  is said to be separable space iff there exist 

a finite countable subsets of such that . 

 

9.10 Cover of A Space 

In topology, a cover of a topological space X is a collection of subsets of X whose union contains 

X as a subset.Let be a topological space and A family of subsets of is a 

cover for if and only if 

    

And if such that is also a cover for then  is a subcover of . 

9.11 Lindelöf Space 

A Lindelöf space is a topological space in which every open cover has a countable 

subcover.Lindelöf spaces are a generalization of countably compact spaces, which are spaces in 

which every countable open cover has a finite subcover. Countably compact spaces are important 

in their own right, and Lindelöf spaces provide a broader class of spaces with similar 

properties.Let be a topological space. Then is said to be Lindelöf space if and 

only if every open cover of has a countable subcover. 

Theorem 7: Prove that every second countable space is separable. 

Proof: Let be a second countable space. 

To show that is separable space. 

Since the given space is second countable, so there exist a countable base . We take a 

 ,X   ,X 

A X A X

 ,X  .A X A X

 ,X 

 :v v X  

A   X  A

 ,X   ,X 

X

 ,X 

 ,X 

 for  



point from each member of . Let the collection of each point is denoted by  then is 

countable because is countable. 

Now to show that is dense in Let and is any neighbourhood of . Since is base 

then       

 

Using definition of such that 

     

Thus, contains a point of this set other than i.e., is limit point . 

Since is arbitrary point than all the points of set are limit point, i.e.,  

    

Hence, is countable dense subset of . Therefore is separable. 

Theorem 8: Every second countable space is Lindelof. 

or 

Every open cover of a second countable space is reducible to a countable sub-cover. 

Proof: Let be a second countable space and be a countable base for . Let be an 

open cover of . 

To show that has a countable subcover, i.e., each member of is expressible as a union of 

member of . Suppose is the set of all those members of which are actually required in 

expressing members of as union of members of .  

Therefore  is countable and is a cover of  i.e., is a countable open copver of . For each 

choose a such that 

b B  A A



A .X x X N x 

x B N 

,A b A

b B N 

N A x x A

x A

A X

A X  ,X 

 ,X    C

X

C C

 A 

C 

A X A X

iA A iC C



    

i.e., the collection of these  is also a countable open cover of . So has a countable 

subcover. Hence, is a Lindelof space. 

 

9.12  Summary 

Let be a topological space and be a subset of . The family v of all subsets which are 

intersection of with member of i.e., 

  or  

is called relative topology on . 

Let be a topological space. If v is a relative topology for a subset of then the 

corresponding topological space is called a subspace of . 

Let be any topological space. Then is said to be a base for the topology on if for 

this implies thereexist such that  

Let be a topological space. A family of subsets of is called a subbase for the 

topology if and only if finite intersections of members of form a base for . 

Let be a topological space. A class of open sets containing is said to be a local base 

at (or base for the neighbourhood system of ) if and only if for each open set G containing 

. There exist with . 

A topological space is said to be the first countable space if and only if every point 

i iA C

iC X A

 ,X 

 ,X  Y X

Y 

 every member of v Y    :v Y A A  

Y

 ,X  Y X

 ,Y v  ,X 

 ,X  B  ,X

x G  B  x B G 

 ,X   X

  

 ,X  x x

x x

x x xG B xx G G 

 ,X  x X



has a countable local base. 

A topological space is said to be second countable space if and only if there exist a 

countable base for the topology . 

Let be a non-empty set and be a non-empty collection of subset of . Then the collection 

always generates a topology on .  

Let be a topological space. Then  is said to be separable space iff there exist a 

finite countable subset of such that . 

Let be a topological space and A family of subset of is a cover for 

if and only if  and if such that is also a cover for then is a 

subcover of . 

Let be a topological space. Then is said to be lindelof space if and only if every 

open cover of has a countable subcover. 

 

9.13 Terminal Questions 

Q.1. Explain the relative topology and subspace with example. 

Q.2. Show that every subspace of a discrete space is also discrete. 

Q.3.Let be a subspace of if is open in and is open in then is open in . 

Q.4. Let and be a 

topology for . Find the relative topology  for the subset of . 

 ,X 

 

X A X

A X

 ,X   ,X 

A X A X

 ,X  .A X A X  ,X 

 :v v X   A   X 

A

 ,X   ,X 

X

Y X U Y Y X U X

 , , , ,X a b c d e           , , , , , , , , , , , ,X a b a b a d e a b d e 

X v  , ,A a b c X



Q.5. Let and be a 

topology for . Let be a subset of . Find the relative topology for . 

Q.6. Prove that every finite space is also first countable. 

Q.7. Let and be a 

topology for . Show that is a base for . 

Q.8. Let and . Find the topology on 

generated by . 

Answers:  

4. . 

5. . 

8. . 

 

 

 

 

 

 

 , , , ,X a b c d e         , , , , , , , , , , ,X a c d a c d b c d e 

X A  , ,a d e X A

 , , ,X a b c d            , , , , , , , , , , , ,X a b a b c d a c d b c d 

X       , , ,a b c d  

 , , , ,X a b c d e       , , , , , ,A a b b c a d e X

A

      , , , , ,v A a b a b

        , , , , , , ,v A a d a d d e

              , , , , , , , , , , , , , , , , ,X a b a b b c a b c a d e a b d e 
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10.1 Introduction 

 

Continuous maps and homeomorphisms are fundamental in topology for understanding the 

relationships between various topological spaces. Homeomorphisms are particularly significant 

as they identify spaces that are "topologically equivalent" or "topologically the same," indicating 

they share identical topological properties despite potentially differing geometric characteristics. 

In topology, homeomorphic spaces are often regarded as equivalent because many key 

topological properties, such as connectedness, compactness, and continuity, remain unchanged 

under homeomorphisms. By utilizing continuous maps and homeomorphisms, it becomes 

possible to compare and categorize different topological spaces based solely on their topological 

properties, independent of their specific geometric or metric attributes.  

Hence these concepts provide a foundational understanding of the structure and behavior of 

spaces in topology. 

 

10.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Continuous Function 

 Open Mapping and Closed Mapping 

 Bicontinuous Mapping, Bijective Mapping 

 Sequential Continuity 

 The pasting Lemma 

 Homeomorphism 

 

 



10.3  Continuous Function 

 

 

The term "topology" is used in two distinct ways: to refer to the mathematical discipline itself, 

and to describe a family of sets with specific properties that are used to define a topological 

space—an essential concept in topology. Continuous functions are the most important mappings 

between topological spaces, as they are used to define homeomorphisms that establish the 

equivalence of two spaces. 

Let and  be two topological spaces. A function is said to be 

continuous at the point if thereexist a neighborhood such that where is 

the neighborhood of . 

 

or 

 

Suppose and are two topological spaces; let be a function. Then is 

said to be continuous if it continuous at each point of .  

 

            

            

            

            

             

Theorem 1: Let be a mapping. Then is continuous if and only if the 

inverse image of every open set in is open in . 

 ,X   ,Y v    : , ,f X Y v 

x X xU   ,f U V V

 f x

 ,X   ,Y v :f X Y f

X

   : , ,f X Y v  f

Y X



Proof: Let be a continuous. Let  is any open set in  

            

            

            

            

       

 

To show that is open set in . 

(1) If it is open set 

(2) If then there exist  

Since it is given is continuous then there exist an open set in such that 

  and  

i.e.,     

Thus, is a neighbourhood of each of its points and so it is open in . 

Conversely, let the inverse image of all open set in  are open set in . To show that  is 

continuous at . Let and G is an open set in . 

  is open set in  such that  

If  then is an open set in continuous such that 

     

   is continuous at  

   : , ,f X Y v  V .Y

 1f V X

 1f V   

 1f V      1x f V f x V  

f G X

x G    1f G V G f V  

 1x G f V 

 1f V X

Y X f

x x X Y

 1f G X  1x f G

 1 ,f G M  M X x

 f M G

f x X



Since  is arbitrary then  is continuous on . 

Theorem 2: Let be a mapping. Then  is continuous if and only if the 

inverse image of every closed set in  is closed in . 

Proof: Let  be a continuous function and  is any closed set in  

            

            

            

    

 

 

To show that is closed set in . Since  is closed set in  then  is open set in 

. Also it is given mapping in continuous 

  is open set in  

  is open set  

   is open set  

  is closed set in . 

Conversely, let the inverse image of closed set in is closed in to show that is continuous. 

Let is any open set in . 

To show that is open set in  

  is closed set in  

  is closed set in  

x f X

   : , ,f X Y v  f

Y X

   : , ,f X Y v  V Y

 1f V X V Y Y V

Y

 1f Y V X

   1 1f Y f V  X

 1X f V X

 1f V X

Y X f

G Y

 1f G X

Y G Y

 1f Y G X



  is closed set in  

  is closed set in  

  is open set in  

Hence,  is continuous. 

Theorem 3: Let  and  are topological spaces. The mapping and mapping 

are continuous then  is also continuous. 

Proof: Given that and Z are topological spaces. 

           

 

 

 

 

 

Let  is open set in Z. Since it is given mapping is continuous.  

  is open set in . 

Also it is given is continuous. 

  is open set in  

  is open set in  

   1 1f Y f G  X

 1X f G X

 1f G X

f

,X Y Z :f X Y

:g Y Z :gof X Z

,X Y

G :g Y Z

 1g G X

:f X Y

 1 1f g G    
X

   
1

gof G


 X  for every open set  of G Z



  is continuous from  to . 

 

10.4 Open Mapping  and Closed Mapping  

Let be a mapping is said to be open mapping iff images of every open set 

in  are open in . 

            

             

 

 

 

Let be a mapping. Then mapping is said to be closed mapping iff images 

of every closed set in  are closed in . 

            

 

 

 

 

 

10.5 Bicontinuous Mapping  

 

Let and  be any two topological spaces. A mapping  is said to be bicountinuous 

mapping if both and  are continuous mapping. 

 gof X Z

   : , ,f X Y v  f

X Y

   : , ,f X Y v  f

X Y

 ,X   ,Y v f

f
1f 



 

             

 

 

 

 

10.6 Bijective Mapping  

 

Let and be any two topoligical spaces. A mapping is said to be bijective mapping 

if is one-one onto mapping. 

Note: Continuity of is the same as open mapping or closed mapping. 

 

10.7 Sequential Continuity  

Let and  be any two topological spaces. A mapping is said to be 

squentially continuous at a point if and only if for every sequence  in  converging 

to , the sequence in  converges to . 

i.e.,    . 

Theorem 4: Let be a mapping then is continuous if and only if 

, . 

Proof: Let be a continuous mapping and  

 ,X   ,Y v f

f

1f 

 ,X   ,Y v :f X Y

0x X  nx X

0x   nf x Y  0f x

   0 0n nx x f x f x  

:f X Y f

   1 1f B f B       
B Y 

:f X Y B Y



 

  

 

 

 

To show that     

We know that by definition of interior,  is a open set in . 

Since is continuous this implies is open set in . By definition of interior, if is a 

open set then i.e.,    

         (1) 

Also by definition, we have  

     

If then  

        (2) 

From equations (1) and (2), we have 

        (3) 

`Conversely, let      (4) 

To show that is continuous mapping. 

   1 1f B f B    

B Y

f  1f B X B

,B B

   1 1f B f B    

   1 1B B f B f B   

A B A B

   1 1f B f B       

   1 1f B f B    

   1 1f B f B    

f



Let be any open set in then to show that is also open in . We know that if is 

an open set then    

From equation (4), we have 

        (5) 

By definition of interior, we have 

     

        (6) 

From equations (5) and (6) , we have 

    

i.e.,   is open in .  

Because we know that is open set if .Hence, is continuous mapping. 

Theorem 5: Let be a mapping then is continuous if and only if 

   . 

Proof: Suppose is continuous mapping and  is closed set in , therefore is closed 

set in . By definition of closure if is closed set then i.e., 

         (1) 

Also by definition, we have 

     

If then  

        (2) 

From equations (1) and (2), we have     (3) 

H Y  1f H X H

H H

   1 1f H f H    

H H

   1 1f H f H     

   1 1f H f H    

 1f H X

B B B f

:f X Y f

   1 1 ,f B f B B Y   

f B Y  1f B

X B B B

   1 1f B f B   
 

   1 1B B f B f B   

A B A B

   1 1f B f B   
 

   1 1f B f B 



Conversely, let        (4) 

To show that is continuous mapping. 

Let is any closed set in  then to show that is also closed set in . We know that if 

is any closed set then .  

It is given that  for    (5) 

By definition, we have 

        (6) 

From equations (5) and (6), we have 

     

i.e., is closed in . Hence, is continuous mapping. 

Theorem 6: Let and be tow topological spaces, then a mapping is 

open if and only . 

Proof: Suppose and  are two topological spaces. Let be a subset of and 

be an open mapping. 

Since is a -open subset and is an open mapping so is a v-open subset of  

By definition of interior, we have 

     

    

Thus, is a v-open set contained in . 

Therefore,  

Conversely, and be any open set in . Then we have 

    because is open . 

   1 1f B f B 

f

B Y  1f B X

B B B

     1 1 1f B f B f B    B B

   1 1B B f B f B   

   1 1f B f B 

 1f B X f

 ,X   ,Y v :f X Y

   f A f A A X    

 ,X   ,Y v A X

:f X Y

A  f  f A .Y

A A

   f A f A 

 f A  f A

   f A f A   

   f A f A    G X

     f G f G f G     G iff G G



Hence, is an v-open subset of i.e., is open mapping. 

 

Examples 

Example.1: Consider the following topologies on X and 

respectively. 

  and  

Also consider the function and defined by the diagrams below: 

 

 

 

 

            

To show that is continuous and is not continuous. 

Solution: (1)  We have  

  and  

Hence, is continuous because inverse of each member of on is a member of topology 

on .  

(2) We have  

  and  

 f G Y f

 1,2,3,4  , , ,Y u v w z

      , , 1 , 1,2 , 1,2,3X           , , , , , , , ,v Y u v u v v w z

:f X Y :g X Y

 1 f  2 g

     1 1 1, ,f Y X f f u      

       1 11 , , 1 ,f v f u v      1 , , 1,2,3,4f v w z X  

f v Y 

X

       1 1 1, , ,f Y X f f v    

   1 1,2f u     1 , 1,2 .f u v 



But which is not open set of i.e., not belongs to . 

Hence,  is not continuous because inverse of each member of on is not a member of the 

topology on . 

Example 2: let be a topological space. Let be a mapping, where is a non-

empty set. 

(a) What is the smalles topology for  which makes  continuous? 

(b) Is it always possible to assign a topology for  so that  is continuous? 

