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Syllabus 

 

PGMM-102N/MAMM-102N: Classical Optimization Techniques  

Block-1: Optimization Techniques 

 

Unit-1: Introduction to Optimization Techniques      

Introduction, Optimization techniques, applications of optimization techniques, optimization problems, 

classification of optimization problems. 

Unit-2: Unconstrained Optimization Problem       

Introduction, unconstrained optimization problem, single and multi-variable optimization problems. 

Unit-3: Constrained Optimization Problem       

Introduction, constrained optimization problem, constrained multi-variable optimization problem with 

equality and inequality constraints. 

 

Block-2: Non-Linear Programming Problem 

 

Unit-4: Non-Linear Programming-I         

Introduction, unconstrained non-linear optimization problems, direct search method: Fibonacci method of 

search, Golden section method, Univariate method and Pattern search method, indirect search method:  

Steepest descent method. 

Unit-5: Non-Linear Programming-II        

Introduction, constraints non-linear optimization problem, direct methods: complex method and 

Zoutendijk method, indirect methods: transformation techniques and penalty function methods. 

Unit-6: Quadratic Programming        

Introduction, Kuhn-Tucker conditions, Quadratic programming, Wolfe’s modified simplex method, 

Beale’s method. 

Unit-7: Separable Programming Problem        

Introduction, Separable programming problem. 
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Block-3: Dynamic Programming Problem 

 

Unit-8: Introduction to Dynamic Programming      

Introduction, multi-decision process, Bellman’s principle of optimality, dynamic programming algorithm. 

Unit-9: Applications of Dynamic Programming      

Introduction, solution of linear programming problem using dynamic programming and applications of 

dynamic programming problem. 

 

Block-4: Advanced Optimization Techniques 

 

Unit-10: Networking  

Introduction, shortest route problem, minimum spanning tree problem and maximum flow problem.   

Unit-11: Game Theory 

Introduction, Game theory, lower and upper value of game, procedure to find saddle point, games without 

saddle point. 

Unit-12: Goal Programming          

Introduction, formulation of Goal programming, single goal models, goal programming algorithm and 

multi goal models. 

Unit-13: Integer Programming Problem-I        

Introduction, formulation of Integer programming problem, Gomory’s cutting plane method and Branch 

and Bound Techniques. 

Unit-14: Integer Programming Problem-II        

Introduction, Branch and Bound Techniques. 
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Block-1 

Optimization Techniques 

 

In this block, we will discuss into the historical development of Operations Research, explore key 

definitions, optimization techniques, and investigate their practical applications. The discussion will also 

encompass optimization problems, offering a thorough examination of their classification, illustrated with 

examples. Operations Research, as a branch of mathematics, is dedicated to applying scientific methods 

and techniques to address decision-making challenges, with a focus on achieving the best or optimal 

solutions. 

In the first unit, we discussed the basic overview on operations research and optimization techniques. 

Applications and classifications of optimization techniques are also be discussed here in details. In the 

second unit, focus on classical optimization techniques. We will explore the necessary and sufficient 

conditions for achieving the optimum solution in both single and multivariable unconstrained optimization 

problems, supported by illustrative examples. These classical techniques prove highly effective in deriving 

optimal solutions for challenges that entail continuous and differentiable functions. Analytical in nature, 

these methods facilitate the determination of maximum and minimum points for both unconstrained and 

constrained continuous objective functions. 

In the third unit, we will discuss into classical optimization techniques specifically tailored for constrained 

multivariable problems. Extensive attention will be given to exploring equality and inequality constraints, 

accompanied by illustrative examples. These classical optimization techniques play a crucial role in 

attaining optimal solutions for challenges characterized by continuous and differentiable functions. They 

involve analytical approaches for determining maximum and minimum points in both unconstrained and 

constrained continuous objective functions. When dealing with equality-constrained problems, we employ 

the Direct ubstitution method and Lagrange's Multiplier method. 
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UNIT-1: Introduction to Optimization Techniques 

 

Structure 

1.1  Introduction 

1.2  Objectives 

1.3   Optimization Techniques 

1.4   Applications of Optimization Techniques 

1.5  Optimization Problems  

1.6  Classification of Optimization Problems 

1.7  Summary 

1.8   Terminal Questions 

1.1 Introduction 

In the present unit we shall discuss about the historical development of Operations Research, some 

important definitions of Operations Research, optimization techniques, application of optimization 

techniques. Optimization problem and classification of optimization problems are also discussed here in 

details with examples. Operations Research is a mathematical discipline focused on employing scientific 

methods and techniques to tackle decision-making problems, aiming to identify the best or optimal 

solutions. The roots of optimization techniques trace back to ancient times, where they were utilized by 

notable figures such as Newton, Cauchy, and Lagrange. Newton and Leibnitz made significant 

contributions to optimization methods within differential calculus. Cauchy, a pioneering mathematician, 

introduced the steepest descent method as the first application of unconstrained minimization problems. 

Lagrange developed a method for constrained problems, known as Lagrange's method of undetermined 

multipliers, involving the addition of unknown multipliers. In the years 1914-1915, Thomas Edison made 

an attempt to employ a tactical game board for minimizing shipping losses from enemy submarines, 

avoiding the risk to actual ships in wartime conditions. In this endeavor, he utilized a specific model and 

techniques of Operations Research. Since then, Operations Research has evolved into a crucial instrument 

in the organization and management of various institutions, offering valuable insights and methodologies 

for decision-making processes. 

1.2       Objectives 

 

After reading this unit the learner should be able to understand about: 

▪ Optimization Techniques and its historical development 

▪ Applications of Optimization Techniques 
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▪ Optimization Problems 

▪ Classification of Optimization Problems 

1.3 Optimization Techniques 

 

Optimization techniques play a pivotal role across various disciplines, including electrical engineering, 

civil engineering, electronics engineering, mechanical engineering, telecommunication engineering, 

chemical engineering, biochemical engineering, automotive engineering, aerospace engineering, 

computer engineering, information technology, medical science, education, biotechnology, management, 

banking, manufacturing industries, and information technology industries. The fundamental objective of 

optimization is to attain the best possible output, which can be either the maximum or minimum value of 

a given criterion. 

The study of optimization techniques is commonly undertaken within the realm of Operations Research, 

also known as mathematical programming techniques. These techniques are instrumental in determining 

the maximum or minimum of a function with several variables while adhering to a defined set of 

constraints. Overall, optimization techniques continue to be a cornerstone in problem-solving across 

diverse fields, contributing to advancements and improvements in various processes and systems.  

The following are various mathematical programming techniques, along with other well-defined areas of 

Operations Research: 

1. Mathematical Programming Techniques 

(i) Linear Programming Problem 

(ii) Non-linear Programming Problem 

(iii) Dynamic Programming Problem 

(iv) Integer Programming Problem 

(v) Geometric Programming Problem 

(vi) Multi-objective Programming Problem 

(vii) Quadratic Programming Problem 

(viii) Goal Programming Problem 

(ix) Stochastic Programming Problem 

(x) Separable Programming Problem 

(xi) Information theory 

(xii) Sequencing theory 

(xiii) Game theory 
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(xiv) Assignment Methods 

(xv) Transportation Methods 

(xvi) Inventory Control Methods 

(xvii) Network Scheduling Methods 

(xviii) Differential Calculus Methods 

(xix) Neural Networks 

(xx) Fuzzy Logic 

(xxi) Genetic Algorithms 

(xxii) Simulated Annealing 

(xxiii) Calculus of Variations 

2. Stochastic Process Techniques 

(i) Queuing Theory 

(ii) Reliability Theory 

(iii) Statistical Decision Theory 

(iv) Renewal Theory 

(v)      Simulation Methods 

(vi)      Markov Process 

3. Statistical Methods 

(i) Correlation Analysis 

(ii) Regression Analysis 

(iii) Cluster Analysis 

(iv) Factor Analysis 

(v) Design of Experiments 

(vi) Machine Learning 

1.4 Applications of Optimization Techniques 

 

The importance of application of optimization techniques in solving various problem in engineering field 
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is universally accepted now. They are used in solving the problem in such fields as: 

(i) Optimal the total inventory cost. 

(ii) Optimal designing of control system. 

(iii) Optimal planning, scheduling and controlling. 

(iv) Optimal designing of chemical processing equipment and plant. 

(v) Optimal selection of a new site for an industry. 

(vi) Optimal designing of pipeline networks for process industries. 

(vii) Optimal designing of computer structure for minimum cost. 

(viii) Optimal designing of plastic structures. 

(ix) Optimal planning to get the maximum profit in the presence of one or more competitor. 

(x) Optimal designing of electrical networks. 

(xi) Optimal designing of aircraft and aerospace structures, achieving a balance between structural 

efficiency, performance, and minimal weight. 

(xii) Optimal designing of earthquake structures for minimum weight. 

(xiii) Optimal controlling the waiting and idle times and queuing in production lines to reduce the costs. 

(xiv) Optimal designing of civil engineering structures such as bridge, tower, dam, frames, chimney’s 

etc. for minimum cost. 

(xv) Optimal designing of material handling equipment such as conveyors, trucks and cranes for 

minimum cost. 

(xvi) Optimal designing of water resources system for maximum benefit. 

(xvii) Optimal designing of pumps heat transfer and turbines equipment for getting the maximum 

efficiency. 

(xviii) Optimal designing of electrical machinery such as generators, transformers and motors. 

(xix) Optimal designing of mechanical components such as gears, cams and machine tools etc. 

 

1.5 Optimization Problems 

 

An optimization problem is of the form  

 Max or Min Z = f(X)       …(1.1) 
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Subject to constraints (s.t.) 

 gj(X)  =  0, j = 1, 2, 3, …..……., m.    …(1.2) 

 and X  0 

 where X = (x1, x2, x3, …………, xn)
T     …(1.3) 

In general, such problems are called mathematical programming problems. The function f(X) in 

(1.1) which is to be maximized or minimized is known as the objective function. Conditions given in (1.2) 

are called constraints. Variables x1, x2, x3, ……….., xn are called decision (design) variables and conditions 

in (1.3) are called non-negativity restrictions. Thus any mathematical problem has three main parts: 

(i) Objective function 

(ii) Constraints 

(iii) Non-negative restrictions. 

1.6 Classification of Optimization Problems 

The optimization problems can be classified in different ways are discussed below: 

1.6.1 Classification Based on the Number of Objective Functions 

(i) Single Objective Programming Problem. 

An optimization problem involving only single objective function is known as single objective 

programming problem. 

(ii) Multi-Objective Programming Problem. 

An optimization problem involving two or more objective function is known as multi-objective 

programming problem. 

1.6.2   Classification Based on the Existence of Constraints 

(i) Constrained Optimization Problem. 

An optimization problem involving constraints is known as constrained optimization problem. For 

example, 

Max Z = f(X) 

Subject to the constraints        gj(X)  =  0,  j =1, 2, 3, ….……., m.    

    and X  0,  

  where X= (x1, x2, x3, …………, xn)
T 
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(ii) Unconstrained Optimization Problem. 

An optimization problem without constraints is known as unconstrained optimization problem.  

For example, Max Z = f(X)  or  Min Z = f(X). 

 

1.6.3 Classification Based on the Nature of the Constraints Involved 

(i) Linear Programming Problem. 

An optimization problem involving objective function f(X) and all the constraints gj(X) are in linear form 

is known as linear programming problem. 

(ii) Non-Linear Programming Problem. 

An optimization problem involving either objective function f(X) or at least one of the constraints gj(X) 

are in non-linear form is known as non-linear programming problem. 

(iii) Quadratic Programming Problem. 

An optimization problem involving objective function f(X) is quadratic and the constraints gj(X) are in 

linear form is known as quadratic programming problem. 

(iv) Geometric Programming Problem. 

An optimization problem involving objective function f(X) and constraints gj(X) are expressed as 

polynomial is known as non-linear programming problem. 