Solution: (a) Suppose  

If is any topology for then is -v-continuous if and only if . Thus, we have to 

find the smallest topology for  containing . 

(i) We have     

      

Also     

      

(ii) Let and two any member of Then there exist open subsets and such that  

and  

 Then     

      

(iii) Let . Then  

   1 , , 1,3f u v w  X 

g v Y

 X

 ,Y v :f X Y X

X f

X f

  1 H :f H v 

' X f ' '  

X 

 1f   

 

 1f Y X 

 X 

A B . v  G H

 1A f G  1B f H

   1 1A B f G f H   

 1f G H   

,iA i  



where  

  

  

  

(c) Yes, it is alsways possible to assign a topology for  so that  is continuous. The 

discrete topology   is the required topology because for each open set is -

open.  

 

10.8 The Pasting Lemma  

 

Theorem: Let be the topological space and , where  and  are closed 

in . Let and  are continuous mapping into a topological space 

. If for all , then  and combine to give a continuous mapping 

defined by setting for and for is continuous. 

Proof: Suppose that the topological space is the union of two closed subsets and . 

Let is continuous then is closed for each closed subset of  of . Let 

is continuous then is closed for each closed subset of Also it is given 

. To show that is continuous mapping. Suppose is a 

closed subset of i.e., to show that is also a closed subset of . 

Suppose , where is the closed subset of such that . Also 

is the closed subset of such that 

 1 ,i iA f H i   iH v

    1: :i iA i f H i    

 1 :if H i     

 :iH i v    

X f

D v   1,H f H D

 ,X  X A B  A B

X :f A Y :g B Y  ,Y v

   f x g x x A B  f g

: ,h X Y  h x  f x x A    h x g x ,x B

 ,X  A B

:f A Y  1f G G Y

:g B Y  1g H H .Y

    ,f x g x x A B    :h X Y C

,Y  1h C X

C G T H   G Y  h x G x A  

H Y



   . 

 

            

   

And is the closed subset of such that 

    

We have        

    

    

For    for all  

And    for all  

Then    for all . 

Now and are all closed subsets for and are continuous mappings. 

Since a finite union of closed subsets is closed therefore is a closed set wherever is 

closed in .  

Hence, is a continuous mapping. 

 

10.9 Homeomorphism  

 

Homeomorphisms are of particular significance in this context, as they are defined as continuous 

 h x H x B  

T Y

 h x T x A B   

   1 1h C h G T H   

     1 1 1h G h T h H    

     1 1 1f G f T g H    

   f x h x x A

   g x h x x B

     h x f x g x  x A B 

   1 1,f G f T   1 ,g H
f g

 1h C C

Y

:h X Y



functions with continuous inverses. For instance, the function  is a homeomorphism on 

the real line. Let and be two topological spaces. A mapping is 

said to be homeomorphism if and only if  

(1) is one-one, and onto. 

(2) and both are continuous 

or 

A mapping is said to be homeomorphism if and only if is bijective and 

bicontinuous. 

            

  

 

 

 

 

Theorem 7: Prove that a homeomophism is an equivalence relation in a collection of all 

topological spaces. 

Proof: We know that homeomorphism is a mapping which is reflexive, symmetric and transitive 

if it is an equivalence relation. 

(1) Reflexive: Let an identity mapping 

   such that 

   for all . 

Here I is one-one onto. and is continuous. Hence it is homeomorphism, i.e., the relation 

3y x

 ,X   ,Y v  : , ) ,f X Y v 

f

f
1f 

   : , ,f X Y v  f

:I X X

 I x x x X

I 1I 



of homeomorphism is reflexive relation. 

 

            

  

 

 

(2) Symmetry: Let and are two topological spaces.   

  

 

 

 

 

Since is homeomorphism then is one-one onto, and are continuous. i.e.,

    

is one-one onto because is one-one onto. Also is continuous i.e., is 

continuous. This implies is homeomorphism.  

Hence, the relation of homeomorphism is symmetric relation.  

(3) Transitivity: Let and are three topological spaces. 

Let and are the corresponding homeomorphism, then we have to show that 

the mapping is homeomorphism. Now we have: 

 ,X  ( , )y v

f :f X Y f f
1f 

1 :f Y X 

1f  f
1f   

1
1f f


 

1f 

   , , ,X Y v  ,Z W

:f X Y :g Y Z

:gof X Z



(1) Since is one-one onto and is one-one onto then is also one-one onto. 

(2) Since and are continuous then is also continuous. 

(3) Since is continuous then implies is continuous. 

 

 

 

 

 

 

 

And is continuous then implies is continuous. Thus the mapping is also 

a continuous mapping. Hence, is homeomorphism, i.e., the relation of homeomorphism is 

Transitivity. 

Theorem 8: Let and be two topological spaces and let the mapping 

be one-one onto. Then is homeomorphism if and only if . 

Proof: Suppose and are two topological spaces. Let a mapping be one-

one, onto and     

.   (1) 

To show that is homeomorphism 

f g gof

f X Y :g Y Z gof

f
1f 

g
1g 

 
11 1ogf gof
  

gof

 ,X   ,Y v :f X Y

f     ,f A f A A X    

 ,X   ,Y v :f X Y

    ,f A f A A X    

f



By (1), we have 

    

This implies is continuous 

Now let be any closed set then  

Using above conditions, we have 

    

This implies is closed. Thus, is closed mapping. Here is closed and continuous so 

is homeomorphism.  

Conversely, let fis homeomorphism and to show that 

    

Suppose is any subset of and given is continuous 

Then     

Also   

Since   is closed so   

Thus, we have  

Hence, . 

   f A f A   

f

H H H

     f F f F f F 

 f F v  f f

f

    ,f A f A A X    

A X f

   f A f A   

   A A f A f A  

f    f A A  

   f A f A  

    ,f A f A A X    



Examples 

 

Example.3: Let and Let and 

Suppose and . 

(1) Is continuous? 

(2) If  is homeomorphism? 

Solution: Given that and .  

Also given and . 

(1)Here is one-one mapping from to . But is not continuous. Since is 

-open set but is not open set. 

          

 

 

 

 

(2) From (i), is not continuous. Hence, is not homeomorphism. 

 

10.10  Summary 

Let and are two topological spaces. A function is said to be 

continuous at the point if there exist a neighborhood such that where is 

the neighborhood of . 

 , ,X a b c  1,2,3 .Y      , , , ,X a b c  v

    , , 1 , 2,3 .Y     1, 2f a f b    3f c 

:f X Y

:f X Y

 , ,X a b c  1,2,3Y 

    , , , ,X a b c      , , 1 , 2,3v Y 

f X Y :f X Y  1 v

   1 1f a  

:f X Y :f X Y

 ,X   ,Y v    : , ,f X Y v 

x X xU   ,f U V V

 f x



Let be a mapping is said to be open mapping iff images of every open set 

in  are open in . 

Let and  be any two topological spaces. A mapping  is said to be bicountinuous 

mapping if both and  are continuous mapping. 

Let and be any two topoligical spaces. A mapping is said to be bijective mapping 

if is one-one onto mapping. 

Let and  be any two topological spaces. A mapping is said to be 

squentially continuous at a point if and only if for every sequence  in  converging 

to , the sequence in  converges to . 

i.e., . 

Let and be two topological spaces. A mapping is said to be 

homeomorphism if and only if  

(i) is one-one and onto (ii) and both are continuous. 

 

10.11 Terminal Questions 

Q.1. Explain the continuous and homeomorphism mapping. 

Q.2. What do you mean by Open and Closed mapping. 

Q.3. Define continuous and homeomorphism mapping. 

Q.4. A mapping is continuous mapping if and only if . 

Q.5. Give an example of a one-one continuous mapping which is not a homeomorphism. 

 

 

   : , ,f X Y v  f

X Y

 ,X   ,Y v f

f
1f 

 ,X   ,Y v f

f

 ,X   ,Y v :f X Y

0x X  nx X

0x   nf x Y  0f x

   0 0n nx x f x f x  

 ,X   ,Y v  : , ,f X Y v

f f
1f 

:f X Y    ,f A f A A X  
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Block-4 

Separation Axioms on Topological Spaces 

 

In this block we deal with the basic concept of separation axioms such as space, space, 

space, regular space, space, space, normal-space, space, and their properties. 

Urysohn’s lemma, Teitze extension theorem and statement of Urysohn’s metrization theorem, 

Connected Set, Disconnected Set, Connectedness on the Real Line, components, Maximal 

Connected Set, Locally Connected Space and Totally Disconnected Set, Cover, Open Cover, 

Compact Space, Compact Set, Finite Intersection Property, Locally Compact Space, Lindelof 

Space, Bolzano Weierstrass Property, Sequentially Compact, Uniformly Continuous, Lebesgue 

Covering Lemma, Heine-Borel Theorem, Product Topology, Projection Mappings are be 

discussed here. Compactness is an important property because it ensures that certain properties 

hold in a space. There are different equivalent characterizations of compactness in terms of open 

sets, closed sets, and continuous functions, which make compactness a versatile and important 

concept in topology. Connectedness is a fundamental concept in topology that describes the 

property of a space being in one piece, without being able to be split into two or more disjoint 

nonempty open sets.  Some symbols are defined below with their name and notations:        

Frechet space  Housdorff space 

 Regular + space  Normal + space 

= Tychonoff space or completely regular space  Completely normal space 

 Regular space  Normal space 

CN = Completely normal space  Completely regular space 

= First countable space = Second countable space 

L   Lindelof space 

0T  1T 

2T  3T  3/2T  4T 

1T 

2T 

3T  1T 4T  1T

1
3

2

T 1T  5T  1T 

R  N 

CR 

1C 2C



UNIT-11: Separation Axioms-I 

 

Structure 

11.1 Introduction 

11.2 Objectives 

11.3  T0 -Space 

11.4 T1 –Space or Frechet Space 

11.5 Co-finite Topology 

11.6 T2 –Space (Hausdorff Space) 

11.7 Summary 

11.8 Terminal Questions 

 

 

 

 

 

 

 

 



11.1 Introduction 

Separation axioms are properties that describe the level of "separation" or "disconnectedness" 

between points and sets in a topological space. These axioms help to classify and distinguish 

different types of topological spaces based on their separation properties. In mathematics, 

particularly in topology and functional analysis, a To -space is a type of topological space that 

satisfies the To separation axiom. To spaces are considered the weakest separation axiom in 

topology, weaker than T1 (or "Kolmogorov") spaces, which satisfy the T1 separation axiom: for 

any two distinct points, each point has a neighborhood not containing the other point.In topology, 

a T1 space, also known as a Fréchet space (is a topological space) in which every singleton set 

(a set containing only one point) is a closed set. The T1 separation axiom is a step stronger than 

the T0 separation axiom. T1 spaces are important in topology because they are strong enough to 

ensure many desirable properties, yet they are still relatively general. Most commonly studied 

topological spaces, such as metric spaces, are T1 spaces. In topology, a T2 space, also known as 

a Hausdorff space, is a topological space in which any two distinct points have disjoint 

neighborhoods. The T2 separation axiom is stronger than the T1 separation axiom. Hausdorff 

spaces are important in topology because they provide a setting in which limits of sequences and 

continuity of functions are well-behaved. Most spaces encountered in analysis and geometry, 

such as Euclidean spaces, are Hausdorff spaces. 

 

11.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 T0 –Space with their properties and applications 

 T1 –Space or Frechet Space with theor properties and applications 

 Co-finite Topology  

 T2 –Space (Hausdorff Space) with theor properties and applications 



11.3 T0 -Space 

To-space are important in understanding the properties of topological spaces and their 

relationships with other separation axioms.The To axiom states that for any two distinct points in the 

space, there exists an open set containing one point but not the other. In other words, To spaces can 

distinguish between different points based on open sets.  

Let be a topological space. Then is said to be To-space if and only if for distinct 

points and in there exist a open set such that 

   and  

or    and  

 

Examples 

Example.1. Let , . To show that is a 

space. 

Solution: Given that     

and      

Using definition of space, for distinct element and  there exists a open set or 

 such that  

    and  

or     and  

Hence,  is a space. 

 ,X   ,X 

1x 2x X  G

1x G 2x G

2x G 1x G

 , ,X a b c       , , , ,X a b a b   ,X 
0T 

 , ,X a b c

      , , , , ,X a b a b 

0T  a b   a

 b

 a a  b a

 a b  b b

 ,X 
0T 



Example 2: To show that every discrete space is a space. 

Solution: Suppose and  

For if are two distinct points  

(1) Then there exists a open set such that 

but  

(2) Then there exists a open set  such that 

but  

Hence every discrete space is a space. 

Example 3: To show that an indiscrete space is not  a space. 

Solution: Suppose and  

Here is an indiscrete space. 

For if and then there exists no open set which contains one of  and and 

does not contain the other, i.e., here only one non-empty open set is which contains both 

open and closed. Hence, an indiscrete space is not a space. 

Theorem 1: Prove that every subspace of a space is a space and hence the property 

is hereditary. 

Proof: Let be a space and is a subspace of . To show that is a 

space. 

 ,X 
0T 

 , bX a     , , ,X a b 

,a b X

  a

 a a  b a

  b

 a b  b b

 ,X 
0T 

 ,X 
0T 

 ,X a b  , .X  

 ,X 

,a b X a b  a b

 X

0T 

0T  0T 

 ,X  0T   ,Y v  ,X   ,Y v

0T 



Since and  are also distinct point of  

It is given is a space then there exists an open set  such that 

Now and 

Such that 

This implies is a space. 

Hence, the property of being a space is a hereditary propert. 

Theorem 2: Let is is a subspace of . If is one-one onto and 

open mapping then is an open space or space. 

or 

The property of a space of being a space is presented by one to one, onto, open mapping 

and hence is a Topological property. 

Proof: Let be a -space and let be one-one open mapping of onto another 

topological space . 

To show that is also to -space. 

Let where 

there exist such that 

1,Y X x 2x .Y

 ,X 
0T  G

1 2,x G x Y 

1x G 1x Y

1x Y G U   

1 2,x Y G x Y G   

 ,Y v
0T 

0T 

 ,X   ,Y v  ,X  : ,f X Y f

 ,Y v
0T 

0T 

 ,X  0T f  ,X 

 ,Y v

 ,Y v
0T

1 2,y y Y
1 2y y

 1 2,x x X



     

 

 

 

 

 

It is given is a -space 

 There exist a neighbourhood of which does not contains . 

 is a neighbourhood in (since it is given that it is an open mapping) 

 i.e., which does not contains  

Hence, is also a space. 

Theorem 3: A topological space is a space if for any distinct arbitrary points 

of the closure of and are distinct, i.e., . 

Proof: Let be a space. Let such that . To show that . Since 

is a space, then there exist such that 

     

   and  

     1 1 2 2.f x y f x y 

 ,X 
0T

 u 1x 2x

 f u y

 1y f u
2y

 ,Y v
0T 

 ,X  0T ,x y

,X  x  y    x y

 ,X 
0T  ,x y X x y    x y

X
0T  G

,x G y G 

~x X G  ~y X G 



i.e., is closed set  

using definition of closure, we have 

      {of all closed set containing A} 

We have  

Also is a closed set containing  

   so that 

     

Obviously  

This impies    

Using (1) and (2) we have     

Conversely, let such that and  

     

To show that is a space 

Given that then there exists one point such that 

    and  

X G

A  

   : is a closed set y Fy F F  

~X G y

  ~ ~y X G x X G  

 x y

   x x

 x x

   x y

   x y x y

   x y

 ,X 
0T 

   x y p X

 p x  p y



We have      

But if then 

     

    

     

i.e.,    which is contradiction 

Using equation (4), we have 

    

    

  is open for is closed 

Then is open set such that 

   and  

i.e., space is -space. 

Theorem 4: If is a -space and is finer than then is also a -space.  

Proof: Suppose is a -space then for any two distinct points in there exists a 

open set such that 

 .x y

 .x y

   x y

     x y y  

   x y 

 p y

   ~x y x X y  

   ~y y y X y  

 ~X y  y

 x y

 ~x X y  ~y X y

0T

 ,X 
0T 1 ,  1,x 

0T

 ,X 
0T 1 2,x x ,X

 G



    and  

Since is finer than . So every open set is also open set. Hence, is a -open set 

which contains but not . 

Thus, the space is also a -space. 

 

11.4T1 –Space or Frechet Space 

T1 spaces are important in topology for their separation properties, their compatibility with 

analysis, their connection with Hausdorff spaces, their applications in topological dynamics, and 

their role in algebraic topology. T1 spaces are well-suited for analysis and related fields. 

Properties like continuity, convergence, and limits are well-behaved in T1 spaces, making them 

valuable in functional analysis and other areas of mathematics. 

Let be a topological space. Then is said to be a space if for each distinct pair 

then there exist two sets and such that 

    but  

and     but  

Note:A topological space is said to be space if each singleton is closed. 

Examples 

Example.4. Let and . To show that is a space. 

Solution: Given that and  

1x G 1x G

1   1  G 1

1x 2x

 1,X 
0T

 ,X   ,X 
1T 

,x y G H

x G y G

y H x H

 ,X 
1T 

 ,X a b     , , ,X a b   ,X 
1T 

 ,X a b     , , ,X a b 



    open sets are . 

    closed sets are  

Here each singleton is closed so the given space vis a space 

Another Solution:Let and are two distinct points (pair) of there exist two open set 

and such that  

    

and    

Hence, is a -space. 

Example 5: Let and .To show that is a -space. 

Solution: Given That  

And     

Here 1 and 2 are two distinct pair of then there exist two open set and such that  

    

and     

Hence, is a -space 

 

    , , ,X b a

    , , ,X a b

 ,X 
1T 

a b X  a

 b

   ,a a b a 

   , ab b b 

 ,X 
1T

 1,2,3X        , , 1 , 2 , 1,2X    ,X 
1T

 1,2,3X 

      , , 1 , 2 , 1,2X  

X  1  2

   1 1 , 2 1 

   2 2 ,1 2 

 ,X 
1T



11.5 Co-Finite Topology 

The co-finite topology is also known as the finite complement topology. The co-finite topology 

is used in functional analysis, particularly in the study of the space of continuous functions. It 

provides a useful examples for understanding convergence and continuity in function spaces. 

The co-finite topology is one of the simplest examples of a non-trivial topology. It is easy to 

understand and provide a basic model for studying more complex topological spaces. Hence the 

co-finite topology is an important example in topology that helps to illustrate key concepts and 

has applications in various areas of mathematics, including number theory and functional 

analysis. 

Let and be a topological space if be the collection of all subset of 

whose complement is finite then is known as co-finite topology. 

Theorem 5: Prove that a topological space is a -space if and only if each singleton 

subset of is closed. 

Proof: Let is closed,  

To show that the space is -space 

Let be two distinct point of . 

and are closed. 

   

 

 

, , ,....,A B C X  ,X   X

 ,X 

 ,X 
1T

 x X

 x x X 

1T

,x y X

 x  y



is open set which does not contain and is open set which does not contain 

There exist a neighbourhood and are open sets such that 

   and  

   and  

Hence, given space is space 

Conversely, let the given space is space To show that is closed. 

i.e., is open set. 

Let  

There exist a open neighbourhood of which does not contain  

 

 

is union of open set. 

is open set 

is closed. 

 

Theorem 6: Every subspace of a -space is -space. 

Proof:Let be a -space and  be  a subspace of . 

 X x x  X y

.y   X x  X y

 x X y  y X x

 x X x  y X y

1T 

1T   x

 X x

 y X x y x  


yU y x

 yU X x 

    :yU U y X x X x  

 X x

X x

 x

1T 1T

 ,X 
1T  ,Y v  ,X 



To show that is also a -space 

Let be arbitrary such that  

Then such that  

It is given that space is  

This implies there exist an open set and of such that 

    

And     

We have    

  and and  

  and and  

Suppose and we know that because 

    

     

Now we take a pair of distinct point  

there exist and open sets of such that 

    

 i.e.,   is a -space. 

Theorem 7: Every -space is -space but converse is not true. 

 ,Y v
1T

,x y Y .x y

,x y X  y x

X 
1.T

G H 

,x G y G 

,x H y H 

x G x Y x G Y    x G Y 

y H y Y y H Y    x H Y 

,G Y P H Y Q   

, ,G H G Y H Y v   

,P Q v 

,x y Y

 P Q v

, , ,x P y Q x P y Q   

 ,y v
1T

1T 0T



Proof: Let be a -space. Then there exist two distinct elements such that 

    

    

Hence, there exists a neighbourhood of which does not contain Therefore the given 

space is space. Conversely, let and . 

If there exists a neighbourhood of such that 

   and  

i.e., the given space is -space. 

Because each singleton is not a closed set therefore the space is not -space or conversely, let 

    

   There exists and such that 

     

And      

i.e., the space is not space. 

Thus, every -space is -space but converse is not true. 

Theorem 8: Every finite -space is a discrete space. 

Proof: Let be a finite -space and . 

To show that is a discrete space. 

 ,X 
1T 1 2,x x

1 2,x U x U 

1 2,x V x V 

U ,x
2.x

0T   ,X a b   X, , a 

a b   a X

 a a  b a

0T

1T

, .a b X

  a X 

   ,a a b a 

,b X a X 

1T

1T 0T

1T

 ,X  1T .A X

 ,X 



Let is finite  

   is a finite set 

Since is space is closed  

    

   a finite union of closed set 

   is closed set      (2) 

We know that a space is if and only if every finite subset of is closed  

Also is finite set 

   is closed set 

   is open set. 

Thus, we proved that every subset of is both open and closed. Hence, is a discrete 

space. 

Theorem 9: A topological space is a -space if and only if -contains the co-finite 

topology on . 

Proof: 

Let be a -space. 

To show that contains co-finite topology on i.e., to show that contains subset of 

such that is finite. 

Since it is given is space 

,A X X

A

X
1T   x x X 

  :A x x A  



A

X
1T X

X A

X A

A

A X  ,X 

 ,X 
1T 

X

 ,X 
1T

 .X  A X

X A

X
1T 



    is closed  

    is open subset of  

      

Thus,  

    (finite) 

This is true for all .  

Using definition of confinite, contains co-finite topology of . 

Theorem 10: Prove that a homeomorphism image of space is . 

Proof: Let be a space and be a homeomorphism. 

To show that is -space. 

Sine it is given is -space 

   

 

 

 

 

 There exist and open set of such that 

     

 x x X 

 X x X

 X x 

   X x X X x   

 x

x X

 X

1T  1T

 ,X 
1T     : , ,f X Y v 

Y
1T

X
1T

 G H

, , ,x i y H x H y G   



Because  

Since mapping is one-one onto (homeomorphism)  

    it is open mapping 

    and are open in  

    and   

  and  and  

Hence, the space is -space. 

  

11.6T2 –Space (Hausdorff Space) 

Hausdorff spaces are important in topology for their separation properties, their applications in 

analysis and algebraic topology, and their role in understanding the structure of topological 

vector spaces. Hausdorff spaces satisfy the T2 separation axiom, which states that for any two 

distinct points, there exist disjoint open sets containing each point. This separation property is 

crucial in distinguishing points and sets in a topological space. 

Let be a topological space. Then  is said to be a space if for each distinct pair 

of element and there exist neighborhood and such that 

   and . 

Examples 

Example.6: Let and .Then show that is not a 

Hausdorff space. 

   x y f x f y  



 f G  f H Y

    f X f G    f x f H

   f y f H     f y f G

y
1T

 ,X   ,X 
2T 

x y N M

,x N y M  N M  

 1,2,3X      , , 1,2 , 3X    ,X 



Solution: Given that  

And     

For distinct elements of there are no disjoint neighbourhoods. 

Hence, the given space is not a Hausdorff space. 

Example 7: Show that an indiscrete space consisting of at least two point is not a Hausdorff 

space. 

Solution: Let be an indiscrete topology on consisting of at least two point. Then we have 

      

This show that there exist no pair of non-empty disjoint open set. 

Hence, is not a space. 

Theorem 11: Every discrete space is a Hausdorff space. 

Proof: Let be a topological space and be arbitrary such that Using 

definition of discrete space, we have 

   and are open set 

Obviously   

Hence, there exist disjoint open set and containing and respectively. 

Thus, is Hausdorff space. 

 

 1,2,3X 

    , , 1,2 , 3X  

,a b X

 ,X 

 X

 ,X  

 ,X 
2T 

 ,X  ,x y X .x y

 x  y

   x y  

 x  x x y

 ,X 



Theorem 12: Each singleton set in a Hausdorff space is closed. 

Proof: Let be a Hausdorff space. 

Since is -space is space is closed for  

Hence, each singleton set in a Hausdorff space is closed. 

Theorem 13: Prove that every subspace of a Hausdorff space is . 

Proof: Let be a Hausdorff space and be a subcpace of  

Let    such that  

Since     is a space. 

This implies there exist disjoint neighbourhoods and of and respectively. 

Now using the definition of neighbourhood, there exists open sets and such that 

   and  

And and are disjoint open subsets. Hence, is also a -space. 

Theorem 14: Every finite Hausdorff space is discrete. 

Proof: Let be a finite space. 

To show that be a discrete space. 

Since is space is space 

   is closed subset of  

 ,X 

X
2T X 1T   x x X

2T

 ,X   ,Y v  ,X 

1 2,y y Y
1 2y y

 ,X 
2T 

1N 2N 1y 2y

 1G 2G

1 1y G 2 2y G

1G Y 2G Y v   ,Y v
2T

 ,X 
2T 

 ,X 

X
2T  X 1T

 x ,X x X 



Let be a finite subset of  

Then  

   finite union of closed set  

    a closed set 

Thus, every finite subset is closed   (1) 

Because is finite and  

    is finite 

    is closed set   (by (1)) 

    is open 

Hence, every subset of is closed as well as open i.e., is a discrete space. 

Theorem 15: Every space is a space but converse is not true. 

Proof: Let be a space. 

Let such that  

This implies disjoint open set and of such that 

    

And      

Hence, given such that  

This implies there exists and of such that 

 1 2, ,....., nA a a a .X

     1 2 .... nA a a a   





X

X A X

X A

X A

A

X X

2T  1T 

 ,X 
2T 

,x y X x y

G H 

, , ,x G y H x H y G   

G H  

,x y X z y

G H 



               and   

i.e., given space is space. 

Conversely, we prove this, in two parts. If is a co-finite topology on an infinite set , then 

is space but not a -space. Let be a co-finite topology on To show that 

is a space let then is a finite set so that is open set (using definition 

of topology). 

Now let  such that  

We take and then and are open subsets of  

Also   

i.e., is a space. 

Let  then by the definition of co-finite topology and are finite subsets 

of . 

We know that there does not exist any pair disjoint open set (suppose not). 

But if we let and are disjoint open sets so that 

    

Taking complement of both sides, we get 

    

    

i.e.,    

,x G y G  ,y H x H 

1T 

 X

 ,X 
1T 2T  .X  ,X 

1T  x X  x  X x 

,x y X x y

 G X x  ,H X y G H .X

, , ,x H y G x G y H   

 ,X 
1T 

,G H  X G X H

X

G H

G H  

  ' 'G H  

' 'G H X 

   X G X H X 



i.e., finite union of finite sets = an infinite set. This is impossible. 

Hence there exist no pair of disjoint open sets. This implies is not a Hausdorff space. 

Therefore, every space is a -space but converse is not true. 

Theorem 16: Prove that a homeomorphic image of space is  

Proof: Let and are two topological spaces let be a -space and to show 

that is also a space. 

 

 

 

 

It is given that is -space;  

This implies there exists open sets Gand such that 

    

          and      (1) 

Let and . The mapping is one-one 

This implies there exist and such that 

    

    

And     

 ,X 

2T  1T

2T  2.T

 ,X   ,Y v  ,X 
2T

 ,Y v
2T 

X
2T .x y

H

,x G y H 

,x H y G   G H  

   ,f x f y Y    f x f y

 f G f H

        and f x f G f y f H 

        and f x f H f y f G  

     f G f H f G H  



        {using (1)} 

      

This implies is space. 

Theorem 17:Let be a topological space and be a space. Let be 

a one-one continuous mapping then is also a -space. 

Proof: We have 

 

   

 

 

 

 

Let be any two distinct points of  

Since is one-one  

Let and (by continuous mapping) 

  and  

Since  such that  

It is given that is space. 

 f 



 ,Y v
2T 

 ,X   ,Y v
2T  :f X Y

X
2T

1 2,x x X

f    1 2 1 2x x f x f x  

 1 2 1 1,y y Y y f x   2 2y f x

 1

1 1x f y   1

1 2x f y

1 2,y y Y 1 2y y

Y
2T 



This implies there exist open sets and such that 

   and  

Since is continuous, and are open. 

Now     

And     

    

It is shown that every pair of disjoint points  

This implies there exist open sets and such that 

   and  

     

This implies given space is (Hausdorff ) space 

Hence, is a space. 

Theorem 18 : Prove that a one-one continuous mapping of a compact set onto Hausdorff 

space is a Homeomorphism. 