1.6.4   Classification Based on the Permissible Values of the Design 

(i) Integer Programming Problem. 

A linear programming problem involving some or all the design variables x1, x2, x3, …….…, xn  are 

restricted to take on only integer values is known as integer programming problem. 

(ii) Real-Valued Programming Problem. 

An optimization problem involving all the design variables x1, x2, x3, ………., xn are permitted to take any 

real value is known as non-linear programming problem. 

1.6.5  Classification Based on the Physical Structure of the Problem 

(i) Optimal Control Problem. 

An optimization problem involving a number of stages in which each stage evolves from the preceding 

stage in a specific manner is called optimal control problem. 
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(ii) Non-Optimal Control Problem. 

An optimization problem which is not optimal control problem is called non-optimal control problem. 

1.6.6 Classification Based on the Nature of the Design Variables 

(i) Static (Parameter) Optimization Problem. 

If in the optimization problem we find the value of a set of design parameters, in which some prescribed 

function of these parameters is made that minimizes subject to certain constraint is known as static 

optimization problem. 

(ii) Dynamic Optimization Problem. 

An optimization problem involving each variable is a function of one or more parameters is known as 

dynamic optimization problem. 

1.6.7   Classification Based on the Deterministic Nature of the Variables 

(i) Deterministic Programming Problem. 

An optimization problem involving deterministic design variables is known as deterministic programming 

problem. 

(ii) Stochastic Programming Problem. 

An optimization problem involving some or all the design variables are probabilistic is known as 

stochastic programming problem. 

1.6.8 Classification Based on the Separability of the Functions 

(i) Separable Programming Problem 

An optimization problem involving objective function f(X) and the constraints gj(X) are in separable form 

is known as separable programming problem. 

(ii) Non-Separable Programming Problem 

An optimization problem involving objective function f(X) and the constraints gj(X) are in non-separable 

form is known as non-separable programming problem. 

 

1.7 Summary 

 

Optimization means obtaining the best output which may be maximum or minimum value of the 

criterion. Any mathematical problem has divided into three main parts: 

(i) Objective function  
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(ii) Constraints and  

(iii) Non-negative restrictions. 

An optimization problem in which only single objective function is known as single objective programming 

problem. 

An optimization problem in which two or more objective function is known as multi-objective 

programming problem. 

An optimization problem involving constraints is known as constrained optimization problem. An 

optimization problem without constraints is known as unconstrained optimization problem.  

An optimization problem involving objective function f(X) and all the constraints gj(X) are in linear form 

is known as linear programming problem. 

An optimization problem involving either objective function f(X) or at least one of the constraints gj(X) 

are in non-linear form is known as non-linear programming problem. 

An optimization problem involving deterministic design variables is known as deterministic programming 

problem. 

An optimization problem involving some or all the design variables are probabilistic is known as 

stochastic programming problem. 

An optimization problem involving objective function f(X) and the constraints gj(X) are in separable form 

is known as separable programming problem. 

An optimization problem involving objective function f(X) and the constraints gj(X) are in non-separable 

form is known as non-separable programming problem. 

1.8 Terminal Questions 

 

1. What is optimization? Explain applications of optimization in engineering. 

2. Write a short note on optimization techniques. 

3. Given ten engineering applications of optimization techniques. 

4. Write a short note on classification of optimization problems. 

 

  

PGMM-102/14



 

UNIT- 2: UNCONSTRINED OPTIMIZATION TECHNIQUES 

 

Structure 

2.1 Introduction 

2.2 Objectives 

2.3  Unconstrained Optimization Problems 

2.4 Single Variable Optimization Problems  

      2.4.1   Condition for Local Maxima or Minima of Single Variable Function 

      2.4.2   Procedure to Find the Extreme Points of Function of single Variable 

2.5  Multivariable Optimization Problems 

    2.5.1   Procedure to Find the Extreme Points of Functions of Two Variables 

  2.5.2   Procedure to Find Extreme Points of Function of n-Variables 

2.6 Summary 

2.7 Terminal Questions 

2.1 Introduction 

 

In this unit, we will delve into classical optimization techniques and explore the necessary and sufficient 

conditions for attaining the optimum solution in both unconstrained single and multivariable optimization 

problems, supplemented by illustrative examples. Classical optimization techniques prove highly valuable 

for deriving optimal solutions in scenarios featuring continuous and differentiable functions. These 

techniques, rooted in analytical methods, are adept at determining maximum and minimum points for 

unconstrained and constrained continuous objective functions. Throughout our discussion, we will 

leverage these analytical approaches to provide insights into achieving optimal solutions in various 

problem-solving contexts. 

Classical optimization techniques refer to a set of traditional and well-established methods used to find 

optimal solutions to mathematical problems. These techniques are particularly useful for addressing 

optimization problems involving continuous and differentiable functions. 

These classical optimization techniques offer a range of methods for solving unconstrained and 

constrained optimization problems. The choice of method depends on the characteristics of the problem, 

such as the nature of the objective function and the presence of constraints. 
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2.2 Objectives 

 

After studying this unit, the learner will be able to understand: 

▪ the unconstrained optimization problem 

▪ the single variable unconstrained optimization problem 

▪ procedure for solving single variable unconstrained optimization problem 

▪ the multi-variable unconstrained optimization problem 

▪ procedure for solving multi-variable unconstrained optimization problem 

2.3 Unconstrained Optimization Problems  

 

In classical optimization, sometimes we come across with the problems, to find the maxima or minima of 

the functions of one or more variables, with no restriction on the variable(s) involved in the problem. Such 

problems are known as unconstrained optimization problems.  

There are two types of unconstrained optimization problems: 

(i) Single variable optimization problem 

(ii) Multi-variable optimization problem 

2.4 Single Variable Optimization Problems 

 

An optimization problem with single variable without any restriction is called a single variable 

unconstrained optimization problem. Consider f(x) be a continuous function of the single variable x 

defined in the interval [a, b]. 

Local Maxima 

A function f(x) with single variable is said to have a local (relative) maxima at x = xo if  

f(x0)  f(x0+h), for all sufficiently small positive and negative value of h. 

Local Minima 

A function f(x) with single variable is said to have a local (relative) minima at x = xo if 

 f(x0)  f(x0+h), for all sufficiently small positive and negative value of h. 

Global Maxima 

A function f(x) with single variable is said to have a global (absolute) maxima at x = xo in [a, b] if f(x0)  
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f(x), for all x defined in the interval [a, b]. 

Global Minima 

A function f(x) with single variable is said to have a global (absolute) minima at x = xo in [a, b] if f(x0)  

f(x), for all x defined in the interval [a, b]. 

 

 

 

 

 

 

 

 

 

Here points A, B and C are local maxima; P and Q are local minima; C global maxima and Q global 

minima. 

 

2.4.1 Condition for Local Maxima or Minima of Single Variable Function 

 

Following are the conditions for the existence of local maxima or minima of single variable function: 

 

Necessary Condition 

Let the function f(x) be defined in the interval [a, b] and )( 0xf   exists, a < xo < b. then f(x) has a local 

maxima or local minima at x = xo, if .0)( 0 = xf  

Sufficient Conditions 

Let f’(xo) =f’’(x0) = f’’’(x0) = …………… = f(n-1)(x0), but f n(x0) ≠ 0 then f(x0) has 

(i) f (x) have minimum value if   f(n)(x0)  0 and n is even. 

(ii) f (x) have maximum value if f(n)(x0) < 0 and n is even. 

(iii)  Neither maxima and nor minima i.e., point of inflexion if f(n)(x0) ≠ 0 and n is odd. 

Q 
P 

C 

B 
A 

x=a x=b 

f(x) 

x 
O 
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2.4.2 Procedure to Find the Extreme Points of Function of single variable 

Let us consider a single variable function  

y =  f(x)       … (1) 

Step I:  Differentiate both sides of equation (1) with respect to x, we get 

   ( )xf
dx

dy
=        … (2) 

Step II: For extreme point, we have  

0=
dx

dy
 

            ( ) 0= xf
      

… (3)
 

 

We get the values of x which is satisfied to ( ) .0= xf  

Let us consider after solving equation (3) for x to get x = xo (say). 

Step III: Differentiate again both sides of equation (2) with respect to x both side, we get  

.
2

2

dx

yd
 

Step IV:  If 0

0

2

2










= xx
dx

yd
then f(x) has minima at x = xo. 

Step V: If  0

0

2

2










=xx
dx

yd
 then f(x) has maxima at x = xo. 

Step VI: If 
0

0

2

2

=








=xx
dx

yd  then find 
3

3

dx

yd
and we have 0

0

3

3










=xx
dx

yd  then there is neither a 

maximum nor minima at x = xo i.e., x = xo is known as point of inflexion. 

Step VII:   If     0

0

3

3

=








=xx
dx

yd  then find 
4

4

dx

yd
 and repeating steps IV, V and VI whenever you get the 

result. 

 

 

PGMM-102/18



 

Examples 

 

Example.1. Determine the maximum and minimum value of the function  

y = 3x5 –5x3+1. 

Solution: It is given that y = 3 x5 – 5 x3+1      …. (4) 

Differentiate both sides of equation (4) with respect to x, we get 

   
dx

dy
=15 x4 – 15 x2      …. (5) 

For maxima and minima of y, we have 

   
dx

dy
= 0 

                15 x4 - 15 x2 = 0 

            15 x2(x-1) (x+1) = 0 

                 x = 0, 1, -1. 

Differentiate again both sides of equation (5) with respect to x, we get 

  
2

2

dx

yd = 60 x3 – 30 x 

At  x = 0,      
2

2

dx

yd  = 0  i.e., x= 0 is a point of inflexion. 

At  x = 1,      
2

2

dx

yd = 30 > 0 i.e., y is minimum at x = 1. 

At  x = -1,    
2

2

dx

yd = -30 < 0 i.e., y is maximum at x = -1. 

Hence the given function y is minimum at x = 1 and maximum at x = -1. 

 

Example.2. For a business organization, the following relationship for revenue function and cost 

functions. To find the level of output x at which profit is maximized, where x is measured in tons 

per week. 

             R(x) = 1000x – 2 x2  
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and   C(x) =x3 – 59 x2 + 1315 x + 1500. 

Solution. The profit function is 

      P(x) = R(x)-C(x)      

             =1000 x – 2 x2- x3 + 59 x2 – 1315 x – 1500   

 = - x3 + 57 x2 – 315 x – 1500      …. (6) 

Differentiating both sides of equation (6) with respect to x, we get 

        
dx

dP = - 3x2 + 114x – 315     …. (7) 

For maxima and minima, we have     

     0=
dx

dP
 

     -3 x2 + 114 x – 315 = 0               

        x = 3, 35. 

Differentiating again both sides of equation (7) with respect to x, we get 

        
2

2

dx

Pd = - 6x + 114 

At x = 3, 
2

2

dx

Pd
= 96 > 0, i.e., the function P is minimum at   x = 3. 

At x = 35, 
2

2

dx

Pd
= 96 < 0, i.e. the function P is maximum at x = 35. 

Hence, the profit is maximum at x = 35 tons per week. 

 

Example.3. The speed of signaling (for submarine telegraph cable) varies as x2 log 








x

1   where x is 

denoted as the ratio of the radius of the cube for covering that. Prove that the greatest speed is 

reached when this ratio is 1: e . 

Solution: Consider u is the speed of signaling, then 











x
xu

1
log2  
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    u =  x2 log 








x

1 ,  is the constant of proportionally,  > 0, x≠0 

               u = - x2 log x           … (8) 

Differentiate both sides of equation (8) with respect to x, we get 

      
dx

du
= -2x log x - x2(1/x)  

                      = - [2xlogx+x]     …. (9) 

For maxima and minima, we have      

     
dx

du
= 0 

           - [2x logx + x] = 0          

       log x = - 
2

1
 

            x = e-1/2 = 1/ e . 