Proof: Let be a compact space and is a space and let be a one-one 

onto continuous mapping 

G H

1 2,y G y H  G H  

f  1f G  1f H

       1 1 1 1f G f H f G H f         

     1 1 1

1 1 1y G f y f G x f G      

     1 1 1

2 2 2y H f y f H x f H      

1 2, .x x X

 1f G  1f H

 1

1x f G  1

2x f H

   1 1f G f H   

2T

 ,X 
2T 

 ,X   ,Y v
2T  :f X Y



To show that is homeomorphism i.e., to show is closed mapping. 

Let be any closed set of  

   

   

  

 

To show that is homeomorphism i.e., we need to show that is closed mapping. 

Let be any closed set of  

To show that is closed set in  

(1) If then is also null set, i.e., it is closed 

(2) If since is a closed subset of a compact set is compact. 

We know that every closed subset of a compact set is compact. 

And we know that every continuous subset of a compact set is compact. 

   is a compact subset of  

It is given is -space. 

We know that every compact subcet of a -space is closed. 

This implies is closed. Hence, is homeomorphism. 

 

f f

G X

f f

G X

 f G .Y

G   f G

,G  G X G

 f G Y

Y
2T

2T

 f G f



11.5   Summary 

Let be a topological space. Then is said to be To-space if and only if for distinct 

points and in there exist a open set such that 

   and    or  and  

Let be a topological space. Then is said to be space if for each distinct pair 

then there exist two sets and such that 

 but  

and  but  

A topological space is said to be space if each singleton is closed. 

Let and be a topological space if be the collection of all subset of 

whose complement is finite then is known as co-finite topology. 

Let be a topological space. Then  is said to be a space if for each distinct pair 

of elements and there exist neighborhood and such that 

    

and . 

 

 

 ,X   ,X 

1x 2x X  G

1x G 2x G
2x G 1x G

 ,X   ,X 
1T 

,x y G H

x G y G

y H x H

 ,X 
1T 

, , ,....,A B C X  ,X   X

 ,X 

 ,X   ,X 
2T 

x y N M

,x N y M 

N M  



11.6   Terminal Questions 

Q.1. Explain the  spaces with examples. 

Q.2. Define the  space with examples. 

Q.3. To show that for a space is  if and only if every finite subset of is closed 

Q.4. A finite subset of a -space has no limit point. 

Q.5. If is a -space and then show that also a -space. 

Q.6. Prove that every finite Hausdorff space is discrete. 

 

 

 

 

 

 

 

 

 

0 1and  T T

2T

X 1T X

1T

 ,X  1T , ,    1,X  1T
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12.1 Introduction 

In topology, regular spaces and T3 spaces are specific types of topological spaces that adhere to 

certain separation axioms, ensuring they behave predictably when it comes to separating points 

and closed sets. These spaces are significant in topology because they establish a context in 

which numerous foundational results in topology and analysis are valid. Their properties make 

them especially suitable for examining concepts like continuity, convergence, and other 

fundamental aspects of topology.  

In topology, normal spaces, T4 spaces, and completely normal spaces are distinguished types of 

topological spaces that conform to specific separation axioms, guaranteeing consistent behavior 

in separating points and closed sets. These spaces hold great significance in topology as they 

establish the foundation for many results and concepts in the field. They are particularly 

instrumental in studying the structure and properties of topological spaces. 

 

12.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Regular Space and T3 -Space 

 Completely Regular Space 

 T3/2 –Space or Tychonoff Space 

 Normal Space, T4 –Space and Completely Normal Space 

 T5 –Space, Urysohn’s Lemma and Urysohn Metrization Theorem 

 Tietze-Extension Theorem 

 

 



12.3  Regular Space 

Regular spaces play a role in theoretical computer science, particularly in the study of 

computability and complexity. They provide a framework for understanding topological aspects 

of computation. Regularity is a fundamental property that helps us to understand the structure of 

topological spaces. It allows us to distinguish points and closed sets using open neighborhoods, 

providing a clearer picture of the space's internal arrangement. Regular spaces are well-suited 

for analysis and related fields. Properties like continuity, convergence, and limits are well-

behaved in regular spaces, making them useful in functional analysis and other branches of 

mathematics. 

Hence the regular spaces are essential in topology for their foundational role, their connection to 

metric spaces, their compatibility with analysis, their relationship with compactness, and their 

applications in theoretical computer science. 

Let be a topological space. Then is said to be a regular space if given an element 

and closed set such that 

    

There exist disjoint open sets such that   

or 

Let be a topological space. The is said to be regular space if and only if for every 

closed set and every point there exist open sets and such that 

    and . 

 

12.4  T3 -Space 

T3 spaces are used in the study of topological dynamics, which deals with the behavior of 

continuous mappings on topological spaces. T3 spaces provide a suitable setting for studying the 

 ,X   ,X 

x X F X

x F

,G H X ,x G F H 

 ,X   ,X 

F ,p F  G H
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dynamics of such mappings. T3 spaces are used in the study of topological dynamics, which deals 

with the behavior of continuous mappings on topological spaces. T3 spaces provide a suitable 

setting for studying the dynamics of such mappings.Hence the T3 spaces are essential in topology 

for their fundamental properties, their generalization of metric spaces, their compatibility with 

analysis, their connection with compactness, and their applications in topological dynamics. 

Let be a topological space. Then is said to be -space if following conditions are 

satisfied: 

(i) Given space is  

(ii) For all every neighborhood of there exist neighborhood V of such that 

 

Note: -space space  Regular space. 

 

12.5 Completely Regular Space 

Completely regular spaces are important in topology for their generalization of T2 spaces, their 

compatibility with analysis, their connection with normal spaces, their applications in functional 

analysis, and their role in algebraic topology. Completely regular spaces play a role in algebraic 

topology, particularly in the study of homotopy theory and homology theory. They provide a 

framework for understanding the topological properties of spaces in relation to their algebraic 

structures. 

Let be a topological space, then  is said to be completely regular space if it 

satisfies the following condition: 

If is a closed subset of and  then there exist a continuous mapping 

such that 

 ,X   ,X 
3T
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.V U
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F X x X F

 : 0,1f X 
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12.6 T3/2 –Space or Tychonoff Space 

T3/2 spaces generalize the separation properties of regular spaces (T3 spaces) by adding the T0 

separation axiom. This additional property allows for finer distinctions between points and 

closed sets, leading to a more refined understanding of topological spaces.T3/2 spaces are used in 

functional analysis to study topological vector spaces and other structures. Their properties make 

them useful for understanding the behavior of linear operators and function spaces. Hence the 

T3/2 spaces are important in topology for their generalization of regular spaces, their 

compatibility with analysis, their connection with compact spaces, their applications in 

functional analysis, and their role in algebraic topology. 

A completely regular space is known as tychonoff or tichonoy or space. 

 

12.7  Normal Space 

Normality extends the separation properties of Hausdorff (T2) spaces by ensuring that any two 

disjoint closed sets can be separated by disjoint open neighborhoods. This property is essential 

for many topological constructions and arguments. Normal spaces play a role in the study of 

topological dynamics, which deals with the behavior of continuous mappings on topological 

spaces. Normal spaces provide a suitable setting for studying the dynamics of such mappings. 

Hence the normal spaces are essential in topology for their structural understanding, 

  0f x    1f F 

1T  1
3

2

T



compatibility with analysis, connection with compactness, extension of separation axioms, and 

applications in topological dynamics. 

Let be a topological space. Then is said to be a normal space if and only if for 

every pair of disjoint closed sets there exist open sets and such that  

     

and     . 

 

12.8 T4–Space and Completely Normal Space 

T4 spaces are used in the study of topological dynamics, which deals with the behavior of 

continuous mappings on topological spaces. T4 spaces provide a suitable setting for studying the 

dynamics of such mappings. Hence the T4 spaces are important in topology for their fundamental 

properties, their generalization of T2 spaces, their compatibility with analysis, their connection 

with compactness, and their applications in topological dynamics. 

A normal space is known as -space. 

Let be a topological space. Then is said to be completely normal space if there 

exist two separated sets and of such that 

   and . 

Note: Two sets and are separated if  

   . 

12.9 T5–Space 

In topology, a T5 space, also known as a perfectly normal space, is a topological space that 

satisfies the T4 separation axiom and is also completely regular T5 spaces are important in 
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topology for their generalization of T4 spaces, their compatibility with analysis, their applications 

in topological dynamics, and their connection with compactness. 

A completely normal space is known as space. 

 

Examples 

Example.1: Let be  a topological space. Let and 

To show that is normal and regular space but not and space. 

Solution: Given that  

  and  

 -open sets are  

 -closed sets are  

Let a pair of distinct closed sets 

     

This implies there exist disjoint open sets such that 

   

and    

Hence, given space is normal. 

Now let a pair and closed set such that . 

1T  5T 

 ,X   , ,X a b c     , , , , .X a b c 

 ,X 
3T 4T 

 , ,X a b c     , , , ,X a b c 

    , , , ,x a b c

    , , , ,X b c a

   , ,a b c X

   , ,a b c X

       , , ,
open openclosed closed

a a b c b c 

   ,a b c  

a X  ,b c X  ,a b c



This implies there exist disjoint open sets and such that 

    

And      

Hence, given space is also regular space. 

Now consider a pair of distinct elements then the only open set containing either of the 

element are and such that 

    

Hence, given space is not -space 

Because every singleton is not closed therefore the given space is not space. 

Hence, the given space is not and space. 

Therorem.1: Every space is -space 

Proof: We know that a regular -space is called a -space. 

Let be a space  

Let be any two distinct points of using definition of space. 

This implies is also a -space and so is a closed set. 

Also     

Since is a regular space. 

This implies there exist open sets and such that 

 a  ,b c X

     , , ,a a b c b c 

   ,a b c  

,b c X

1b c X  ,b c

   , , , , ,b X C b c c X b b c   

1T
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3T 

,x y x 3T 

X
1T  x

 y x
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And     

Also     

   belong respectively two disjoint open set and  

    

And   

i.e., given space is space. 

Theorem.2: If is a space then it is also space, i.e., If is a normal space 

then it is also regular space. 

Proof: Let be a -space, i.e., 

(1) is -space and 

(2) is normal space. 

To show that is -space i.e., 

(1) is -space and  

(2) is regular space 

It is given that is -space is space 

   is closed in  

is normal space given a pair of distinct closed set and such that there exist 

  ,x G y H 

G H  

 x G x G  

,x y G .H

, , ,x G y H x H y G    

G H  

2T 
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4T  3t   ,X 

 ,X 
4T

X
1T

X

 ,X 
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X
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X
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disjoint open set and of such that 

    

i.e., given a closed set and such that there exist disjoint open sets and of 

such that 

    

Thus, space is regular space 

Hence, if is a -space then it is also -space. 

Theorem.3: Let be a topological space. If is a -space then it is also 

space. 

Proof: Let be a -space i.e., 

(1) is -space and  

(2) is normal space 

show that is space. 

Let be arbitrary such that  because is -space 

 and are disjoint closed set in  

Also is normal space 

 given a pair of disjoint closed set  

There exist disjoint open sets such that 

G H X

  ,x G F H 

F x X x F G H X

,x G F H 

 ,X 
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4T 2T 

 ,X 
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X
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X
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i.e.,    

Given such that  

 there exist disjoint open sets G and such that 

    

i.e., space is space. Hence, space is also space. 

Theorem.4: A topological space is said to be regular space if and only if for every 

and every neighbourhood of there exists a neighbourhood of such that 

   

Proof: Let be a regular space. 

To show that a neighbourhood of there exists a neighborhood of such that 

    

Since is regular space a closed set and a element such that there exist disjoint 

open sets and of such that 

   and  

is a neighbourhood of . 

    

     (using closure property) 

      

   ,x G y H 

,x G y H 

,x y X x y

 H

,x G y H 

2T  4T  2T 

X x X

U x H x

H U

 ,X 

N x M x

M N

x  F x X x F

G H X

,x G F H  G H  

x G G  x

G H G X H   

G X H 

G X H   ,  if  is closedA A A



Here is closed because is open 

      (1) 

Now we have    

    

      (2) 

Using (1) and (2), we have 

    

     

is closed is open 

i.e., a neighbourhood of there exist a neighborhood of such that 

    

    

Theorem.5: Prove that every closed subspace of a normal space is normal. 

Proof: Let be a normal space and be a closed subspace of . 

To show that is also normal space. 

  Let and Vare disjoint closed subset of    (1) 

This implies there exist closed subsets and of such that  

     using relative topology 

    

X H H

G X H 

F H

X F X H

X H X F

G X H X F 

G X F 

F  X F

X F x G x

x G G X F  

G X F 

 ,X   ,Y v  ,X 

 ,Y v

U v Y

N M X

U N Y 

V M Y 



It is given is closed and are disjoint closed subsets of . 

It is given also is normal space There exist open sets and of such that 

   and  

Using (1) and (2) 

    

And    

       

    

Also    

     

And     

i.e., is normal space. 

Hence, every closed subspace of a normal space is normal. 

Theorem.6: Prove that a topological space is normal if and only if for every closed set 

and open set containin there exist an open set such that 

   and  

Proof: Let be a normal space and let be any closed set and be an open set such that  

      

   is closed set 

Y U V X

X  G H X

,U G V H  G H  

,U G Y V H Y   

     G Y H Y G H Y     

Y   G H  



,U Y V G U Y G v     

,V Y V H V Y H    

    ,Y G Y H U V      

 ,Y v

X

F G F V

F V V G

X F G

F G

X G



     

Thus, and are disjoint closed substs of . 

It is also given is normal there exist two open sets and such that 

  and  

So that   but  

     (1) 

We know that the closure of a closed set is closed. 

     (2) 

    

Using equations (1) and (2), we get  

This implies there exists an open set V such that 

   and  

Conversely, let the above conditions hold. 

Let and  be closed subsets of and  

To show that space is normal we have closed set is contained in 

open set  

It is given that there exists an open set such that 

and  

 F X G  

X G F X

X  U V

  ,X G U F V  U V  

V X U  V X U V X U  

  is closedV X U X U 

 x G U X X G X U  

G X U 

.V G

F V V G

A B X A B  

A B A X B     A

.X B

V

A V V X B B X V  



Also     

Thus, and are two disjoint open sets such that 

   

Hence the given space is normal. 

Theorem.7: Prove the every completely normal space is normal and hence, -space is a 

-space. 

Proof: Let be a completely normal space. 

To show that is also normal space. 

Let and  be any two closed subsets of such that 

     

Since and are closed, we have 

   and  

And     

   are separated subsets of  

Using completely normality 

There exist open sets and  

     

   is normal space. 

Also we know that space is completely normal space and is a normal -space hence, 

 V X V  

V X V

 and A V X V

5T 4T

X

X

A B X

A B  
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A A B B

,A B A B    

,A B Y

,A G B H 

G H  

X

5T  1T  4T 1T



-space is a -space. 

Theorem.8: Let be a homeomorphism where are topological space and is 

completely normal space. Then show that is also a completely normal space. 

Proof: Let and are subsets of such that and are separated set, i.e., 

Given be a homeomorphism 

 

 

 

 

 

  and are subset of  

Since mapping is continuous 

   and  

Now      

     

     

     

Similarly    

5T 4T
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Y
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X
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       1 1 1 1f P f Q f P f Q       

 1f P Q 

 1f 


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Hence, it is given is completely normal  

there exist open sets and of such that 

   and   

     

    

and  

For two separated set and of . 

This implies there exist and open sets such that 

    

And     

Hence, the space is completely normal. 

 

12.10  Urysohn’s Lemma 

Urysohn's Lemma is widely used in topology and related areas of mathematics. It is a key tool 

in the proof of many important theorems, including the Tietze Extension Theorem and the Stone-

Weierstrass Theorem. Urysohn's Lemma is also essential in the study of topological vector 

spaces, functional analysis, and other branches of mathematics where understanding the structure 

of topological spaces is crucial. 

Let be any pair of disjoint closed sets in a normal space Then there exists a 

X

 G H X

   1 1,f P G f Q H   G H  

   1f P G P f G   

   1f Q H Q f H   

 f G H  

P Q Y

 f G  f H

   ,P f G Q F H 

   f G f H  

Y

1 2,F F .X



continuous mapping such that for and for  

Proof: Let be a normal space and let and  be any two disjoint closed sets in Then 

 

   which is open set 

   there exists an open set such that  

     

Here and are open sets containing the closed set and respectively as same way 

there exist open sets and such that 

    

Counting in this manner, for each rational number in of the form 

       

We obtain an open set of the form such tha 

     (1) 

Let we denote the set of all such rational numbers by Now we define a function 

    

If then for all by (1) 

Using definition of we have 

 : 0,1f X    0f x  1x F   1f x  2.x F

X 1F 2F .X

1 2F F  
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m
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'
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r .D
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 

2

1 2 2

1,

inf : . .,r

x F
f x

r r D x G x F i e x F


 

   
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Thus   wherever  

And    for  

And     

It remains to show that is continuous. 

Here  is a topological space with its relative topology. Clearly all intervals of the form 

and where and . 

Here if and only if  

    

    

Thus, is an open set and we know that union of open sets is open. Thus, the inverse image of 

an open set is open. Similarly, is also an open set in . Hence is continuous mapping. 

This proves the theorem. 

 

12.11 Urysohn Metrization Theorem  

The Urysohn Metrization Theorem is a fundamental result in topology that provides a 

characterization of metrizable topological spaces. It states that a topological space is metrizable 

if and only if it is regular (T3) and has a countable basis. Hence the Urysohn Metrization Theorem 

is important in topology for its characterization of metrizable spaces and its applications in 

analysis, topology design, and compactness considerations. 

   inf. 0f x D 

   0f x  1x F

  1f x  2x F

 0 1,f x  x X 

f

 0,1  0, a

 ,1b 0 1a  0 1b 

 0 f x a  rx G

     1 0, : 0f a x G f x a    

 : ,rU G r D r a  

rG

 1 ,1f b
X f



Every regular space with a countable basis is metrizable. 

Note:1. A topological space is known as second countable space if there exists a 

countable base for the topology . 

2. Every second countable normal space is metrizable. 

3. If is a second countable normal space then there exists a homeomorphism and 

so is metrizable. 

 

12.12 Tietze-Extension Theorem  

The Tietze Extension Theorem is a result in topology that provides conditions under which a 

continuous function defined on a closed subset of a topological space can be extended to a 

continuous function defined on the entire space. Hence the Tietze Extension Theorem is an 

important result in topology and analysis, providing a powerful tool for extending functions and 

characterizing normal spaces. 

A topological space is normal if and only if for every real valued continuous 

mapping of a closed subset of into the closed interval there exists a real valued 

continuous mapping of into such that i.e., is a continuous extension 

of over . 

Proof:Suppose for every real valued continuous mapping of a closed subset of into 

there exist a continuous extension of over  

To show that is normal space 

Let   and be two closed subsets of such that 

X

 ,X 



X :f X R

X

 ,X 

f F x  ,a b

g X  ,a b /g F f g

f X

f F X

 , ,a b f .X

 ,X 

1F 2F X



  and let be any closed interval 

We define a mapping 

   

Such that 

   if  

    if  

Let be any closed subset of then  

 

Thus, the function is continuous 

By hypothesis, there exists a continuous extension, namely, of over i.e., 

such that 

    

This implies satisfied all the conditions of Urusohn lemma, hence is a normal space. 

Conversely. Let be a normal space and let be a real valued continuous mapping of the 

closed set into the closed interval . For numerical convenience, we define a function 

    

1 2F F    ,a b

 1 2: ,f F F a b 

 f x a 1x F

 f x b 2x F

H  ,a b

 

1
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1 2

if and

if and

if and

if and 

F a H b H

F b H a H
f H

F F a H b H

a H b H



 


 
 

  
  

f

g f ,X :g X  ,a b

  1

2

if

if

a x F
g x

b x F


 



g  ,X 

 ,X  f

F  ,a b

 0 : 1,1f F  



By setting    (1) 

Let    

Since and are closed in and is continuous. If follows that and 

are closed in and so also closed in  

    

     

      

      

Thus, and are disjoint closed subsets of  

Since is normal.  

By Urysohn’s lemma, there exists a continuous mapping 

    

Such that  and  

Now again we define a mapping 

    

   0f x f x x F  

1 1

0 0 0 0

1 1
1, , ,1

3 3
G f H f       

         
      

1
1,

3

 
  
 

1
,1

3

 
 
 

 1,1 0f 0G 0H

F .X

1 1

0 0 0 0

1 1
1, , 1

3 3
G H f f        

            
       

1

0

1 1
1, ,1

2 3
f 

       
        

      

 1

0f 



0G 0H .X

X

0

1 1
: ,

3 3
g X

 
  

 

 0 0

1

3
g G

 
  
 

 0 0

1

3
G H

 
  
 

1

2 2
: ,

3 3
f F

 
  

 



By setting 

    

Since are continuous, is also a continuous mapping. 

Now let     

     

This implies are disjoint closed sets of . 

By Uryshan’s lemma, there exist a continuous mapping 

    

Such that 

     

And     

 

Now again define a mapping 

    

By setting    

     1 0 0f x f x g x 

0 0,f g 1f

1

1 1

2 1 2
,

3 3 3
G f     

     
   

1

1 1

1 2 2
,

3 3 3
H f     

    
   

1 1,G H X

1

1 2 1 2
,

3 3 3 3
g X

    
      

    

 1 1

1 2

3 3
g G

  
   

  

 1 1

1 2

3 3
G H

  
   

  

2 2

2

2 2
: .

3 3
f F

    
     

     

     2 1 1f x f x g x 



     

Observe as before that is continuous. proceeding this process in same way: 

    

We define a mapping 

    

By setting   

    

Set    

And    

Since   and  

Are disjoint closed subsets of and is a continuous mapping 

Now  

    

     0 0 1f x g x g x x F    

2f

1 2 1 2
: , 0,1,2,...., 1

3 3 3 3

n n

ng X n m
     
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      
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3 3

m m

mf F
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m
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n

g x x F

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1 1 2 2
,

3 3 3
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     

      
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   
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n

n

g x g x x X
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And show that is continuous extension of over are have 

 

So by weierstress’s test the series converges uniformly and abolutely over 

and since each is continuous if follow that is a continuous mapping of into . 

Now   which as  

Since    

We have   

Hence,   

i.e.,   

Hence, is continuous extension of over . 

 

 

12. 13 Summary 

Let be a topological space. Then is said to be a regular space if given an element 

and closed set such that  there exist disjoint open sets such that

. 

g f X
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   00 f x g x x F   

     0g x f x f x x F   

g f X

 ,X   ,X 

x X F X x F ,G H X
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Let be a topological space. Then is said to be -space if following conditions are 

satisfied: (i) Given space is  (ii) For all every neighborhood of there exist 

neighborhood of such that  

Let be a topological space, then  is said to be completely regular space if it 

satisfies the following condition: 

If is a closed subset of and  then there exist a continuous mapping 

such that and . 

A completely regular space is known as tychonoff or tichonoy or  space 

Let be a topological space. Than is said to be a normal space if and only if for 

every pair of disjoint closed sets This implies there exist open sets and 

such that   and . 

A normal space is known as -space. 

Let be a topological space. Then is said to be a completely normal space if there 

exist two separated sets and of such that and . 

A completely normal space is known as space. 

Every regular space with a countable basis is metrizable. 

A topological space  is normal if and only if for every real valued continuous mapping 

of a closed subset of into the closed interval there exists a real valued continuous 

mapping of into  such that i.e., is a continuous extension of over . 
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1.T x X U x

v x .V U

 ,X   ,X 

F X x X F

 : 0,1f X    0f x    1f F 

1T  1
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2

T

 ,X   ,X 

1 2, .F F X  G H

1 2,F G F H  G H  

1T  4T

 ,X   ,X 

A B X ,A G B H  G H  

1T  5T 

X

 ,X 

f F x  ,a b

g X  ,a b /g F f g f X



12.14  Terminal Questions 

 

Q.1. Write a short note for regular and normal space. 

Q.2. What do you mean by T3and T4spaces? 

Q.3. Explain the Simpson’s 3/8 rule. 

Q.4. State and prove the Urysohn Metrization Theorem. 

Q.5. Give a counter example to show that a regular space is not necessarily a -space. 

Q.6. Prove that every indiscrete space is regular. 

Q.7.If is a topology on then prove that 

is a normal topological space. 

Q.8.Show that every disceret topological space is a space. 

Q.9.Prove that the property of being a -space is a hereditary property. 

Q.10. Prove that a regular lindelof space is normal. 

 

Answer 

5. and . 

  

1T

      , , , , , , , , ,X a a b a c a b c   , , , ,X a b c d

 ,X 

4T 

5T

 , ,X a b c     , , , ,X a b c 
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13.1 Introduction 

Connectedness is a key concept in topology with important implications in various areas of 

mathematics and science. It helps to classify and understand the structure of spaces, and it forms 

the basis for many theorems and results in topology and related fields. In this unit we shall discuss 

another important property of topological spaces known as connectedness. This unit deals with 

connected and disconnectd sets, connectedness on the real line, components, maximal connected 

set, locally connected space and totally disconnected set. 

Connectedness can also be characterized in terms of paths. A space is path-connected if, for any 

two points in the space, there exists a continuous path (a continuous map from the unit interval 

[0, 1] to the space) that connects the two points. Hence the connectedness is an important 

property because it captures the idea of "wholeness" or "integrity" of a space. Intuitively, a 

connected space cannot be broken apart into pieces that are not somehow "linked" or "connected" 

to each other. 

 

13.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

 Separated Sets 

 Connected Set and Disconnected Set 

 Connectedness on the Real Line 

 Components 

 Maximal Connected Set and Locally Connected Space  

 Totally Disconnected Set. 

 



13.3  Separated Set 

In topology, the concept of separated sets refers to sets that can be distinguished in a certain way 

by open sets. There are several types of separation axioms that define different levels of 

separation between sets. 

Two subsets and of a topological space are said to be separated if any only if  

  and . 

 

13.4    Connected Set and Disconnected Set 

Connectedness and disconnectedness are important concepts in topology that describe how a 

topological space can splitted into different parts. Connectedness and disconnectedness are 

related to separation axioms in topology. For example, a space is disconnected if and only if it 

violates the T1 separation axiom, meaning there exist two points that cannot be separated by open 

sets. Connectedness and disconnectedness are fundamental concepts in topology with wide-

ranging applications in various fields, including topology, analysis, geometry, and image 

processing. They provide a framework for understanding the structure and properties of 

topological spaces and geometric objects. 

A set is said to be connected if  there does not exist any non-empty proper subset of which 

is both open and closed. 

Let be a topological space then is said to be disconnected if and only if there exist two 

disjoint non-empty subsets and of such that  

(i) and     (ii)  

Note: 1. If is not the union of two separated subsets of then  is said to be connected set. 

2. A set is said to be disconnected if there exists a non-empty proper subset of which is 

A B  ,X 

A B   A B  

X X

 ,X  X

A B X

A B   A B   A B X 

X X X

X X



both open and closed. 

3. A set is said to be disconnected if there exist two separated sets and such that  

 

Examples 

Example.1: If and . Then show that the 

topological space is connected. 

Solution: Given that and  

 open sets are  

 closed sets are  

This implies there does not exist any non-empty proper subset of which is both open and 

closed in  

Hence, is conneted. 

Example 2: If and . Then show that the topological space 

is disconneceted. 

Solution: Given that and . 

open sets are  

closed sets are  

This implies is non-empty proper subset of which is both open and closed in . Hence, 

is disconnected. 

X A B A B X 

 , , , ,X a b c d       , , , , , , ,X a b c a b c 

 , , ,X a b c d       , , , , , , ,X a b c a b c 

      , , , , , , ,X a b c a b c

      , , , , , ,X b c d a d d

X

X

 ,X 

 , ,X a b c    , , , ,X a c b 

 ,X 

 , ,X a b c    , , , ,X a c b 

     , , , ,X a c b

    , , , ,X b a c

 b X X

 ,X 



Example 3: let be the usual topological space. Let and . 

Show that and are separated but and are not separated. 

Solution: Given that is an usual topological space. Also given  

   and  

Here and are seperated because 

   and   

i.e.,     

 

 

But and are not separated because  

 

Hence, and are seperated but and are not seperated. 

Example 4: If and . Then show that is 

connected. 

Solution: Given that and . 

-open sets are  

closed sets are . 

This implies there exists no non-emprt proper subset of which is both open and closed in .  

 ,R v    1,2 , 2,3A B   2,3C 

A B A C

 ,R v

   1,2 , 2,3A B   2,3C 

A B

A B   A B       1,2  and 2,3A B 

   1,2 2,3A B    

   1,2 2,3A B    

   1,2 2,3A B    

A C

     1,2 2,3 2A C     

A B A C

 , , ,X a b c d      , , , , , , ,X b b c b c d   ,X 

 , , ,X a b c d      , , , , , , ,X b b c b c d 

    , , , , , ,X b b c b c d

      , , , , , , ,X a c d a b a

X X



 Hence, is not disconnected i.e., is connected. 

Theorem 1: Two closed subsets of a topological space are separated if and only if they are 

disjoint. 

Proof: Suppose and are closed subsets of a topological space.  

Since and are closed, then   

   and  

(1) Let and are seperated sets, i.e.,  

 

Using equation (1), we have 

     

 And     

(because  and are closed, i.e., and ) 

i.e., and are disjoint sets. 