Differentiate again both sides of equation (9) with respect to x, we get 

     
2

2

dx

ud = - [2x (1/x)+2 log x] 

    = - [2 log x+3] 

At x = 1/ e ,   
2

2

dx

ud  = - 2   (negative) i.e., u is maximum. 

Hence, u is maximum, ratio for x = 1: e . 

 

Example.4. To show that the right circular cylinder of given surface area (including its ends) and 

maximum volume has a height equal to twice its radius. 

Solution: We know that       V = r2 h           …. (10) 

and                                           S = 2 r h+2 r2           (according to given) 

           2 r h = 2k 2- 2 r2 
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      h = 
r

rk 22 −            .… (11) 

From equations (10) and (11), we have     

V =  r (k2-r2)                                …. (12) 

Differentiate both side of equation (12) with respect to r, we get 

                                              ( )22 3rk
dr

dV
−=             … (13) 

For maxima and minima of V, we have  

0=
dr

dV
   

           ( )22 3rk −  = 0 

                                                   
3

k
r =                .... (14) 

Differentiate both sides of equation (13) with respect to r, we get 

 r
dx

Vd
6

2

2

−=  (Negative)  

i.e., V is maximum. 

Using equations (11) and (14), we have     

        h r = k2 –r2 

           h = 2r. 

Hence the right circular cylinder of given surface area (including its ends) and maximum volume has a 

height equal to twice its radius. 

 

Example.5. A given quantity of metal is to be casted into a half cylinder (rectangular base and semi-

circular ends). Prove that in order to have minimum surface area, the ratio of the height of the 

cylinder and the diameter of semi-circular ends is :+2. 

Solution: Suppose the volume of the half cylinder is 

     V = 
2

1
 r2h          … (15) 
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Where r and h be the radius and height of the half cylinder respectively. 

The surface area of rectangular base = 2 r h 

Curved surface      =  r h 

Two semi-circular ends      =  r2 

The total surface area     S =2 r h+ r h+ r2 

        = r h (2+) +  r2    … (16) 

From equation (15), we have 

    h = 
2

2

r

V


 

Then we have 

    S = 
2

2.

r

Vr


(2+) +  r2 

       = 
r

V



2
(2+) +  r2         …. (17) 

Differentiate both side of (17) with respect to r, we get 

                      ( )2
2

2
2

+−= 



r

V
r

dr

dS
                     …. (18) 

For maxima and minima of S, we have 

0=
dr

dS
           

             ( ) 02
2

2
2

=+− 



r

V
r  

Using equation (15), we have     

              2 r- h (+2) = 0 

    
22 +

=




r

h
        … (19) 

Differentiate again both side of (18) with respect to r, we get 
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                                                      ( )2
4

2
32

2

+−= 



r

V

dr

Sd  

  = 6  (positive)   i.e., S is maximum. 

Hence the surface area S is minimum at 
22 +

=




r

h
. 

 

Check your Progress 

 

1. Write a short note on unconstrained optimization problem. 

2. Explain the procedure to find the extreme point for a single variable function. 

3. A DC generator has integral resistance R ohms with an open circuit voltage of V volts. To determine 

the lead resistance r at which the power delivered by a DC generator is maximized. 

4. The efficiency of a screw jack is defined as   = tan  cot (+) where  is a constant. Show that the 

efficiency is maximum at 
24


 −=  and 






sin1

sin1

+

−
= . 

 

2.5 Multivariable Optimization Problems 

 

An optimization problem with two or more variable without any restriction is called a multi-variable 

unconstrained optimization problem. 

 

2.5.1 Procedure to Find the Extreme Points of Functions of Two Variables 

 

Let us consider u = f (x1, x2) be a function of x1 and x2. 

Step 1: Differentiate f (x1, x2) partially with respect to x1 and x2, we get 

   
21

and
x

f

x

f








 

Step 2:  For extreme points of f, we have 
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1x

f



   = 0 

  and              

2x

f



   = 0 

Solving above these equations, we get some points as (a1, b1), (a2, b2), ……….etc. 

Step 3: Differentiate again partially, we get 

.and,
2

2

2

21

2

2

1

2

x

f
t

xx

f
s

x

f
r




=




=




=  

Step 4: At (a1, b1) determine the values of calculate r and rt-s2 

Case – I:   If rt-s2 > 0 and r < 0 then the given function f (x1, x2) is maximum at the point (a1, b1). 

Case – II: If rt-s2 > 0 and r > 0 then the given function f (x1, x2) is minimum at the point (a1, b1). 

Case – III: If rt-s2< 0 then the given function f (x1, x2) has saddle point at the point (a1, b1). 

 

2.5.2 Procedure to Find Extreme Points of Function of n- Variables 

 

Suppose u = f (x1, x2, x3, ……….., xn) is a function of x1, x2, x3, ……., xn. 

Necessary Conditions: 

0.....,..........,0,0,0
321

=



=




=




=





nx

f

x

f

x

f

x

f
 

Sufficient Conditions: 

Hessian Matrix at P for n variables will be 

   



































































=

2

2

2

2

1

2

2

2

2

2

2

12

2
1

2

21

2

2

1

2

...

...

...

...

...

...

...

...

...

...

...

nnn

n

n

x

f

xx

f

xx

f

xx

f

x

f

xx

f

xx

f

xx

f

x

f

H
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Its leading minors are defined as 

   ,
2

2

1

1
x

f
H




=  

,

2
2

2

12

2

21

2

2

2

2
1

x

f

xx

f

xx

f

x

f

H

















=
 

2
3

2

23

2

13

2
32

2

2
2

2

12

2

21

2

21

2

2

2

3

1

x

f

xx

f

xx

f

xx

f

x

f

xx

f

xx

f

xx

f

x

f

H





































=

, 

 Hence, the following cases will arise: 

Case – I:  If H1, H2, H3, ………. are positive (i.e., H is positive definite) then the function f(x1, x2, x3, 

…….., xn) has minimum at P. 

Case – II: If H1, H2, H3, ………. are alternately negative, positive, negative (i.e., H is negative definite) 

then the function f(x1, x2, x3, …….., xn) has maximum at P. 

Case – III: If H1 and H3, ………. are not of same sign and H2 =0 (i.e., semi definite or indefinite) then 

the function  f(x1, x2, x3, …….., xn) has a saddle point at P. 

 

 

Examples 

 

 

Example.6 Show that the minimum value of 








+







=

y

a

x

a
xyu

33

 is 3a2. 

Solution: Given that 

    








+







=

y

a

x

a
xyu

33

     … (20) 

PGMM-102/26



 

Differentiate both side partially (20) with respect to x & y respectively, we have 

2

3

x

a
y

x

u
−=





 

     … (21) 

                                    and       
2

3

y

a
x

y

u
−=





                                               

…. (22) 

For maxima minima of u, we have 

  0=




x

u   and 0=




y

u            

   0
2

3

=−
x

a
y   

and 0
2

3

=−
y

a
x  

Solving above, we get  

x = a, y = a. 

Differentiate again partially equation (21), we get 

   
3

3

2

2 2

1 x

a

x

f
r =




=  

1
21

2

=



=

xx

f
s  

and   
3

3

2

2 2

2 y

a

x

f
t =




=  

At (a, a), we get 

 r = 2, s = 1, t = 2. 

Then we have         rt – s2 = 3 > 0 

Since at (a, a),  we have 

    rt – s2 > 0 and  r > 0,  

Therefore u is minimum at (a, a). 
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Hence the minimum value of the given function u = a. a + 
a

a

a

a 33

+ = 3 a2. 

 

Example.7. Determine the extreme points of the function  

u = x2+ 4y2+ 4 z2 + 4 xy + 4 xz + 16 yz. 

Solution: Given that  

  u = x2+ 4y2+ 4 z2 + 4 xy + 4 xz + 16 yz      … (23) 

Differentiate both sides partially of (23) with respect to x, y and z respectively, we get 

=




x

u
2x+2y+2z 

=




y

u
8y+4x+16z 

 and    =




z

u
8z+4x+16y 

For extreme points of u, we have 

,0=




x

u
      0=





y

u    and     0=




z

u
 

     2x+2y+2z = 0   or  2(x+y+z) = 0 

                               8y+4x+16z = 0  or  4(x+2y+4z) = 0 

and                      8z+4x+16y =0   or  4(x+4y+2z)=0 

Solving above three expression, we get   

 x = 0, y = 0, z = 0. 

Now let the point P is (0, 0, 0). 

Again differentiate partially, we get  

,8,8,2
2

2

2

2

2

2

=



=




=





z

u

y

u

x

u
 

,16,4,4
222

=



=




=





zy

u

xy

u

yx

u
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.4,4,16
222

=



=




=





xz

u

zx

u

yz

u  

The Hessian matrix of the function u (x, y, z) is 

   H = 

















8164

1684

442

  

The leading minors of H are 

   H1 = 2 =2, 

 H2 = 
84

42
= 0  

and    H3 = 

8164

1684

442
 0. 

Here H1 and H3 are not same sign, and H2 =0 (i.e., semi definite). Therefore the given function u has a 

saddle point at (0, 0, 0). 

 

Example.8. Determine the extreme points .3442620),( 2
2

2
1212121 xxxxxxxxf −−++=  

Solution: Given that  

  2
2

2
1212121 3442620),( xxxxxxxxf −−++=       …. (24) 

Differentiate both side partially (24) with respect to x1 and x2 respectively, we get 

       
12

1

8420 xx
x

f
−+=




            …. (25) 

and                     
21

2

6426 xx
x

f
−+=




       … (26) 

For extreme points of f, we have      

      0
1

=




x

f      
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and   0
2

=




x

f  

      08420 12 =−+ xx  

and    06426 21 =−+ xx  

Solving these, we get   

        x1 =7, x2 = 9. 

Differentiating again partially (25), we get 

,8
2

2

1

−=



=

x

f
r  

 

4
21

2

=



=

xx

f
s

  

and  6
2

2

2

−=



=

x

f
t  

Thus we have 

 rt-s2= (-8)(-6)-(4)2 = 32. 

At (7, 9), rt-s2  0 and r 0 i.e., the given function f is maximum at point (7, 9). 

Hence the given function f is maximum at (7, 9). 

 

Example.9. Determine the extreme points of the function 

  .241232),( 2
2

2
1

3
2

3
121 ++++= xxxxxxf

   
And determine their nature also. 

Solution: Given that   

  241232),( 22
1

3
2

3
121 2

++++= xxxxxxf
    

… (27) 

Differentiate both sides partially (27) with respect to x1 and x2 respectively, we get 

       
1

2

1

1

63 xx
x

f
+=




            …. (28) 
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and                     
2

2

2

2

246 xx
x

f
+=




          … (29) 

For extreme points, we have     

                 0
1

=




x

f
  

and   0
2

=




x

f  

    063
1

2

1
=+ xx            

and  0246
2

2

2
=+ xx  

Solving these, we get 

 x1 =0, -2, x2 = 0, -4. 

Differentiating again partially equations (28) and (29), we get 

)1(6
12

2

1

+=



= x

x

f
r  

0
21

2

=



=

xx

f
s  

and  )2(12
22

2

2

+=



= x

x

f
t  

At (0, 0), we have   

rt-s2= 72(x1+1)(x2+2) = 72  0 and r  0 i.e., the given function f is minimum at point (0, 0). 

At (0, -4), we have 

rt-s2= 72(x1+1)(x2+2) = -144  0  no extreme point, i.e., the given function f has a saddle point at (0, -

4). 

At (-2, 0), we have 

 rt-s2= 72(x1+1)(x2+2) = -144  0  no extreme point, i.e., the given function f has a saddle point at (-2, 

0). 

At (-2, -4), we have 
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rt-s2= 72(x1+1)(x2+2) = 144  0 and r  0 i.e., f is maximum at (-2, -4). 

Hence the given function f has two saddle point at (0, -4) and (-2, 0) and f is minimum at (0, 0)  

maximum at (-2, -4). 