(2) Now we let and are disjoint set i.e., 

 

Using equation (1), we have 

     

And      

(because and are closed, i.e., and ) 

 ,X   ,X 

A B

A B

A A B B

A B

,A B A B    

A B A B    

A B A B    

A B A A B B

A B

A B

A B  

A B A B    

A B A B    

A B A A B B



     

i.e., and are separated sets. 

Theorem 2: Two open subsets of a topological space are separated if and only if they are 

disjoint. 

Proof: We know that two separated sets are always disjoint. 

Hence, we need to prove that two open, disjoint subsets are separated. 

Suppose and are any two open and disjoint subsets then  

    

Suppose if possible and are not separated. Then either 

   or  

If then there exists a point such that 

   and  

Since is an open set it is a neighborhood of . Again is a limit point of and every 

neighbourhood of must contain at least one point . This implies that  

     which is contradiction 

Hence, and are seperated. 

 

13.5    Connectedness on the Real Line 

Connectedness on the real line is intimately related to the structure of intervals and plays a crucial 

role in understanding continuity and the behavior of functions on the real line. 

,A B A B     

A B

A B

A B  

A B

A B   A B  

A B   x X

x A x B

A x x B x B

x B

A B  

A B



subset of the real line containing at least two points is connected if and only if is an 

interval.  

Finite interval     

Infinite interval  . 

 

Examples 

Example.5: Let and . 

Show that is connected. 

Solution: Given that and  

   

open sets are  

 closed sets are  

This implies and is non-empty proper subsets of which is both open and closed 

in . 

 Hence, is a disconnected space. 

 Now  

    

 closed sets are  

A E R E

       , , , , , , , .a b a b a b a b

       , , , , , , ,a a a    

 , , , ,X a b c d e         , , , , , , , , , , ,X a c d a c d b c d e 

 , ,Y b d e

 , , , ,X a b c d e

       , , , , , , , , , , ,X a c d a c d b c d e 

        , , , , , , , , , , ,X a c d a c d b c d e

        , , , , , , , , , , ,X b c d e a b e b e a

 a  , , ,b c d e X

X

 ,X 

 every member of v Y  

    , , ,b d e d 

v  , , ,Y b e



This implies there does not exist any non-empty proper subsets of which is both open and 

closed in .Hence, is connected. 

Theorem 3: Every indiscrete space is connected. 

Proof: Let be an indiscrete space. 

 open sets are  

 -open sets are  

This implies there does not exist any non-empty proper subset of which is both open and 

closed in .  

 Hence, is connecetd, i.e., every indiscrete space is connected. 

Theorem 4: Every discrete space is disconnected if the space contains more than one points.  

Proof: Let be a discrete space and contains more than one element. 

Let and be a discrete topology on . 

 open sets are  

 closed sets are . 

The implies and are two non-empty proper subsets of which is both open and closed 

in . 

Hence is disconnected i.e., every discrete space is disconnected if the space contains 

more than one points. 

Theorem.5: Prove that a topological space is disconnected if and only if any one of following 

statements holds good: 

Y

Y  ,Y v

 ,X 

 ,X 

 , X

X

X

 ,X 

 ,X  X

 ,X a b    , , ,X a b  X

    , , ,X a b

    , ,X b a

 a  b X

X

 ,X 



(1) is the union of two non-empty disjoint closed sets. 

(2) is the union of two non-empty disjoint open sets.  

Proof: Suppose is disconnected 

This implies a non-empty proper subset of which is both open and closed. 

 is both open and closed in . 

 and  

Hence, is the union of two non-empty open sets which are disjoint.  

Now let   and  

Where are are non-empty open sets to show that is disconnected  

Let is closed 

 is non-empty is proper subset of which is both open and closed. 

Hence, space is disconnected.Similarly, we can prove that by taking and closed set. 

Theorem.6: A continuous image of a connected set is connected in a topological space. \ 

Proof: Suppose is a continuous mapping. To show that if is connected then is 

also connected. 

    

 

 

 

We will prove this theorem by contradiction method. Suppose is disconnected and s is 

X

X

X

A X

X A X

A X A X   a X A  

X

A B X  A B  

A B X

A X B A 

B A X

A B

:f onto y X Y

Y X



connected. This implies there exists a non-empty proper subset of which is both opoen and 

closed. 

 Since is continuous is both open and closed in also is one-one onto 

    is also non-empty proper subset of . 

Hence is non-empty proper subset of which is both open and closed. Therefore the 

set is disconnected, which is contradiction. Hence, if is connected then is also connected. 

Theorem.7: Prove that a topological space is disconnected if and only if there exist a 

continuous mapping of onto the discrete two point space  

Proof: Let be a topological space . is a discrete space, i.e., is disconnected 

space. Let is disconnected. To show that there exists a continuous mapping . 

 

 

 

 

 

Given is disconnected this implies where and and are open set  

Let     such that 

    if  

 and  

(Given and are open set then there exist are open set)  

G Y

f  1f G X f

 1f G X

 1f G
X

X X Y

X (0,1).

 ,X  (0,1)E  E

X :f X E

X ,X A B  A B   A B

f X E

   0, 1f x f x  x E

 1 0f A   1 1f B 

A B    1 10 1f ff 



Hence, mapping is continuous. 

Conversely, let there exists a continuous mapping  

     

To show that is disconnected. 

We prove this part by contradiction method suppose if possible is connected set we know that 

continuous mapping of a connected set is connected therefore is connected which is 

contradiction.  

Because given is disconnected. 

Theorem.8: Let be a topological space and is a subset of if is connected then 

is connected. 

Proof: Let be a connected subset of a topological space . To show that is also 

connected. Suppose if is disconnected then there exists non empty set of such that  

        (1) 

And     then  

       ( is connected) 

     or  

We have     

     using (1)  

         (2) 

Now      

:f X E

X

X

E

E

 ,X  Y X Y

Y

Y  ,X  Y

Y ,A B X

,A B A B    

Y A B  Y Y

y A B   Y

Y A Y B

Y A Y A  

Y B A B     

Y B   

Y A B B Y   



     

     

        using (2) 

Which is contradiction. 

Because and are separated set therefore there are non-empty sets. 

Similarly again a contradiction thus is connected. 

Hence, if is connected then is connected. 

Theorem.9: Let be a topological space. Then is disconnected if and only if there 

exist a non-empty proper subset of which is both open and closed. 

Proof: Let be a topological space and also is disconnected. This implies there exist a 

non-empty disjoint open subsets and of such that 

    

And     

To show that there exist a non-empty proper subset of which is both open and closed. 

 Given that     (if disjoint) 

It is also given that is open is closed. 

Also is a subset of . Since is non-empty therefore is also proper subset of . 

This implies is non-empty proper subset of which is either both open and closed. 

Conversely, suppose there exist a non-empty subset of which is both open and closed. 

To show that is disconnected. 

A B Y B   

B Y B  

B  

A B

Y B A    Y

Y Y

 ,X  X

X

 ,X  X

G H X

G H X 

G H  

X

G H G X H   

H G

G X H G X

G X

A X

X



Since is a non-empty and closed set. 

is a non-empty and open set. 

Also given that is a non-empty proper open subset of then we have 

    

This implies is the union of two non-empty disjoint subset of and  

Hence, is disconnected. 

Theorem.10: Let be a topological space. Let be a connected subset of and 

. Prove that is connected and hence deduce that is connected. 

Proof: Let be a topological space, Let such that and is connected. 

To show that is connected. 

We will prove this theorem by contradiction method. 

If possible is disconnected. 

This implies there exist seperated sets and such that  

That      and  

     (1) 

Since   

It is given that   

Then     

    (Operating both sides) 

Using (1), we have 

A

X A

A X

A X A X 

X A X A

X

 ,X  A X

A B A  B A

 ,X  ,A B X A B A  A

B

B

G H

G H B 

,G H G H    

B G H 

A B A G H   

A G A G  

A H G H    H



     (2)  

Now we have   

      

     

      (Operating both side) 

       (Using 2) 

 Or     

Because and  ar separated set. Therefore they are non-empty set. Hence, is connected 

which is a contradiction. Since we prove above if is connected and the is connected 

it is given . Hence is also connected. 

Theorem.11: Let be a topological space and be a connected subset of such that 

where and are separated sets then or i.e., cannot intersect 

both and . 

Proof: Let be a topological space and be a connected subset of such that 

where and are separated sets then 

        …(1) 

It is also given that  

     

        …(2) 

Suppose and is empty sets.     ….(3) 

A H A H     

B A G H A   

H G H A     , and B G H G B H B   

H A 

H H A H    H

H  

H 

G H B

A A B B

B A A

 ,X  E X

,E A B  A B E A E B

A B

 ,X  E X ,E A B 

A B

,A B A B    

E A B 

 E E A B   

   E A E B   

E A E B



We will prove this by contradicition. 

If possible the set are non-empty, i.e., 

    

We have  …..(4) 

    using equation (1) 

Using (3) we have 

    

Similarly,       …(5) 

This implies  and are seperated sets. 

Using equation (2) we have 

     

This implies is the union of two separated sets and . 

Therefore is disconnected, which is contradiction because it is given is connected. 

Let   then by (3) 

Equation (2) implies 

    

    

    

,E A E B    

        E A E B E A E B A B A B         

     E E A B E E         

   E A E B    

   E A E B    

 E A  E B

 E A   E B E

E  E A  E B

E E

E A  

   E E A E B   

 E B  

E B 



    

i.e.,   and if  

Let     Then by (3) 

Equation (2) implies  

    

    

    

    

 i.e.,  and if  

Hence, either or  

 

13.6    Components 

Components are a fundamental concept in topology that help us to understand the structure of a 

space by partitioning it into maximally connected subsets. They have important applications in 

various fields, including graph theory, image processing, and the characterization of topological 

spaces. The number and nature of components can provide important information about the 

topological properties of a space.  

For example, the number of components can help to distinguish between different types of 

spaces, such as those that are connected, disconnected, or have more complex structures. 

Let be a topological space. A component of the space is a maximal connected subspace 

of . 

E B 

E B E A  

E B  

   E E A E B   

 E A   

E A 

E A 

E A E B  

E A E B

 ,X  X

 ,X 



13.7    Maximal Connected Set 

Maximal connected sets are important in topology for their role in defining components, 

understanding the structure of spaces, and their applications in analysis and geometry. They 

provide a foundational concept for studying connectivity in topological spaces. 

Let be a topological space and . Then the set said to be maximal connected 

subset of if: 

(i) is connected. 

(ii) is not a proper subset of any connected subset of . 

Note: 1. Every indiscret space has only one component (the space itself) 

2. Each connected subset of which is both and closed is a component of . 

 

13.8    Locally Connected Space 

Locally connected spaces are important in topology for their local structure, their relationship 

with path components, their applications in analysis, and their role in defining important classes 

of spaces such as manifolds.Many important spaces in mathematics, such as topological 

manifolds, are locally connected. Locally connectedness is a key property in the definition and 

study of these spaces. 

Let be a topological space. Then is said to be locally connected at a point if and 

only if every open neighbourhood of contains a connected open neighbourhood of .The space 

is said to be locally connected if and only if it is locally connected at each of its point. 

 

13.9    Totally Disconnected Set 

Totally disconnected sets are important in topology for their role in understanding the structure 

 ,X  A X A

X

A

A X

X X

 ,X   ,X  x

x x



of topological spaces, their applications in fractal geometry, and their connection to dimension 

theory and compactness. A totally disconnected set is a set in which every subset with more than 

one point can be divided into two disjoint nonempty subsets such that no point of the set is an 

interior point of both subsets. 

 A topological space is totally disconnected if given any pair of distinct points then 

there exist a disconnection of with 

   and . 

 

Examples 

Example.6:Let and be a 

topology on . Find all the component of . 

Solution: Given that and  

    

Here and are disjoint and their union is . Also these two sets are both open and 

closed in . Hence, components of are . 

Note: Any other connected subset of in above example such as is subset of one of the 

components. . The relative topology on .  

Hence, is connected since and are the only subsets of both open and closed in the 

relative topology. 

Example 7: Every discrete space is locally connected. 

Solution: Let be a discrete topological space for every is a connected -

,x y X

G H X

,x G y H  G H H 

 , , , ,X a b c d e         , , , , , , , , , , ,X a b c a b c b c d e

X X

 , , , ,X a b c d e

        , , , , , , , , , , ,X a b c a b c b c d e 

 a  , , ,b c d e X

X X    , , , ,a b c d e

X  , ,b d e

 , ,A b d e   , , ,A v A d

A A  A

 ,X 

 ,X   ,x X x 



neighbouhood of . Also evidently every -neighbourhood of contains . Hence, 

is locally connected. 

Example 8: Let and be a discrete 

topology on . show that the space is locally connected.  

Solution: Given that     

And    

Let . 

To find relative topology on .  

We have  

   

Here and are only subset of both open and closed in relative topology. 

Hence, is connected. 

Since for every is a connected neighbourhood of . Also every 

neighbourhood of  contains  

Hence, is locally connected.Similarly, for every and is a connected 

neighbourhood of . Also every neighbourhood of and contains and 

respectively. 

Theorem.12: Every component of a locally connected space is open. 

Proof: Let be a locally connected space and be a component of . To show that is 

an open set. 

  x  x  ,x 

 , ,X a b c             , , , , , , , , , ,X a b c a b b c a c 

X t  ,X 

 , ,X a b c

           , , , , , , , , , ,X a b Pc a b b c a c 

 ,A a b

A

  every member of v A 

    , , ,A a b

A  A

A

x X  , x  x 

x  .x

 ,X   , ,a b X a  b v 

x  a b  a  b

 ,X  C X C



Let be an element of . Since is locally connected, there must exist a connected open set 

 which contains . Since is a component. 

We have   

    

Obviously   

Thus, being a union of open set, is open set. 

Theorem.13: Prove that the image of a locally connected space under continuous and open 

mapping is locally connected. 

Proof: Let be a continuous and open mapping from , where and are topological 

spaces and is locally connected. 

To show that is also locally connected. 

Let and be any open neighbourhood of in . 

This implies there exists such that since mapping is continuous. 

This implies is open set in and open neighbourhood of It is 

given that is locally connected. 

This implies there exist open set such that 

    

And is connected using definition. 

We know that by a theorem continuous image of connected set is connected. 

This implies is connected set. 

x C X

xG x C

xx G C 

 :xC G x C  

C

f X Y X Y

X

Y

 y f x v y  f x

x X  y f x f

 1f v
X    1 1x f v f v   .x

X

u

 1x U f v 

U

 f u



Also it is given mapping is open mapping. 

This implies is open set in . 

This implies  

Hence, is locally connected at point Therefore, is locally connected. 

 

13.10   Summary 

Two subsets and of a topological space are said to be separated if any only if  

  and . 

A set is said to be connected if does not exist any non-empty proper subset of which is both 

open and closed. 

Let be a topological space then is said to be disconnected if and only if there exist two 

disjoint non-empty subsets and of such that  

(i) and     (ii)  

subset of the real line containing at least two points is connected if and only if is an 

interval.  

Let be a topological space. A component of the space is a maximal connected subspace 

of . 

Let be a topological space and . Then the set is said to be maximal connected 

subset of if: 

(i) is connected  

f

 f u Y

 y f u v 

 f X Y .y  f X Y

A B  ,X 

A B   A B  

X X

 ,X  X

A B X

A B   A B   A B X 

A E R E

 ,X  X

 ,X 

 ,X  A X A

X

A



(ii) is not a proper subset of any connected subset of . 

Let be a topological space. Then is said to be locally connected at a point if and 

only if every open neighborhood of contains connected open neighborhood of .The space is 

said to be locally connected if and only if it is locally connected at each of its point. 

A topological space is totally disconnected if given any pair of distinct points then there 

exists a disconnection of with and . 

 

13.11  Terminal Questions 

 

Q.1. Explain the connected and disconnected set. 

Q.2. What do you mean by locally connected and totally disconnected set. 

Q.3. To show that the closure of a connected set is connected. 

Q.4. Let and Prove that is disconnected. 

Q.5. Show that is a connected space if and  

  

A X

 ,X   ,X  x

x x

,x y X

G H X ,x G y H  G H H 

 , ,X a b c     , , , , .X a b c  ,X 

 ,X   , , ,X a b c d   , , , .X a b 
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14.1 Introduction 

Compactness is a fundamental concept in topology that captures the idea of a space being "nicely 

bounded" or "finite in a sense." A topological space is said to be compact if every open cover of 

the space has a finite subcover. Compactness is a useful property because it ensures that certain 

properties hold in a space. For example, in a compact space, every sequence has a convergent 

subsequence. This property is known as the Bolzano-Weierstrass theorem. Compactness also 

allows for the extension of certain theorems from analysis to more general topological spaces. 

This unit deals with compactness, compact sets, basic properties of compactness, finite 

intersection property,locally compact space, Bolzano weietrass property, sequentially compact, 

countably compact sets, uniformaly continuous, Lebesgue covering lemma, Heine-Borel 

theorem, compactness and one point compactification, cartesian product of two sets, projection 

mapping, embedding and product topology. 

 

14.2       Objectives 

After reading this unit the learner should be able to understand about the: 

 Cover and subcover of X 

 Open Cover and Finite Cover 

 Compact Space and Compact Set 

 Finite Intersection Property 

 Locally Compact Space and Lindelof Space 

 Bolzano Weiertrass Property 

 Sequentially Compact and Uniformly Continuous 

 Lebesgue Covering Lemma and Heine-Borel Theorem 

 Product Topology and Projection Mappings 



14.3  Cover and Subcover of X 

Covers and subcovers are important in topology for their role in defining and characterizing 

compactness, their applications in studying topological properties, their use in partitioning unity, 

and their applications in differential geometry and complex analysis. 

Let be a topological space. Let be a subset of X. A family of subsets of is said 

to be cover for if only if 

    

Also if such that is also a cover for then  is a subcover of . 

 

14.4 Open Cover and Finite Cover 

In topology, an open cover of a topological space X is a collection of open sets whose union 

contains X. A finite cover is an open cover that consists of only finitely many open sets. Open 

covers and finite covers are crucial in the study of compact spaces. A topological space is 

compact if every open cover has a finite subcover. Finite covers are particularly useful in proving 

compactness because they allow for a more manageable number of sets to work with. 

An open cover of is a family of open subsets of such that each point in 

belongs to at least one number of the class i.e., . 

A cover of a topological space is said to be finite cover if it has only a finite number of 

member. 

 

14.5  Compact Space and Compact Set 

Compact spaces and compact sets are fundamental concepts in topology with wide-ranging 

applications in mathematics, including analysis, geometry, and topology. In topology, a compact 

 ,X  A A X

 ,X 

 :U v v X A

B A B X B A

A  :v vA  X X

 :v vA  :A v v A

 ,X 



space is a topological space in which every open cover has a finite subcover. Compactness is a 

fundamental concept in topology with many important properties and applications. A compact 

set is a subset of a topological space that is itself a compact space when endowed with the 

subspace topology.  

Compact spaces are often connected, but there exist compact spaces that are not connected (e.g., 

the disjoint union of two compact spaces).  

Let be a topological space. Then  is said to be compact if and only if every open 

cover of X has a finite subcover. 

(i)  (open cover) 

(ii)  (finite subcover) 

Let be a topological space. A set of is said to be compact if every -open cover 

of has a finite subcover. 

 

14.6 Finite Intersection Property 

A collection of subsets of is said to have finite intersection property if and only if the 

intersection of members of each finite sub-collection is non-empty. 

 

14.7 Locally Compact Space and Lindelof Space 

A locally compact space is a topological space in which every point has a compact neighborhood. 

Locally compact spaces generalize the notion of compactness to allow for spaces that are 

compact "around each point." This property is useful in many areas of mathematics, including 

functional analysis and algebraic topology. A Lindelöf space is a topological space in which 

every open cover has a countable subcover. These spaces are important in topology because they 

satisfy a "countable compactness" property that is useful for proving certain theorems. 

 ,X   ,X 

 :iU G i I X 

  : 1,2,.....,iU G i N X 

 ,X  A X 

A

X



Let be a topological space. Then is said to be locally compact space if and only if 

every point of the set has at least one neighbourhood whose closure is compact. 

Let be a topological space. Then is said to be lindelof space if every open cover of  

has a countable cover. 

 

14.8  Bolzano Weiertrass Property 

Let be a topological space. Then  is said to have the Bolzano-Weiertrass property 

if every infinite subset of has a limit point.  

Any space with Bolzano-weiertrass property is called Frechet compact space. 

 

14.9  Sequentially Compact 

Sequentially compact spaces are important in topology and analysis for their properties related 

to convergence of sequences. They provide a way to ensure the existence of limits for sequences 

in a space and have applications in various areas of mathematics. 

Let be a metric space. Then is said to be sequentially compact if every sequence 

in has a convergent sub-sequence. For example, the set of all real number in is not 

sequentially compact. For the sequence in converges to a on the 

otherhand is sequentially compact. 

Note: A sequence is said to be convergent if .  

Examples 

Example 1: Let and 

 ,X   ,X 

 ,X   ,X 

X

 ,X   ,X 

X

 ,X d  ,X d

X  0,1

1 1
, ,.....

2 3

 
 
 

 0,1  0 0,1

 0,1

 :nx X n N  0nx x x X 

 1,2,3,4X              , , 1 , 4 , 1,4 , 2,3 , 1,2,3 , 2,3,4X  



be a topology for . 

The collections  

    

  and   

Are open cover of Since these covers have finite number of members. So they are finite 

covers. But is a cover of which is not open.  

The collection is not a cover of since the union of theses members of 

this collection is not equal to . 

If is a subset of then the collection is an open cover of 

Here is a refinement of and both. 

Theorem 1: Prove that in a topological space , every closed subspace of a compact 

space is compact. 

Proof: Let be a topological space and  be compact and is a subspace of 

. To show that is compact. 

 Let is an open cover for  

    

Since each is the open set of  

i.e.,     

Using definition we have   

X

      1 1 , 4 , 2,3C 

    2 1,4 , 2,3C 

    3 1 , 2,3,4C 

.X

    1,2 , 3,4C  X

      1 . 1,3 , 1,2,3 X

X

 1,2,3A  X       1 , 2,3 , 1,2,3 .A

1C 2C 3C

 ,X 

 ,X  X  ,Y v  ,X 

Y

 :iG i I Y

  : 1,2,3,......,iU G i N Y  

iG Y

iG v

 every member of iG Y  



i.e.,    

 It is given that is closed then is open set in X. 

and all is an open cover for Since it is given is compact, this implies it 

has a finite subcover for . 

    

    

       (using definition) 

     

 Hence, is a compact space. 

Theorem 2: Prove that the continuous image of a compact space is compact in a topological 

space . 

Proof: Let and be two topological spaces. mapping which is 

continuous and is compact. 

   

 

          

 

 

 

i iG Y H v    iH 

Y ~X Y

~X Y iH  .X X

X

 1 2, ,..... nU H H H X 

 1 2, ,..... nU H Y H Y H Y X Y     

 1 2, ,...... nU G G G Y 

  : 1,2,3,.....iU G i N Y  

 ,Y v

 ,X 

 ,X   ,Y v A :f X Y

X



To show that Yis compact space 

Let is an open cover for  

      (1) 

It is given mapping continuous 

  are open set in  

And they form are open cover for . 

It is given is compact it has a finite subcover. 

    

    

    

     

i.e., Y has a finite subcover 

 Hence, Y is compact space. 

Theorem 3: Prove that a topological space is a compact if and only if every collection 

of closed subsets of with finite intersection property has a non-empty intersection. 

Proof: (i) Let be compact and  be the collection of closed subset of with 

finite intersection property. 

 To show that    

 :iG i I y

 :iG i I Y  

  1 :if G i I  X

X

X 

    1 : 1,2,3,...iU f G i N X  

    1 : 1,2,3,...if U G i N X  

      : 1,2,3,...iU G i N f X  

Y

 ,X 

X

X  :iF i I   X

 :iF i I   



Suppose if possible   

    (Complement taking) 

     

    it is open cover for . 

It is given is compact it has a finite subcover. 

This implies    

      (Taking complement and using Demorgan law)  

    

     

it is contradiction because has finite intersection property 

    . 

(ii) Let every collection of closed subset of with finite intersection property has a non-empty 

intersection. 

To show that is compact. 

Let ( is open set) 

 (Taking complement) 

    

 :iF i I   

 :iX F i I X    

 :iX F i I X  

 X

X 

  : 1,2,...,iX F i N X  

  : 1,2,...,iX X F i N X X   

  : 1,2,...,iF i N   

 X

  : 1,2,...iF i N   

x

X

 :iX G i I   iG

 :ix X X G i I  

 :iX G i I   



   

   

   

   

  it is finite subscover for . 

Hence, is compact. 

Theorem 4: If is compact, ’ is coarser than then show that  is also 

compact. 

Proof: Let be a compact topological space and let is coarser then so that .  

To show that is compact. 

Let be a open cover for  

Then be a open for for . Also is compact. 

Hence, is reducible to finite subcover which is also open. So  

Compact. 

Theorem 5: Prove that every compact topological space is locally compact? Is the converse 

true. 

Proof: Let be a compact. To show that it is locally compact. 

  We know that is both open and closed therefore it has the neighbourhood of 

 :iX G i I   

  : 1,2,....,iX G i N   

  : 1,2,....,iX G i N X    

  : 1,2,....,iG i N X  

 X

X

 ,X     ,X 

 ,X  '  '  

 , 'X 

 :iG i I ' X

 :iG i I  X ' J  X

 : 1,2,3,..,iG i N '  , 'X 

X

X



each of its point. This implies i.e., is locally compact. 

But converse is not necessary true. 

Let  be a discrete topological space where is infinite therefore is not compact 

because the collection of all singleton sets is an open cover for but it has no finite subcover.  

Whereas this set is locally compact because let . This emplies is the neighbouhood of 

 . 

And we know that in a discrete space each member of is open and closed therefore is 

closed also  

And is a compact subset of . 

Therefore every point of has a neighbourhood whose closure is compact so it is locally 

compact. 

Theorem 6: Prove that every closed subspace of a locally compact space is locally compact. 

Proof: Let be a closed subspace of a locally compact space , then Yis closed 

set. Let  

To prove Y is locally compact. 

We havey    

It is given is locally compact. 

This implies there exists a neighbourhood of in such that is compact.  

This implies is open neighbourhood of in Y 

X X X

 ,X  X X

X

x X  x

x

  x

  x x 

 x x

X

 ,Y v  ,X  

.y Y X 

Y y X    Y X

X

U y X U

U Y y



    

    

   is a closed subset of a compact set. 

  We know that a closed subset of a compact space is compact. 

This implies for every point in has a neighbourhood in where closure is compact. 

Hence , Y  is locally compact. 

Theorem 7: Show that a compact topological space has BWP. 

Proof: We will prove this theorem by contradiction. 

Let has no limit point in . 

This implies for every there exists an open neighbourhood of which contains no point 

of other then . 

This implies collection of such neighbourhood is an open cover for . 

i.e.,   is an open cover for . 

 It is given that is compact space. 

 This implies it has a finite subcover.  

    (1) 

Also it is given     (2) 

From (1) and (2), we have 

  

U Y U  

U Y U  

U Y 

y Y

A X

x X xU x

A x

X

 :xU x X X

X

  : 1,2,...,xX U U i N  

A X

  : 1,2,....,
ixA U U i N 



Since each  contains at most one point of therefore will contains 

at  

Most points and is given to be infinite set which is contradiction because an infinite set 

cannot be subset of a finite set. 

Hence, must have a limit point in .  

Therefore compact topological space has BWP. 

Theorem 8: Prove that a metric space is sequentially compact if it satisfies the BWP. 

Proof: Let  be a metric space. Also is sequentially compact and . 

To show that it has a BWP. 

Let be an infinite set. 

To show that has a limit point in X. 

Since A is an infinite set this implies there exists any collection of distinct points in also 

it is given that the space is sequentially compact. 

This implies has a sequence which converges to a point in . 

We know that if a convergence sequence in a metric space has infinitly distinct points then its 

limit is a limit point in . 

 Thus, set of the points of the sequence of this converges this implies is the limit point 

of the set of point of the subsequence and since the set is a subset of i.e., also a limit point of 

.  

Conversely, let every infinite subset of has a limit point then to show that is sequentially 

compact. Let is a sequence in . Then 

xU A   : 1,2,....,
ixU U i N

n A

A X

 ,X d X A X

A X

A

 nx A

 nx  nkx x X

x

x x

A

A

X X

 nX X



(1) This sequence may have a point which is infinitely repeated its implies it has a constant 

subsequence which is convergent. 

(2) If no point of is infinitely repeated i.e., has infinitly distinct points.  

The set of this sequence is inifinite it is given infinite set has a limit point in . 

This implies there exist a sequence which converge to . Hence, is sequentially compact. 

 

14.10 Uniformly Continuous 

Uniform continuity is an important concept in analysis and topology that helps us to understand 

the behavior of functions in a controlled and uniform manner. Uniformly continuous functions 

behave well with respect to compact sets. Specifically, a uniformly continuous function maps 

compact sets to compact sets. 