 

Example.10. Determine the maximum and minimum value of u,  

 u = sin x sin y sin (x+y). 

Solution: Given that 

   u = sin x sin y sin (x+y)      … (30) 

Differentiate both side partially equation (30) with respect to x and y respectively, we get, 

            )sin(cos)cos(sinsin yxxyxxy
x

u
+++=




    … (31) 

and      )sin(cos)cos(sinsin yxyyxyx
y

u
+++=




                                    …. (32) 

For maxima minima of u, we have 

  0=




x

u
  and 0=





y

u            

                   0)sin(cos)cos(sinsin =+++ yxxyxxy  

and     0)sin(cos)cos(sinsin =+++ yxyyxyx  

Solving above two expression, we get 

  xyx tan)(tan −=+          … (33) 

and       yyx tan)(tan −=+                                                                       … (34) 

Now, we have 

 )(tantan2tan xxx −=−=   

          2x =  - x 

            x = /3 = y 

Also 
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   sin y = 0       y = 0 

and   sin x = 0          x = 0 

Thus the stationary points are (0, 0), (/3,  /3). 

Differentiate again partially equations (31) and (32), we get 

  )2cos(sin2
2

2

yxy
x

u
r +=




=  

)(2sin
2

yx
yx

u
s +=




=  

and  )2cos(sin2
2

2

xyx
y

u
t +=




=  

At point (0, 0), we get   r = 0, s = 0, t = 0. 

  r t – s2  = 0  i.e., u has a saddle point at  (0, 0). 

Now at point (/3. /3), we get  

            r = 2 sin (/3) cos  = - 3  . 

 s = sin (4/3) = - sin (/3) =
2

3
−   

and    t = 2 sin (/3) sin  = - 3         

    r t – s2  = 
4

9
 > 0  and   r < 0. 

Hence the given function u is maximum at (/3, /3) and has a saddle point at (0, 0). 

 

2.6 Summary 

 

An optimization problem with single variable without any restriction is called a single variable 

unconstrained optimization problem.  

Let f’(xo) =f’’(x0) = f’’’(x0) = …………… = f(n-1)(x0), but f n(x0) ≠ 0 then f(x0) has:  

(i) Minimum value of f (x) if   f(n)(x0)  0 and n is even.  

(ii)  Maximum value of f (x) if f(n)(x0) < 0 and n is even.  
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(iii)  Neither maxima nor minima of f i.e. point of inflexion if f(n)(x0) ≠ 0 and n is odd. 

An optimization problem with two or more variable without any restriction is called a multi-variable unconstrained 

optimization problem. 

Let u = f (x1, x2) be a function of x1 and x2. Then at any point (a1, b1):   

(i)   If rt-s2 > 0 and r < 0 then f (x1, x2) is maximum at (a1, b1). 

(ii) If rt-s2 > 0 and r > 0 then f (x1, x2) is minimum at (a1, b1). 

(iii) If rt-s2< 0 then f (x1, x2) has saddle point at (a1, b1). 

Suppose u = f(x1, x2, x3, …..….., xn) is a function of x1, x2, x3, …..….., xn. Then:  

(i) If H1, H2, H3, ………. are positive (i.e., H is positive definite) then the function f(x1, x2, x3, …..….., xn) 

has minimum at P.  

(ii) If H1, H2, H3, ………. are alternately negative, positive, negative (i.e., H is negative definite) then the 

function f(x1, x2, x3, …..….., xn) has maximum at P.  

(iii) H1 and H3, ……..…. are not of same sign and H2 =0 (i.e., semi definite or indefinite) then the function 

f(x1, x2, x3, …..….., xn) has a saddle point at P. 

 

2.7 Terminal Questions 

 

Q.1.   Explain the multivariable optimization problems. 

Q.2.   Write the procedure to determine the extreme points of function of n-variable. 

Q.3.   Determine the output x, which maximizes profit P given by the relationship 

    P = 5000+1200x –x2. 

Q.4.  The price of a commodity is the function of its quantity q to be purchased which is given as 10.59 e-

0.01q. Find the quantity for which total revenue is maximum. 

Q.5.    The total revenue R of a firm is given by R = 20 x – 2 x2, Where x represents the quantity sold and 

C = x2 – 4 x + 20. Determine the value of x for which the revenue will be maximum and also find the profit 

price and total revenue. 

Q.6.   Determine the local maxima or minima of the function 

 
.106

2
17

3
17

4
7

5
)(

2345

Rxforx
xxxx

xf ++−+−=
 

Q.7.   Determine the maxima and minima of the function xy(a-x-y). 

Q.8.   Find the extreme points .642),( 2

2

2

1

3

2

3

121 ++++= xxxxxxf
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Q.9.   Determine the maxima and minima of the function u = x2+y2+z2+x-2z-xy. 

Q.10.   Find the stationary point of u, where u = x2+y2. 

 

Answers 

3.        3,65,000.                                                                                

4.        100. 

5.          At x = 5 total revenue = 50, profit = 25, price = 5 per unit. 

6.        At point x = 1 give point of inflexion, at point x = 2 give local maxima and x = 3 give local minima. 

7.        At points (0, 0), (0, a) and (a, 0) u is neither maxima nor minima. At point 









3
,

3

aa  u is minimum if 

a  0 and u is maximum if a  0. 

8.        At (0, 0) f is minimum and at 








−−

3

8
,

3

4  f is maximum. 

9.  At 








−− 1,

3

1
,

3

2  u is minimum. 

10.       At (0, 0) u give saddle point. 
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UNIT- 3: CONSTRINED OPTIMIZATION TECHNIQUES 

 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3  Constrained Optimization Problems  

3.4 Direct Substitution Method  

3.5  Lagrange Multipliers Method  

3.6 Constrained Multivariable Optimization Problems with Inequality  

 Constraints 

3.7 Summary 

3.8 Terminal Questions 

 

3.1 Introduction 

 

In this unit, we delve into classical optimization techniques, particularly focusing on constrained 

multivariable problems. The discussion extends to equality and inequality constraints, thoroughly 

exploring these concepts through illustrative examples. Classical optimization techniques play a crucial 

role in obtaining optimal solutions for problems that involve continuous and differentiable functions. 

These techniques are analytical in nature, enabling the identification of maximum and minimum points 

for both unconstrained and constrained continuous objective functions. For equality constrained problems, 

we use Direct substitution method and Lagrange’s multiplier method. 

 

3.2 Objectives 

After studying this unit the learner will be able to understand: 

▪ the constrained optimization problems 

▪ the Direct substitution method 

▪ the Lagrange Multipliers method 
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▪ the constrained multi-variables optimization problem with inequality constraints 

3.3 Constrained Optimization Problems  

 

The optimization problem of a continuous and differentiable function subject to equality constraints: 

 Optimize (Max or Min) Z= f(X) 

 Subject to constraints (s.t.)  

    g j(X) = 0 ; j = 1, 2, 3, ………, m 

 Where     X=
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 Here m is less than or equal to n. For solving this type of problem (constrained optimization 

problem), there are several method. 

Here we discuss two important methods, which are as follow: 

1. Direct Substitution Method 

2. Lagrange Multipliers Method 

 

3.4 Direct Substitution Method 

 

In Direct substitution method, putting the value of any variable from the constraint set is put in the 

objective function. The given constrained optimization problem reduces to unconstrained optimization 

problem which can be solved by using unconstrained optimization method. 

 

3.5 Lagrange Multipliers Method 

 

Let us consider a general problem with n variables and m equality constraints: 

                                Optimize Z=f(X) 

 s.t.   g j(X) = 0 ;  j = 1, 2, 3, ………, m (mn) 
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 X  0 

 Where   X=
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Now we defined a function 

L(x1, x2,……., xn, 1, 2, …….., m) = f(X)+ ( )Xg
m

j
jj

=1

                             ….. (3) 

Here, 1, 2, …….., m are known as Lagrange’s undetermined multipliers. 

The necessary conditions for extreme of L are 
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Solving equations (4) and (5), we get 
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The sufficient condition for the given function to have extreme point at X* and the values of k obtained 

from the equation 
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must be the same sign. If all the eigen values of k are negative then the given function gives a maxima and 

if all the eigen values k are positive then the given function gives a minima. In case if the some eigen 

values are zero or some of different sign then gives a saddle point. In above Lij and gij denoted by  

ji xx

L
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3.6 Constrained Multivariable Optimization Problems with Inequality Constrains 

 

Let us consider a problem 

                                Optimization (Max or Min) Z=f(X)     …. (1) 

  s.t.  g j(X)  0 ;  j = 1, 2, 3, ………, m    ….. (2) 

 Where     X=
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        The inequality constrains in equation (2) can be convert into equality constraints by adding slack 

variables as  

   g j(X) + yj
2 = 0;   j = 1, 2, 3, ………, m 

Now the given problem becomes 

                        Optimize (Max or Min) Z=f(X) 
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 s.t.  Gj (X, Y) = g j(X) + yj
2 = 0;   j = 1, 2, 3, ………, m 

 Where     X=
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After converting the inequality constraints in equality constraint then the above problem can be solved by 

Lagrange’s multiplier method. 

 

Examples 

 

Example.1. Find the optimum solution of the constrained multivariable problem: 

Minimize Z = x1
2+(x2+1)2+(x3-1)2    

s.t.  x1+5x2-3x3 = 6. 

Solution. Given that 

 Z = x1
2+(x2+1)2+(x3-1)2                                                                           …. (1) 

and   x1+5x2-3x3 = 6              

     
3

65 21
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−+
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Using equations (1) and (2), we get  

  Z = x1
2+(x2+1)2+

9

1
(x1+5x2-9)2                 …. (3) 

Differentiate both side partially of (3) with respect to x1 and x2 respectively, we get 
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For maxima and minima of Z, we have 
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Solving above these, we get 
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 and the minimum value of the function Z is .
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Example.2. Determine the dimensions of a large volume box that can be inscribed in a sphere of 

radius a. 
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Solution: Let  x, y and z be the dimensions of the box with respect to origin O and OX,OY,OZ are the 

reference axes. The volume of given box is  

                                                                 V = 8xyz         ….. (1) 

It is given that the box is to be inscribed in a sphere of radius ‘a’ i.e., 

                                                 x2+y2+z2 = a2           ….. (2) 

Eliminating z from equations (1) and (2), we get  

                                          V = 8xy (a2 - x2-y2)1/2         ….. (3) 

Differentiate both side partially (3) with respect to x and y respectively, we get 
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For maxima and minima of V, we have 
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         02 222 =−− yxa         ….. (6) 

and    02 222 =−− yxa        ….. (7) 

Solving these, we get 
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 rt-s2 is positive and r  0 i.e., V is maximum. 
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Hence the maximum value of the box of large volume  

V= 8xyz  
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Example.3. Determine the optimal values of Z = x2+y2+z2   s.t.    4x+y2+2z=14.  

Solution: It is given that 

Z = x2+y2+z2          …. (1) 

and   4x+y2+2z=14                   

  g(x, y, z) = 4x+y2+2z-14 = 0       …. (2) 

Now construct the Lagrangian function L is 

 L(x, y, z; ) = x2+y2+z2 +(4x+y2+2z-14)      …. (3)  

The necessary conditions for extreme L are 
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Solving above these, we get  

.1and,2 −=−=−=  zx  

    x = 2, z =1 and y =  2,  

Putting x= -2, z = -, y = 0 in the equation (2), we get  

 = -1.4. 

Here (2, 2, 1, -1), (2, -2, 1, -1) and (-2, 0, -, ) or (2.8, 0, 1.4, -1.4) are the extreme points. 

Differentiate again partially equation (4), we get 
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The sufficient condition for extreme point is 
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i.e.,    
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=
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k
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H
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or    4(2-k)[-10+5k-10-2y2+y2k] = 0 

At point (2, 2, 1, -1) from equation (2), we have 

         (2-k)(-10+5k+10-8+4k) = 0 

                                          k = 2, 8/9. 

i.e., the values of k are positive then there is a minima. 

At point (2, -2, 1, -1) from equation (2), we have 

                 (2-k)(-10+5k+10-8+4k) = 0 

                                                  k = 2, 8/9 
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Also values of k are positive then there is a minima. 

At point (2.8, 0, 1.4, -1.4) from equation (2), we have 

           (2-k)(-10+5k+14-0+0) = 0 

                                        k =2, -4/5. 

i.e. the values of k are positive and negative (neither maxima nor minima) i.e., saddle point. 

 

Example.4. Solve 

Min  f(x) = 
2

1
(x1

2+x2
2+x3

2)  

s.t.    g1(x) = x1-x2 = 0  

                      and  g2(x) = x1+x2+x3-1= 0 using Lagrange’s Multiplier Method. 

Solution: Given that 

                                            Min  f(x) = 
2

1
 (x1

2+x2
2+x3

2)      … (1) 

                                  s.t.               g1(x) = x1-x2= 0         … (2) 

                      and  g2(x) = x1+x2+x3-1 = 0         … (3)        

Construct the Lagrangian function L is 

 L(x1, x2, x3; 1, 2) = 
2

1
 (x1

2+x2
2+x3

2) +1(x1-x2)+2 (x1+x2+x3-1)   ….(4)  

Necessary conditions for extreme of L are 
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Solving above these, we get 
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Differentiate again partially (6), we get 
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The sufficient condition for extreme point is  
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This implies we get k = 1, 1, 1.  

Here all the values if k are same sign and positive. i.e., f is minimum at .
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1
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3.7 Summary 

 

An optimization problem with no restriction on the decision variables is called an unconstrained optimization 

problem. An optimization problem with single variable without any restriction is called a single variable 

unconstrained optimization problem. An optimization problem with two or more than two variables with no 

restriction on the decision variables is called a multi-variable unconstrained optimization problem. 

The sufficient conditions for the function f (x1, x2) at the point (a, b):   

 (a)  if rt-s2 > 0 and r < 0 then f (x1, x2) is maximum. 

(b) if rt-s2 > 0 and r > 0 then f (x1, x2) is minimum. 

(c)  if rt-s2 < 0 then f (x1, x2) has saddle point. 

An optimization problem with restriction on the decision variables is called a constrained optimization problem. 

Lagrange’s multiplier method is used to solve the equality constrained problems. 

 

3.8 Terminal Questions 

 

1. Write a short note on Constrained Optimization Problem. 

2. Explain the Lagrange Multiplier method. 

3. Find the extreme values of x2+y2+z2 when ax+by+cz= p. 

4. Find the maximum and minimum values of u = x+y+z s.t. 1=++
z

c

y

b

x

a . 

5. Find the extreme value of xpyqzr s.t. 1=++
z

c

y

b

x

a . 

6. Find the maxima and minima of x2+y2+z2 s.t. ax2+by2+cz2=1 and lx+my+nz =0. 

7. Using (i) Direct method and 

            (ii) Lagrange multiplier method to solve the following problem: 

Minimize f = 2x1
2+2x2

2+x3
2+2x1x2-8x1-6x2-4x3+2x1x3+9 

 s.t. x1+x2+2x3 = 3  

8. Using Lagrange multiplier method to solve the following problems: 

           (i)               Minimize f(x1, x2) = 3x1
2+x2

2+2x1x2+6x1+2x2 
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                  s.t.  2x1-x2 = 4. 

    

           (ii)  Optimize f(x1, x2) = 6x1x2  

             s.t.  2x1+x2 = 10 

           Also state whether the stationary point is a maxima or minima. 

                                    

Answer 

3. Minimum value of u is .
222

2

cba

p

++
 

4. ( ) .
2

cbau ++=  

5. ( ) .
rqp

rqp

rqp

rqp
rqp

cba ++
++  

6. .0
111

222

=
−

+
−

+
− cu

n

bu

m

au

l
 

7. .
9

4
,

9

7
,

3

4







  

8. (i)  (1, -2), minimize f = 5.   

           (ii)  









2

5
,

2

5 , maximize f =75. 
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Block-2 

Non-Linear Programming Problems 

 

There are a number of non-linear optimization problems which have analytical solution. However a lot 

many non-linear programming programs are also there which do not fall in analytically solvable category 

and thus defy any general analytical approach. The only way to tackle such problems is to choose a point 

to start with, find the value of the function to be optimized at that point, take a tentative short step from 

the point in some direction and find the function value at the new point. If the new value is better (less in 

minimum problem and large in maximum problem) than the previous value, then discard the first point in 

favour of the second point, otherwise stay at the first point and move in some other direction. Go on doing 

this till a point is found from where no further change in its value is possible in any direction and the 

function value is the optimum within some prescribed tolerable limit. It is not intended here to go into the 

theoretical discussion about the derivations and rates of convergence of various methods.  

Analytical methods have been devised to solve some of these non-linear programming problems like 

quadratic programming problem, separable programming problem and geometric programming problem 

etc. However there are many other non-linear programming problems which defy to yield solution by 

analytical methods. Our objective in this block is to discuss the methods to solve such problems by using 

various techniques called search techniques. Such problems can be divided further into two categories; 

constrained non-linear programming problems and unconstrained non-linear programming problems. 

In the fourth unit, we shall discussed about the unconstrained non-linear programming problems and in 

the fifth unit we deal with constrained non-linear programming problems. Quadratic programming 

problems and separable programming problems are discussed in unit sixth and seventh respectively.  
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UNIT-4: Non-Linear Programming-I 

 

Structure 

4.1  Introduction 

4.2  Objectives 

4.3   Search Techniques 

4.4  Fibonacci Method 

4.5  Golden Section Method 

4.6   Univariate Search Techniques 

4.7  Pattern Search Method  

4.8  Hooke and Jeeve’s Method 

4.9  Powell’s Method 

4.10 Steepest Decent Method (Cauchy Method)   

4.11 Summary 

4.12  Terminal Questions 

4.1 Introduction 

 

Mathematical programming problem consisting in getting the maximum or minimum of f(X) restricted 

with constraints gj(X) , = or  0, where f(X) and gi(X) are real valued functions of X = (x1, x2, ….. , xn) 

in n dimensional space En.  In case some or all of the functions f(X), gj(X); j = 1, 2, …. , m are non-linear, 

then the mathematical programming problem is called a non-linear programming problem. In this unit we 

shall discuss the unconstrained non-linear optimization problems. For solving the unconstrained non-

linear optimization problems, the methods divided into two categories: (i) Direct search method and (ii) 

Indirect search method.  

Using direct search methods we apply the Fibonacci-Search Plan Method; Golden Section Method; 

Univariate search technique; Pattern Search Methods: (i) Hooke and Jeeves Method  (ii) Powell’s Method 

and Indirect search methods we apply the Steepest decent method. 
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4.2       Objectives 

 

After reading this unit the learner should be able to understand about the: 

▪ Search techniques (one dimension) 

▪ Fibonacci  Method 

▪ Golden Section Method 

▪ Univariate search technique  

▪ Pattern Search Methods 

▪ Hooke and Jeeves Method  

▪ Powell’s Method 

▪ Steepest Decent Method (Cauchy Method)   

4.3 Search Techniques (One dimension) 

We have already discussed classical techniques which were easily applicable if the expressions for 

objective function and the constraints were simple. But when objective function and constraints are 

complicated, then classical analytic methods fail and we have to use numerical methods. In most of these 

numerical techniques, the only requirement is that the function involved should be computable. After 

introducing a few elementary definitions, we shall discuss these methods.  

Unimodal function: A function ( )xf  with a unique optimal value (either a unique maxima or minima) 

in  b,a  is known as unimodal function. The following Figures 4.1 and 4.2 showing the unimodal function 

in the interval  .b,a  

 

 

  

 

     O      a b                                                          O          a                    b  

     Fig-4.1 Fig-4.2 

                    Figure 4.1 and 4.2 unimodal functions in [a, b] 

 

Let ( )xfy =  be a unimodal function is  b,a  and ( )2121, xxxx   be two points in  .b,a  Calculate ( )1xf  
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and ( )2xf . Then only following three and no other than these possibilities as shown in figures 4.3, 4.4 

and 4.5 are possible. 

          ( ) ( )21 xfxf   

                                                          bx ,min 2  

 

 O  a  1x 2x                       b 

          Fig-4.3 (a) 

                                                               ( ) ( )21 xfxf =  

                                                                21,min xx  

   

O        a    1x              2x              b 

Fig-4.3 (b) 

 

                                                                  ( ) ( )21 xfxf   

                                       1,min xa  

 

O      a         1x     2x      b 

                     Fig-4.3 (c) 

Figure 4.3 (a), 4.3 (b) and 4.3 (c) shown the interval to which minima belongs 

 

 

Interval of uncertainty  

Initially the interval  b,a  in which the optimum of the objective (response) function is needed is called 

uncertainty interval and after two experiments (funding ( )1xf  and ( )2xf ) the uncertainty interval reduces 

to  bx ,2  or  21, xx  or  11 , xa  (see Figures 4.3 (a), 4.3 (b) and 4.3 (c)). 
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Experiment 

Measure or calculation of the response (objective) function ( )xf  for any set of values ix ’s in uncertainty 

interval  ba,  is called an experiment in context of search techniques. 

 

Measure of effectiveness 

Let 
0L  be the initial uncertainty interval and 

nL  be the uncertainty interval after n  experiments, then the 

ratio 10 =
nL

L
 is called the measure of effectiveness. 

 

4.4 Fibonacci Method  

 

In Fibonacci method the initial interval of uncertainty say  b,a  is given and the function to the optimized 

to a given degree of accuracy must be unimodal in the interval of uncertainty. Also in this we use Fibonacci 

numbers. So first we define Fibonacci sequence. The sequence nF  where 
          
)1.4(..........21 −− += nnn FFF   

n is an integer greater than ( )11 n  and  

         
)2.4.....(110 == FF   

is called Fibonacci sequence. 

Thus 

      
.........2331448955342113853211

........1211109876543210 FFFFFFFFFFFFF
 

Procedure 

Let  b,a  be the initial interval of uncertainty with length  

                        
)3.4....(

0
2

2

0








=

−=

− L
F

F
L

abL

n

n   

and ‘n’ is the number of experiments to be performed. Choose 1x  and 2x  in 
0L  such that 
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)4.4....(0
2

1 L
F

F
ax

n

n−+=  

                            

)5.4....(0
2

2 L
F

F
bx

n

n−−=  

               


2L                         


2L   

                              1x                     2x            b  

                                      0L   

 

Thus 0
2

2 L
F

F
bbxb

n

n−+−=− (using Equation 4.5) 

                   = x1-a                          (using Equation 4.4)  

Here x1-a =b-x2 showing that x1 and x2 are symmetrically placed in respect to end points a and b of interval 

of length L0. Also  

  )6.4....(0
1

0
2

0
2

00
2

2 L
F

F
aL

F

FF
aL

F

F
LaL

F

F
bx

n

n

n

nn

n

n

n

n −−−− +=








 −
+=−+=−=                          

Let the problem be of minimization and  

(i) If 21 xx   and ( ) ( ),21 xfxf   then by the assumption of unimodal it can be concluded that minimum 

does not lie on the right of 2x  and hence reject interval ( b,x2  and the next uncertainty interval is  .x,a 2  

(ii) If 21 xx   and ( ) ( ),21 xfxf   discard  1x,a , then the next uncertainty interval will be  .b,x1 . 

The length 2L  of this new uncertainty interval (for both case (i) (ii)) will be  

 
0

12

00

2

0202 * L
F

F

F

FF
LL

F

F
LLLL

n

n

n

nn

n

n −−− =








 −
=−=−=  [using 4.1]                 …(4.7) 

For case (i), the interval of further search will be  2, xa  in which one observation is at 1x  

  

  

                   21 xxa  

a
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For case (ii), the interval of further search will be  bx ,1  in which one observation is at 2x  

 

   

                    bxx 21  

Next iteration is on the interval of uncertainty 2L . Let  22 , xaL = . Let the interval  2, xa  be 

predesignated as  11 ,ba . 