Let and be two metric space. mapping defined on a metric space and Y 

is uniformly continuous if then there exist depending on  alone such that  

    

     

   

 

 

 

Note: In case of continuity depends upon and point . But in case of uniformly continuous 

depending upone  alone. Using definition, for given 

 nX  nx

A x X

 nx x X

 1,X d  2,Y d A f X

0 0  

    2 ,d f x f a 

 1 ,d x a 

  a 



   if      implies     

 

14.11  Lebesgue Covering Lemma 

The Lebesgue Covering Lemma is a fundamental result in topology that provides a way to cover 

a compact set with a collection of open sets, while controlling the size of the covering sets.  

Every open cover of a sequentially compact metric space has a lebesgue number.  

Note: Let be a metric space and be an open cover of A real number 

is said to be a lebesgul number for if and only if every subset of with diameter less 

than is contained in at least one . 

 

14.12 Heine-Borel Theorem 

Heine-Borel Theorem is a key result in topology and analysis that provides a fundamental 

characterization of compact sets in Euclidean space, with wide-ranging applications in 

mathematics. 

A subset of the real line is compact if and only if it is closed and bounded. 

Proof: Let be the usual topological space and let is compact. 

Let us consider the family of open sets (open intervals) defined as  

   (1) 

Clearly this is an open cover of . Since it is given is compact this implies there exist a finite 

subcover of  

x a   0     f x f a 

 ,X d  :C G   .X

0l  C X

G

 ,R U A R

  : and 1, 1G A G      

A A

A



i.e.,    

      (2) 

Let     

    

    

   is bounded. 

Let be a -space and we know that a compact subset of a -space is closed.  

This implies is closed. Conversely, let be bounded and closed. 

To show that is compact.We know that every bounded and closed interval on is 

compact.Thus, is compact. 

Theorem 9: Prove that any continuous mapping of a compact metric space into a metric 

space is uniformly continuous. 

Proof: Let be a continuous mapping from a compact metric space into a metric space 

with metric and respectively. 

   

 

 

 

 

  
1
: 1,2,...,U G i n 

 
1 2
, .....,

n
A U G G G  

 0 1 2max , ,...., nM   

 0 1 2min , ,..., nm   

 0 1 0 1,A m m  

A

 ,R U 2T 2T

A A

A R

A

f X Y

1d 2d



Since > 0 then for each point then there exist an open ball centred at the pont 

This implies inverse image of all these open balls are open set in . 

This implies class of all such images is an open cover for and it is given is compact. 

 Open cover has a lebesgue number if and such that  

 then the set is the set with diameter < . Also both the points and 

belongs to the inverse image of the open ball centred at and  

   

Hence, the mapping is uniformly continuous. 

 

14.13  Product Topology 

The product topology is a fundamental concept in topology that allows us to study the properties 

of product spaces and is used in various areas of mathematics. The product topology is used in 

algebraic topology to define the product of topological spaces, which is important for defining 

operations on homology and cohomology groups. The product topology allows us to study the 

properties of product spaces, which are used in various branches of mathematics. For example, 

in functional analysis, the product of Banach spaces is a common construction. The product 

topology is a way to construct a topology on the Cartesian product of two or more topological 

spaces. 

Let and be any two sets. Then the Cartesian product of and written as is the 

set of all ordered paris such that and  

i.e.,    

 x X  /2S f x   

 f x X

X X

  x 1x X

 1 1, ,d x x   1,x x  x 1x

 f x  1f x

    2 1, ,d f x f x 

f

1X 2X 1X 2X 1 2X X

 1 2,x x 1x 1X 2 2x X

  1 2 1 2 1 1 2 2, : ,X X x x x X x X   



Let and be two topological spaces. The topology whose base is 

and is said to be product topology for . The 

corresponding topological space is known as product space of and .. 

 

Examples 

Example. 2: Let  be a topology for and 

be a topology for . Find a 

base for the product topology of . 

Solution: We know that 

  is a base for  

And   is a base for  

Hence, a base for the product topology is given by 

 

 

 

14.14 Projection Mappings 

Projection mappings are used extensively in topology and related areas of mathematics. They 

play a crucial role in defining and studying product spaces, and they provide a way to decompose 

a product space into its component spaces. They are also used in algebraic topology to define 

operations on homotopy and homology groups, and in functional analysis to define operations 

 1 1,X   2 2,X  

1 2 1 1{ :B G G G   2 2}G  1 2X X X 

 ,X  1X 2X

  1 , , 1X    1 1, 2,3X 

            2 , , , , , , , , , , , , ,X a b a b c d a c d b c d   2 , , ,X a b c d

1 2 

    1 1 , 1,2,3B  1

      2 , , ,B a b c d 2

                     1 ; 1 ; 1 , ; 1,2,3 ; 1,2,3 ; 1,2,3 ,B a b c d a b c d      

                              1, ; 1, ; 1, , 1, ; 1, ; 2, , 3, ; 1, , 2, , 3, ; 1, , 1, , 2, , 2, , 3, , 3,a b c b a a a b b b c d c d c d



on function spaces.Projection mappings are a fundamental concept in mathematics, particularly 

in the context of Cartesian products and product topologies. 

The mappings  

    such that 

    in  

And     such that 

    in  

Are called projection mappings of the product . 

Embeddings 

An embedding of a topological space Xinto another space we mean a mapping 

which defines a homeomorphism of onto . 

Theorem 10: If is the product space of and then the projection 

mapping and are continuous and open. 

Proof: Let be any -open subsets of .Then by definition of we have  

     

Which is a basic open subset of . For where is a base for 

. Hence is continuous. Similarly it can be proved that is continuous. Hence, 

the projection mapping are continuous. Now we shall to show that and are also open. 

Suppose be a open subset of . Then by definition of base for we have 

:x X Y X  

   , ; ,x x y x x y   X Y

:y X Y Y  

   , ; ,y x y y x y   X Y

X Y

,Y :f X Y

X  f X

 ,X Y T  ,X   ,Y v

x y

G  X ,x

 1

xx G G Y  

T  X Y ,G Y v G Y B     B

T x T  y T v

,x yx  x y

W T  X Y B ,T



    

Now we have 

    

Where since  

    

    {using definition of } 

    

Hence, is an open mapping. Similarly is also an open mapping. 

Theorem 11: The product of two second countable space is a second countable space. 

Proof: Let and be two second countable spaces to show that is 

also a second countable space. 

 Let and be countable bases for and respectively. 

Consider the countable collection 

    

Let be any point of and let be a neighbourhood of  

 Since is a base for the prodecut topology there exists a 

member of  such that  

Since and is a base for there exist some  such that 

 *: , and G H BW U G H G H v      
 

   *: , and G H Bx xx W U G H G H v       
 

*B B  ,i jG U B B B 

  : , and G H B*xU G H G H v     

 : and G H B*U G G    x

  x w 

x y

 1 1,X   2 2,X   1 2X ,X T

 1 iB i N  B  2 : jiC N B 1 2

 : ,i jC B C i N j N   

 1 2,x x 1 2X X N  1 2,x x

 1 2 1 1 2 2: ,G G G G   B

1 2G G B  1 2 1 2x x G G N  

1G  B 1 1iB B



     

Similarly,     

     

Thus,     

Hence, is a base for the product topology  

Therefore product space of two second countable space is also a second countable space. 

Theorem 12: Product of two Housdorff spaces is a Hausdorff space. 

Proof: Let and be two -spaces. Suppose are two distinct 

points of Then either or  

Suppose  

Since is a -space then there exist open disjoint subsets and such that  

      

And       

Then and are open subsets of such that 

     

     

And      

1 1ix B G 

2 1jx C G 

  1 2 1 2, i jx x B C G G   

 1 2, i jx x B C N  

 : ,i jB C i j N  .T

 ,X   ,y v 2T    1 1 2 2, and ,x y x y

.X Y 1 2x x
1 2y y

1 2.x x

 ,X  2T  1G 2G

1 1x G

2 2x G

1G Y 2G Y X Y

 1 1 1,x y G Y 

 2 2 2,x y G Y 

     1 2 1 2G Y G Y G G Y     



      

Hence, product of two spaces is a space.  

Theorem 13: Each projection on a product space is an open 

mapping. 

Proof: Let be an open subset of the product space For every point in  there 

exists a member of the defining base for the product topology T such that 

     

Thus, for any projection   

    

Since belongs to the definiting base for . 

     

Where is an open subset of  

Thus, for any projection  

    

In either case  is open set. Hence , is open set, i.e., each point in 

belong to an open set 

      



2T 2T 

: X X    i iX X

G  .i iX X p G

B B

p B G 

: X X  

     p B G     

B X

    
1 2 31 2 3: , , ,..., , ,....,

mmB X G G G G              

k
G k

X

: x X  

 
 

 

1 2

1 2

if  , ,...,

if , ,.....,

m

m

X
B

G







   


   

  
  

  

 B  B  p  G

   B B  



Therefore, is an open set. Hence, each projection mapping is an open mapping. 

Theorem 14: Let and  be two topological spaces. Then the product space is 

connected if and only if X and Y are connected. 

Prof:Let be connected space. 

Since the projection mapping and are onto and continuous it follows that and are also 

connected spaces. 

Conversely, let and are connected space. Then we have to prove that is also connected. 

Let and be any two elements of . Then is homeomorphic to and 

is homeomorphic to . 

It follows that and are connected spaces. Since these two spaces interseat at the 

point  It follows the their union is a connected space. 

Conversely, let and Y are connected space. Then we have to prove that is also 

connected. Let and be any two elements of . Then is homeomorphic 

to Y and is homeomorphic to  

It follows that and are connected spaces. 

Since these two spaces intersect at the point it follows the their union is a connected 

space. Since the union contains and it follows that is connected. 

Theorem 15: The product space is Housdorff if and only if each space 

 is Housedorff. 

 G 

X Y X Y

X Y

 y X Y

X Y X Y

 1 1,x y  2 2,x y X Y x Y Y

 2X Y X

 1x Y  1X y

 1 2, .x y

X X Y

 1 1,x y  2 2,x y X Y x y

 2X y .X

 1x Y  2X y

 1 2,x y

 1 1,x y  2 2,x y X Y

 :X x X  

X



Proof: Let each co-ordinate space be space and let and 

be two distinct points of the product space Then for some , where and 

since is -space there exist open sets and in such that 

and (1) 

Since and 

Using (1) , we have  

And 

Or  

But and are open in being sub-baisc members of the product topology. 

Thus, we have to show that each pair of distinct points of there exist two disjoint open 

sets one containing and the other containing 

It follows that the product space is -space conversely, let the product space be 

-space. We shall show that the co-ordinate space is Housdorff for arbitrary 

Let and be any two distinct points of choose and in such that and differ only 

in the th co-ordinate and such that  and  

Since space is there exist open sets and in such that 

and and  

There exist basic open sets 

X  2T  :x x    :y y  

.X x y   x X 

y X  X 2T G H X

, ,x G y H     , ,x G y H    

 x x    y y  

1 1,x G y H            

 1 1G H           

1 1G H             

1 G     
1 H     

X

,x y X

x .y

X 2T X

2T X


a b X x y X x y

 x a  y b 

2 ,T g H X

x G y H G H  

 :U x U  



And 

Such that and and  

It is follows that and  are open sets in such that and and 

 

Hence, is Housdorff space. 

14.6  Summary 

Let be a topological space. Let be a subset of X. A family of subsets of is said 

to be cover for if only if . Also if such that is also 

a cover for then  is a subcover of . 

An open cover of is a family of open subset of such that each point in 

belongs to at least one number of the class i.e., . 

A cover of a topological space is said to be a finite cover if it has only a finite number of 

member. 

Let be a topological space. Then  is said to be compact if and only if every open 

cover has a finite subcover. 

(i)  (open cover) 

(ii)  (finite subcover) 

Let be a topological space. A set of is said to be compact if every -open cover 

 :V x V  

x U G  y V H  U V  

U V X x a U    y b V   

U V   

X

 ,X  A A X

 ,X   :U v v X A B A B

X B A

A  :v vA  X X

 :v vA  :A v v A

 ,X 

 ,X   ,X 

 :iU G i I X 

  : 1,2,.....,iU G i N X 

 ,X  A X 



of has a finite subcover. 

A collection of subsets of is said to have finite intersection property if and only if the 

intersection of member of each finite sub-collection is non-empty. 

Let be a topological space. Then is said to be locally compact space if and only if 

every point of the set has at least one neighbourhood whose closure is compact. 

Let be a topological space. Then is said to be lindelof space if every open cover of  

has a countable  sub cover. 

Let be a topological space. Then  is said to have the Bolzano-Weiertrass property

if every infinite subset of has a limit point. Any space with Bolzano-weiertrass property is 

called Frechet compact space. 

Let be a metric space. Then is said to be sequentially compact if every sequence 

in has a convergent sub-sequence. For example, the set of all real number in is not 

sequentially compact. For the sequence in converges to a on the 

other hand is sequentially compact. 

Let and be two metric spaces. mapping defined on a metric space and Y 

is uniformly continuous if then there exist depending on  alone such that 

 and 

Every open cover of a sequentially compact metric space has a Lebasque number. 

A subset of the real line is compact if and only if it is closed and bounded. 

Let and be two topological spaces. The topology whose base is 

and is said to be product topology for . The 

A

X

 ,X   ,X 

 ,X   ,X 

X

 ,X   ,X 

X

 ,X d  ,X d

X  0,1

1 1
, ,.....

2 3

 
 
 

 0,1  0 0,1

 0,1

 1,X d  2,Y d A f X

0 0  

    2 ,d f x f a   1 ,d x a 

 1 1,X   2 2,X  

1 2 1 1{ :B G G G   2 2}G  1 2X X X 



corresponding topological space is known as product space of and .. 

The mappings such that 

in 

And such that 

in 

are called projection mappings of the product . 

An embedding of a topological space into another space Y we mean a mapping 

which defines a homeomorphism of onto .

14.7  Terminal Questions 

Q.1. Write the Bolzano Weiertrass property. 

Q.2. Explain the Heine-Borel theorem. 

Q.3. What do you mean by Heine-Borel theorem? 

Q.4. Define compact space and compact set. 

Q.5. Let and . Let 

is an open cover of and is a finite subcover of To 

show that is compact space. 

 ,X  1X 2X

:x X Y X  

   , ; ,x x y x x y   X Y

:y X Y Y  

   , ; ,y x y y x y   X Y

X Y

x :f X Y

X  f X

 , , ,X a b c d             , , , , , , , , , , , , ,X a d b c a b c a d b c d 

      , , , ,C a b b c d X     , , ,a d b c .C

 ,X 


	Blank Page
	Blank Page