As before choose 
3x  and 4x  in interval  2, xa  of length 2L such that 

   2

3

3 L
F

F
ax

n

n−+=       ……(4.8)  

And  2

1

3

24 L
F

F
xx

n

n

−

−−=           

  

                


3L      


3L   

    
3x      1x  4x    12 bx =  

                                         2L   

 

Then we have 

               

)9.4...(422

1

3
3 xxL

F

F
ax

n

n −==−
−

−
 

Take                             )10.4...(32

1

3 

−

− = LL
F

F

n

n
 

Equality in equation (4.9) again implies that 
3x  and 4x selected according to (4.8) are symmetric with 

respect to end points of 2L . 

Next consider 0

3

2

1

3

42 L
F

F
L

F

F
xx

n

n

n

n −

−

− ==−   (using Equations 4.9 & 4.7)  …(4.11) 

1aa =
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Also 0

2

0

1

12 L
F

F
aL

F

F
axx

n

n

n

n −− −−+=−         (using Equations 4.4 and 4.6) 

                         0

3

0

21 L
F

F
L

F

FF

n

n

n

nn −−− =
−

=          …(4.12) 

 4212 xxxx −=−      (Using Equations 4.11 & 4.12) 

This shows that 4x coincides with 1x . This implies that in second iteration and also in subsequent iterations, 

we need to find the function value at only one new point (
3x  in this case). 

Similarly if for case (ii) the new search interval  bx ,1  is retained, then we take  

 
2

3

13 L
F

F
xx

n

n−+=   and       2

1

3

4 L
F

F
bx

n

n

−

−−=  

 

  

                   1x  2x  
3x  4x  b  

 

Here 
32 xx =  i.e., 2x  and new point 

3x will coincide. 

Length of the uncertainty interval after third experiment is given as 

 *323 LLL −=  0

2

0

31

0

3

0

1

2

1

3

0

1 L
F

F
L

F

FF
L

F

F
L

F

F
L

F

F
L

F

F

n

n

n

nn

n

n

n

n

n

n

n

n −−−−−

−

−− =
−

=−=−=  

Thus 0

2

3 L
F

F
L

n

n−=     …(4.13) 

Repeating the whole process till the two experiments in the last are equidistant from both the end points 

of uncertainty interval  nn ba , , then optimum point *x  can be approximately taken as  

  2
* nn ba

x
+

=  

Also the distance of the 8th experiment from one end the interval of uncertainty will be 

  

,L
F

F
L

n

jn

j 0

− =    ….(4.14) 
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And the length of uncertainty interval at this stage will be 

  

,....,j,L
F

F
L

n

)j(n

j 320

1
==

−−

  …(4.15) 

Thus say
FF

F

L

L

nn

n ===
11

0

 

The ratio 
n

n

FL

L 1

0

== permits us the required number of experiment ‘n’ to obtain the desired accuracy 

in searching the optimum of the given function.  

Let us find ‘n’ when as an example the minimum of 6.10,32 − xxx  is required within an interval of 

uncertainty equal to 0250 L. , where 
0L  is the original interval of the uncertainty, then we have 

                25.0
1
=

nF
  

4
25.0

1
== nF  

and hence .n 4=  

 

Examples 

 

Example.1. Determine the minimum of ,5.10,22 − xxx  taking n=4 using Fibonacci method. 

Solution: Here ( ) .4,5.105.1,2 0

2 ==−=−= nLxxxf  

Clearly ( ) xxxf 22 −=  is unimodal in  5.1,0  

First two experiments:  

Let us take two points 1x  and 2x  as a distance 0

2

2* L
F

F
L

n

n−=  from the two points .5.1and0 == ba  

 
0

2

21 0* L
F

F
Lax

n

n−+=+=  

         6.05.1
5

2
==  
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                               2*L                                                         2*L  

 

       0=a  1x  2x  5.1=b  

  

                                                          5.10 =L   

Since 1x  and 2x  are symmetrically placed, 2x  will be at a distance 0.6 from 9051 2 .x.,e.i.b ==  

( ) ( ) 84.06.01 −== fxf   and  ( ) ( ) 99.9.02 −== fxf  

( ) ( )9.06.0 ff   

 

 

          0 6.01 =x  9.02 =x  1.5 

Thus reject [0, 0.6] and the new uncertainty interval is [0.6, 1.5]. 

 

Third experiments:  

Take two points ( )9.03x  and 4x  in the new uncertainty interval [0.6, 1.5], 
3x  is the same as 2x  which is 

at a distance 303 .*L =  from 0.6 and hence 2.14 =x  being symmetrically at a distance 0.3 from 1.5. 

 

          .3 .3 

                  0.6 9.03 =x  2.14 =x  1.5 

 

Thus we have 

                           2.1and9.0 43 == xx . 

                    ( ) ( ) 99.9.03 −== fxf  and ( ) ( ) 96.2.14 −== fxf  

( ) ( ).34 xfxf   
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Thus reject [1.2, 1.5] and hence the next uncertainty interval is [0.6, 1.2]. 

Here 0.9 is the middle point of uncertainty interval [0.6, 1.2]. Thus we do not get new point 

*9.as 344 xxxx ===  

Thus Min ( ) 9.0at99. =−= xxf . The correct minimum is ( ) .1at1 =−= xxf  

 

Example.2 Using the method of Fibonacci, find the minimum of 532 +− xx  is the interval [1, 2.6], 

taking n=6. 

Solution: Here ( ) ,532 +−= xxxf  ,6.116.20 =−=L  initial interval [1, 2.6], n = 6. 

First two experiments:  

Let us take two points 21  and xx  in [1, 2.6] at a distance. 

6153846.06.1
13

5
* 0

6

4
0

2

2 ==== − L
F

F
L

Fn

F
L n

from end points 1 and 2.6 respect.  

 

                                  
2*L                                                        

2*L  

 

        1=a  1x  
2x  6.2=b  

  

  6153846.1*21 =+= Lax  

  61538466.2*22 −=−= Lbx  

        9846154.1=  

 ( ) 763314.21 =xf  and ( ) 98485222 .xf =
 

( ) ( ) .xx,xfxf 2121   

Reject  6.2,9846154.1  and new uncertainty interval is  .9846154.1,1  

Third experiment:  

Let 43 and xx  be two points in  9846154.1,1  at a distance  
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3692308.06.1
13

3
* 0

6

3

0

3

3 ==== − L
F

F
L

F

F
L

n

n
. 

                                
3*L                                                          

3*L  

 

          1 3x  
14 xx =  9846154.1  

 3692308.1*1 33 =+= Lx  

 
34 *9846154.1 Lx −= 6153846.1=  

 ( ) ( ) ( ) ( )434343 and,763314.2,7671006.2 xfxfxxxfxf == . 

Reject [1, 1.3692308] and new uncertainty interval is [1.3692308, 1.9846154] using unimodality of the 

function. 

Fourth experiment:  

Let 
65 and xx  be the two points in [1.3692308, 1.9846154] at a distance  

2461538.06.1
13

2
* 0

6

2
0

4

4 ==== − L
F

F
L

F

F
L

n

n
 

                   4*L                                                         4*L  

 

 3692308.1  
45 xx =  

6x  9846154.1  

 6153846.1*3692308.1 45 =+= Lx  

 7384616.1*9846154.1 46 =−= Lx  

 ( ) ( ) 8068639.2and763314.2 65 == xfxf . 

As ( ) ( )6565 and xfxfxx   by unimodality reject interval [1.7384616, 1.9846154]. 

Next interval of uncertainty is [1.3692308, 1.7384616]. 

Fifth experiment:  

Let 
87 and xx  be the two points in [1.3692308, 1.7384616] as a distance 
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1230769.06.1
13

1
* 0

6

1
0

5

5 ==== − L
F

F
L

Fn

F
L n

 

                                
5*L                                                          

5*L  

 

 3692308.1  
7x  

8x  7384616.1  

 

 
57 *3692308.1 Lx +=   = 4923077.1  by symmetry  

 
58 *7384616.1 Lx −= 61538461.=  

 ( ) ( ) 7633136.2and750059.2 87 == xfxf  

 ( ) ( )8787 and xfxfxx  , using unimodality reject in interval [ ,.61538461  1.7384616] and the 

next new uncertainty interval is [1.3692308, 1.6153846]. 

Sixth experiment:

 

 
50

6

0

0

6

6 *1230769.06.1
13

1
* LL

F

F
L

F

F
L

n

n ===== −
 

Thus there is no fresh point and hence the final uncertainty interval is [1.3692308, 1.6153846] whose 

middle point  

 
2

6153846.13692308.1
*

+
=x 4923077.1

2

9846154.2
==  

Thus Min ( ) .4923077.1for750059.2 == xxf  

 

4.5 Golden Section Method  

 

The next search method that we discuss is golden section method which differs from Fibonacci method in 

that the total number of experiments here to be conducted are unlimited, let us assume that ‘n’ the total 

member of experiments to be conducted is very large satisfying the limit. 

 say
F

F
lim

F

F
lim

F

F
lim

n

n

n
n

n

n
n

n

n 

1

2

3

1

21 ===
−

−

→
−

−

→

−

→
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Then 
2

0

0

1

1

2

0

2

3

0

0

1

2


L
L

F

F

F

F
limL

F

F
limL,

L
L

F

F
limL

n

n

n

n

n
n

n

n
n

n

n
===== −

−

−

→

−

→

−

→
 

Proceeding this way k times, we get 0

1

1

0 1
L

L
L

K

KK

−

−








==


 

From Fibonacci sequence {
nF } we have  

,21 −− += nnn FFF  n  is an integer greater than ( )11 n . 

1

2

1

1
−

−

−

+=
n

n

n

n

F

F

F

F
 

Taking the limit as ,→n  we get 

 









+=

−

−

→
−

→
1

2

1

1limlim
n

n

n
n

n

n F

F

F

F
 

.
2

51
or01or

1
1or 2 +

==+−+= 


  

Working procedure: Take two points in the initial uncertainty interval [a, b] which are symmetrically 

placed from both the end points ba and at a distance  

 ( ) 02

0

0

1

1

2

0

2

2 6180 L.
L

L
F

F

F

F
limL

F

F
lim*L

n

n

n

n

n
n

n

n
==== −

−

−

→

−

→ 
 

      =−= abL0
 length of initial uncertainty interval. 

In 
thK iteration take ( ) 0

1
618.0* LL

K

K

−
= . 

Repeat iterations till a stage that the interval of uncertainty is as small as desired. The optimum points can 

be taken as the middle points of this final uncertainty interval. 

 

Examples 

 

Example.3. Use golden section method to find maximum of ( ) ( )xxxf −= 5  given that ( )xf  is an 

unimodal function is interval  8,0  in which the maximum lies. 

Solution: Here    8,0, =ba  initial uncertainty interval and its length 8080 =−=L . 
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First two experiments:  

Let us take two points 
21 xandx  between  8,0  at a distance  

( ) ( ) .8and0from055392.38618.0618.0*
2

0

2

2 === LL  

                                
2*L                                                        

2*L  

 

          0  
1x  

2x  8  

  

 ( ) 941975.5,055392.3*0 121 ==+= xfLx  

 ( ) 276864.0,944.4055392.38*8 222 ==−=−= xfLx  

Thus we have ( ) ( )2121 xfxfandxx  . 

So by unimodality assumption, maximum points does not be on the right of 
2x  and reject interval [4.944, 

8]. 

The next uncertainty interval is [0, 4.944] with length ( ) 944.4618.0 0

12

2 ==
−

LL  (Approximate). 

Third experiment:  

Take two points 
43 and xx  in  944.4,0  as a distance 

( ) ( ) 888.18618.0618.0*
3

0

3

3 === LL  

 

                                
3*L                                                         

3*L  

 

           0 
3x  4x  944.4  

 

( ) 875456.5,888.1*0 333 ==+= xfLx  

( ) 940864.5,056.3*944.4 434 ==−= xfLx  

Thus ( ) ( )4343 xfxfandxx  . 
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Hence reject interval [0, 1.888] and next uncertainty interval is [1.888, 4.944]. 

Fourth experiment:  

Take two points 
65 xandx  in [1.888, 4.944] at a distance  

( ) 1669.1618.0* 0

4

4 == LL  

                   
4*L                                                            

4*L  

 

      888.1  
5x  

6x  944.4  

( ) 941975.5,055.3*888.1 545 ==+= xfLx  

( ) 6190.4,777.3*944.4 646 ==−= xfLx  

Thus ( ) ( )6565 and xfxfxx  . 

New uncertainty interval is [1.888, 3.777] rejecting interval on right of 
4x  

Fifth experiment:  

Take two points 
87 and xx  in [1.888, 3.777] as a distance  

( ) 721.0618.0* 0

5

5 == LL  from the two end points 

 

                                
5*L                                                        

5*L  

 

      888.1  
7x  

8x  777.3  

 

( ) 238597.6,609.2*888.1 757 ==+= xfLx  

( ) 940864.5,056.3*777.3 858 ==−= xfLx  

Thus we get ( ) ( )8787 xfxfandxx   

By unimodality assumption, the next uncertainty interval is [1.888, 3.056].  

After 5th experiment the uncertainty interval is sufficiently small ( )16.1  and the maximum points  

PGMM-102/67



 

 4722
2

05638881
.

..
*x =

+
=   and ( ) .249216.6* =xf  

 

4.6 Univariate Method 

 

Univariate method as the name suggests is the method in which we move in axial directions covering all 

the directions one by one. Movement is made covering all directions, taking one direction at a time. This 

will complete one cycle of iterations. The process will be over when no further improvement, in the value 

of the given function to be minimized is possible in any direction of a cycle.  

Procedure: Step-I: First we choose a fixed point X1 (x1, y1) and a search direction u1= (1, 0)T. Then take 

a step of size 1 in this direction and obtain optimum 1=1
 for which f (X1+1

u1) is minimum. This 

gives a new point X2 where X2= X1+1
u1. 

Step-II: Repeat step-I by taking optimum step length 2
  in the direction u2 = (0, 1)T from the point X2 

to arrive at the next point X3 = X2 +2
u2. 

Step-III:  Completion of step-I and II will form one cycle of iterations. Repeat the process for the 

completion of next cycle of iterations until the variation in the value of function f is negligible. 

Here we shall consider functions in two variables x1 and x2 only, although the procedural method described 

below can be extended for functions of more than two variables also. We illustrate the method through 

examples: 

 

Examples 

 

Example.4. Minimize f(X) = f (x1, x2) = 2x1
2+3x2

2-x1 x2 using Univariate method taking  

X1= 








1

1
as the starting point. 

Solution: Step-I: Consider unit vectors u1 = (1, 0)T and u2 = (0, 1)T in x1 and x2 (axial) directions 

respectively. Given X1 =









1

1
, where f (X1) = 4.  

We take a step size 1 in x1 direction to arrive  

       X2 = X1+1 








0

1
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 = 









1

1
+








 +
=









1

1

0

11 
 

To find optimum step size 1, we have 

Min f ( ) ( )1

2

1

1
1312

1

1



+−++=







 +
 

For minimum of f, we have 

  

4

3

01)1(4

1

1

1

−=

=−+=




d

df

 

and   04
2

2

1

=
d

fd
 

   f   is minimum for .
4

3
1 −=  

Therefore new point  

X2 = ,
1

4/1

1

1 1









=







 + 
 

( ) .875.2
8

23

4

1
3

8

1
2 ==−+=Xf  

Step-II: Now to find optimum step size 2 in x2 direction. 

Minimize f [X2+2 (0, 1)T] = 




















+









2

0

1

4/1


f  

       

)1(
4

1
)1(3

8

1

1

4/1

2

2

2

2





+−++=










+
= f

 

For minimum of f, we have 
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24

23

0
4

1
)1(6

2

2

2

−=

=−+=




d

df

 

and   

 

06
2

2

2

=
d

fd
 

    f  is minimum for .
24

23
2 −=  

New point X3 =X2+2(0, 1)T 

                                   = 









+ 21

4/1


= ,

24/1

4/1








 

        ( )
( ) 96

1

24

3

8

1
23 −+=Xf  

                            

.11979.0

576

69

=

=
 

Thus one cycle of iterations is completed. 

Cycle-II:  

Step-III: Now considering X3 as the base point, to find optimum step size 3 in x1-direction. 

Minimize f [X3+3 (1, 0)T]  

                       









+−








+








+=








 +
=






















+








=

3

22

3

3

3

4

1

24

1

24

1
3

4

1
2

24/1

4/1

024/1

4/1







f

f

 

For minimum of f, we have 
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96

23

0
24

1

4

1
4

3

3

3

−=

=−







+=




d

df

 

     04
2

3

2

=
d

fd
 

   f  is minimum for .
96

23
3 −=  

New point X4 = 
( )








 −+

24/1

96/234/1
 

        = ,
24/1

96/1







             

                 

( )

.00499.0

4608

23

24

1

96

1

24

1
3

96

1
2

22

4

=

=

















−








+








=Xf

 

Step-IV: Now considering X4 as the base point, to find optimum step size 4 in x2-direction. 

Minimize f [X4+4 (0, 1)T]  

                   









+−








++








=










+
=






















+








=

4

2

4

2

4

4

24

1

96

1

24

1
3

96

1
2

24/1

96/1

0

24/1

96/1







f

f

 

For minimum of f, we have 

576

23

0
96

1

24

1
6

4

4

4

−=

=−







+=




d

df
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06
2

4

2

=
d

fd
 

   f   is minimum for .
576

23
4 −=  

New point X5 = 









− )576/23()24/1(

96/1
 

                           = ,
576/1

96/1








           

         ( ) 















−








+








=

576

1

96

1

576

1
3

96

1
2

22

5Xf  

( )
.00020797.0

9612

33
2

=


=

 

Thus minimum f (X) = 0.00020797, when x1=1/96 and x2 = 1/576. 

Note: From the above steps we see that as the base point moves from (1, 1) towards 








576

1
,

96

1  (0, 0), 

f (X) is becoming smaller and smaller and is tending to zero.  

Thus Min f(X) = 0 at (0, 0). 

 

4.7. Pattern Search Methods: 

 

In Univariate method starting from a fixed point (the base point) search is made for the minimum of the 

given function by moving in the axial directions (the directions of axes) only. It can be observed that the 

rate of convergence in univariate method to arrive at the optimal point is very slow.  

To accelerate the rate of convergence, a number of algorithms have been devised. Here we describe two 

of them: 

(i) Hooke and Jeeve’s method 

(ii) Powell’s method 
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4.8. Hooke and Jeeve’s Method: 

 

In this method we start from a fixed point say X1.  Step size in all the directions is taken to be constant 

(i.e.  x1 = x2 = ……….= xn = constant) and search is made in each direction ui, ui is the unit vector in 

the direction of xi – axis whose ith component is 1 and all other components are 0. Search is made first in 

positive and then if necessary in the negative direction of each axis to arrive at a temporary base point.   

A temporary base point Ykj obtained from Xk by perturbing the jth component of Xk (Yk0 = Xk), defined as  

              

( ) ( )
( ) ( )

( ) ( )







=

=−=−

=+=+

=
+

−−

−−

−

−

−−

+

−

_

f,fminfYfifY

YffuxYffifuxY

YffuxYffifuxY

Y

i,ki,k

i,kiii,kiii,k

i,kiii,kiii,k

ik

11

111

111

 

This process of determining new base point is continued for i=1, 2, 3, …, n until all directions are 

exhausted (covered). 

After one cycle of covering all the axial directions reaching at the final temporary base point of the cycle 

say Y1n, n being the number of design variables in the given problem, if Y1n is different from Y10=X1, then 

a new base point is taken as X2 = Y1n and a single step of optimum size  is taken in the direction S = X2 

– X1. This way the pattern of the preceding set of axial steps is repeated for further distance.  

After this, search along the axes is again resumed and a second new pattern is generated to go further 

ahead. This is why the method is called pattern search method. These steps are repeated till a desired 

accuracy is achieved or the change in the value of the function satisfies the given condition in the problem.  

We shall confine our discussion by considering functions in two variables (n = 2), which can be extended 

for more than two variables easily. 

 

Examples 

 

Example.5. Minimize f (X) = 2x1
2+x2

2+2x1x2+x1-x2 by Hooke’s and Jeeve’s method, taking starting 

base point X1 = (0, 0) and x1 =x2=0.8 . 

Solution: Step-I: Set Y10=X1= (0, 0), f(X1) = 0.  

Moving in direction u1, from base point X1,  

f +(X1+x1u1) = f +[(0, 0)+0.8(1, 0)]  

                = f +(0.8, 0)  

                 = 2.08   f (X1) 

 f -(X1-x1u1) = f -(-0.8, 0)  
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                                = 0.48   f (X1)
 

As f +, f – are not less than f(X1), so movement in u1 direction is not beneficial and hence is discarded and 

Y11= X1  

and f (Y11) = f (X1) = 0. 

Step-II: Resuming movement in u2-direction, 

 f +(X1+x2u2) = f +[(0, 0)+0.8(0, 1)] 

 = f +(0, 0.8)  

= -0.16  f (X1) 

As Y12 = X1+x2u2 = (0, 0.8) is different from X1, and the new base point is taken as  

      Y12 = X2  

            = (0, 0.8)  

    and                  f (X2) = -0.16. 

Step-III: As movement has been made in both the axial directions u1 and u2, the third movement is to be 

made in first pattern direction  

Sp1=X2-X1  

      = (0, 0.8) - (0, 0)  

      = (0, 0.8) through step length  from X2 so that f (X2+Sp1) is minimum. 

For minimum of f [X2+(X2-X1)] = f {0, 0.8(1+)}  

= [0.8(1+)]2-0.8(1+), 

( ) 08.018.02 =−+= 
d

df
   

8

3
−=   

and      06.1
2

2

=
d

fd
 

    f  is minimum for .
8

3
−=  

Thus we get the new base point  
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                               Y20 = X3 = X2+(X2-X1)  

                                     = (0, 0.8)-(3/8)(0, 0.8) 

                                      = (0, 0.5)  

and       f (X3) = f (0, 0.5) = -0.25.  

This completes the first cycle of iterations along both the axial directions u1, u2 and first pattern direction 

Sp1. 

Second cycle of iterations:  

Step-IV: First we move in u1 direction starting with base point X3 = (0, 0.5). 

        f +(X3+x1u1) = f +[(0, 0.5)+(0.8, 0)] 

              = f +(0.8, 0.5)  

               = 2.63   f (X3) 

            f -(X3-x1u1) = f -(-0.8, 0.5)  

                                = -0.57  f (X3) =-0.25 

Thus new temporary base point is  

                       Y21 = X3-x1u1  

                              = (-0.8, 0.5),  

and            f (Y21) = -0.57 

Step-V: Moving in u2- direction from base point Y21 = (-0.8, 0.5) to Y22, we have 

f +(Y21+x2u2) = f +(-0.8, 1.3)  

=-1.21  f (Y21) 

Thus new base point  

       Y22 = X4  

     = Y21 +x2u2  

    = (-0.8, 1.3) 

     and                             f (X4) = -1.21. 

Step-VI: Now after exhausting both the axial directions in second cycle of iterations we move along the 

second pattern search direction Sp2 =X4-X3 starting from X4 through optimal step length  so that 
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 f (X4+Sp2) = f [(-0.8, 1.3)+(-0.8, 0.8)]  

        = f [-0.8(1+), 1.3+(0.8)] is minimum. 

To find minimum of f (), we have 

  032.028.1 =−= 
d

df
   

25.0=   

and                  028.1
2

2

=
d

fd
 

    f  is minimum for 25.0=  

Thus we get the point  

X5 =Y30  

                                          = X4+Sp2  

      = (-1, 1.5) 

and                         f (X5) = -1.25.  

Third cycle of iterations:  

Step-VII: Moving in u1- direction from X5 = (-1, 1.5). 

      f +(X5+x1u1) = f +[(-1, 1.5)+0.8(1, 0)]  

= f +(-0.2, 1.5) 

 = 0.03   f (X5) 

        f -(X5-x1u1) = f -[(-1, 1.5)-0.8(1, 0)]  

      = f -(-1.8, 1.5)  

         = 0.03   f (X5),  

So Y31 = X5. 

Step-VIII: Making movement in u2- direction from Y31 = X5, 

          f +(X5+x2u2) = f +[(-1, 1.5)+0.8(0, 1)] 

            = f +(-1, 2.3)  
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            = - 0.61   f (X5) 

f -(X5-x2u2) = f -[(-1, 1.5)-0.8(0, 1)]  

                      = f -(-1, 0.7)  

                      = -0.61   f (X5) 

This shows that movement from X5 in any of the axial directions produces no change in the value of the 

function f at X5. Thus X5 is the optimal solution.  

Therefore we get Min f = -1.25, when x1 =-1 and x2 = 1.5. 

 

4.9 Powell’s Method: 

 

Let f be the function of n variables which is to be minimized and u1, u2, ….., un be the axial directions. In 

Powell’s method starting from a fixed point search is made sequentially in the directions un; u1, u2, …, un 

in the first cycle and along Sp1, u2, u3,….un-1, un, Sp1 in the second cycle and Sp2, u3, u4, … un-1, un, Sp1, Sp2 

in the third cycle and so on until the minimum point is reached.  Where Spi’s are the pattern search 

directions defined as Spi = Xi-Xi-n, n is the number of design (decision) variables.  

In particular taking n = 2, Search is made in the directions u2, u1, u2 and Sp1, u2, Sp1 and so on. Thus in the 

second cycle one of the axial directions is replaced by the pattern search direction. We illustrate the method 

through examples. 

Note: In Powell’s method any of u1 or u2 can be taken as first search direction and hence the cycle of 

iterations can also be in the order u1; u2, u1 and Sp1; u1, Sp1. Here u2 is discarded in second cycle of iteration. 

Powell’s method being the method of conjugate directions, it converges in at most two cycles of iterations. 

 

Examples 

 

Example.6. Minimize f (x1, x2) = 2 x1
2 + x2

2 + 2 x1 x2 + x1 – x2 using Powell’s method taking     X1 = 

(0, 0) as the starting point. 

Solution: Given that f = 2 x1
2 + x2

2 +2x1x2 +x1 – x2 and base point X1= (0, 0). 

Cycle I: In first cycle of iteration, search will be made in the directions u2, u1, u2.  

Taking step of size 1 in the direction S2 from X1 to reach at X2 such that  

f (X2) = f (X1+1u2)= 1
2-1  is minimum.  

For f is minimum, we have 
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2

1

012

1

1

1

=

=−=




d

df

 

and                   02
2

1

2

=
d

fd
 

     f  is minimum. 

So we have 

 X2 =X1+1u2 

  = (0, 0) + (1/2)(0, 1) 

 = (0, 1/2),     

and          f (X2) = f ( 0, 1/2 )  

                         = - 0.25 < f (X1). 

Next moving from X2 in the direction of u1 = (1, 0) through step length 2 arriving at point            

X3 = X2 +2 u1.   

We find 2 so that   

     f (X3) = f ( 2 , 1/2 )   

                                        = 22
2 + 2 2  -0.25 is minimum. 

For f minimum, we have 

    

2

1

024

2

2

2

−=

=+=




d

df

 

     and   04
2

2

2

=
d

fd
 

    f  is minimum. 

 So we have 

       X3 = X2 +2 u1  
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= (0, 1/2) –(1/2).( 1, 0)  

= (-1/2, 1/2)  

and    f (X3 ) = - 0.75 < f (X2) = - 0.25. 

Now from X3, move to X4 taking step length of size 3 in the direction of u2 = (0, 1). 

      X4 = X3 +3 (0, 1)  

= (-1/2, 1/2) + (0 , 3 )  

           = (-1/2, 1/2+3). 

Now we determine 3 such that 

 f (X4) = f (-1/2, 1/2+3) =3
2 - 3- 0.75 is minimum. 

For minimum f, we have 

    

2

1

012

3

3

3

=

=−=




d

df

 

and   02
2

3

2

=
d

fd
 

    f  is minimum. 

Thus we have X4 = (-1/2, 1)  

and  f (X4 ) = - 1 < f (X3) = - 0.75. 

This completes one cycle of iterations. 

Second cycle: We generate the pattern search direction Sp1 as 

Sp1 = X4 – X2  

      = (-1/2, 1) – (0, 1/2)  

     = (-1/2, 1/2)  

Now from X4, we move to X5 by taking step length 4 in the direction of Sp1 = (-1/2, 1/2).  

X5 = X4 +4 Sp1  

     = (-1/2, 1)+ 4 (-1/2, 1.2)  
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     = [- (1/2).(1 +4 ), 1 + (1/2)4 ] 

We now determine 4 such that  

f (X5) = 0.254
2 - 0.5 4-1 is minimum. 

For minimum of f, we have 

 

1

05.05.0

4

4

4

=

=−=




d

df

 

and   05.0
2

4

2

=
d

fd
 

   f is minimum, where 4=1.  

         X5 = X4 +4 Sp1  

               = (-1/2, 1 ) +(-1/2)(1/2, 1/2) 

          = (-1, 3/2)   

and      f (X5 ) = - 1.25 < f (X4). 

Now from X5 we move to X6 by taking step length 5 in the direction of u2 (0, 1).  

     X6 = X5 +5u2  

= (-1, 3/2) +5 (0, 1)  

= (-1 , 3/2+5 ).  

We determine 5 such that  

f (X6) = f (-1, 3/2 +5) =5
2 – (5/4) is minimum. 

For minimum of f, we have 

.0

02

5

5

5

=

==




d

df

  

 X6 = (-1, 3/2) = X5. 

Which (5=0) shows that f cannot be minimized in the direction of u2 and there is no other direction to 

move.  
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Thus we get min f = - 1.25, when x1 = -1, x2 = 3/2. 

 

4.10. Steepest Descent (Cauchy’s) Method: 

 

This method is also called “Cauchy’s method”. In this method like other methods we start from an initial 

point called the base point and movement is made in the direction of steepest direction. Indirect search 

methods use the derivatives along with finding the value of function at the search point. These methods, 

therefore, are also called “Gradient Methods”. 

 

Procedure Method: 

Step-1: Let X1 be the starting point. Let us consider f(x1, x2) be the function to be minimized. A function 

decreases most rapidly in the negative direction of gradient. Calculate f (X1) and S1 = -f (X1) (i.e., 

negative of gradient f at X1). 

Step-2: Find the optimum step length 1 in this direction to arrive at the point X2 = X1 + S1 1 so that f(X2) 

< f(X1). Proceed this way till one of the following conditions is satisfied and terminate the process   

(i) 

ix

f



  ,  is a small positive number. 

(ii) ii XX −+1  , i.e., change in design vectors in the consecutive iterations is small. 

(iii) Relative change in the value of f at two consecutive steps is small i.e., 

)(

)()( 1

i

ii

Xf

XfXf −+  .   

 

 

Examples 

 

Example.7: Minimize f(x1, x2) = 2x1
2 + x2

2 + 2x1x2 + x1 – x2, starting from the point X1 = (0, 0) and 

using Steepest descent method, taking =0.01.  

Solution: Given that f(x1, x2) = 2x1
2 + x2

2 + 2x1x2 + x1 – x2 

        f(X) = 


















21

,
x

f

x

f
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( )122,124 1221 −+++= xxxx  

Initial step: Given X1 = (0, 0) and hence -f (X1) = (-1, 1). 

Iteration–1: We find 1 which minimizes 

f [X1-1f (X1)] = f [(0, 0)+1(-1, 1)]  

= f (-1, 1) 

       = 21
2+1

2-21
2-1-1 

       = 1
2-21 

For minimum of f, we have 

                                

1

f = 21-2 = 0  

     1=1  

and    
2
1

2



 f
= 2  0 (minimum) 

Thus new point X2 = X1-1 f (X1) = (-1, 1). 

f (X2) = (-1, -1). 

( )2Xf     

  X2 is not optimal point. 

Iteration-2: Now we find 2 which minimizes  

f [X3] = f [X2-2f (X2)]  

= f [(-1, 1)-2(-1, -1)]  

= f (-1+2, 1+2) 

          or f (X3) = 52
2-22-1 

 Now we find 2 which minimizes f (X3) as a function of 2. 

For minimum of f, we have 

2

f
=102-2 = 0  
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   2=1/5  

and   
2
2

2



 f
=10  0 (minimum) 

X3 = X2-2 f (X2)  

= (-1+(1/5), 1+(1/5))  

= (-0.8, 1.2).  

f (X3) = (0.2, -0.2) 

and  ( )3Xf   0.01  

  X3 is not optimal point. 

Iteration 3: Next we find 3 which minimizes 

f [X4] = f [X3-3f (X3)]  

= f [(-0.8, 1.2)-3(0.2, -0.2)]  

      = f (-0.8-0.23, 1.2+0.23) 

            or      f (X4) = 0.043
2-0.083-1.2 

 Now we find 3 which minimizes f (X3) as a function of 3. 

For minimum of f, we have 

 

3

f
= 0.083-0.08 = 0  

   3=1  

and   
2
3

2



 f = 0.08  0 (minimum) 

   X4 = X3-3 f (X3)  

      = (-1, 1.4)  

and      f (X4) = -1.24 

f (X4) = (-0.2, -0.2) 
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And  ( )4Xf   0.01  

       X4 is not an optimal point. 

Iteration 4: Further we find 4 such that f (X5) = f [(X4 - 4f(X4)] is minimum. 

For f (X5) = f [X4-4 f (X4)]  

                 = 0.24
2 - .084 - 1.24 minimum, 

For minimum of f, we have 

4

f
= 0.44-0.08 = 0 

    4= 0.2  

and   
2
4

2



 f
= 0.4  0 (minimum) 

     X5 = X4-4 f (X4)  

                       = (-1, 1.4)-0.2(-0.2, -0.2) 

                       = (-0.96, 1.44)  

and     f (X4) = (0.04, -0.04) 

and ( )5Xf   0.01  

                  X5 is not an optimal point. 

Iteration 5: Next to minimize  

               f (X6) = f (X5 -5 f(X5)  

                        = .0016 5
2- 0.00325-1.248 

For minimum of f, we have 

5

f
= 0.00325-0.0032 = 0  

   5 = 1  

and   
2
5

2



 f = 0.0032  0 and hence minima. 
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   X6 = X5 - 5 f(X5)  

= (- 1, 1.48)  

and  f (X6) = (-0.04, 0.04) 

   ( )6Xf   0.01  

  X6 is not an optimal point. 

Iteration 6: Next to minimize  

                        f (X7) = f (X6) - 6f(X6)  

                                  = .0016 6
2 - 1.2496 

For minimum of f, we have 

          

6

f = 0.00326 = 0  

   6 = 0  

and   
2
6

2



 f = 0.0032  0  

  f (X7) is minimum. 

With X7 = f (X6) - 6f(X6)  

              = (-1, 1.48) 

and 6 = 0   

  further improvement in f is not possible alternatively X6 = X7 = (- 1, 1.48)    

  
67 XX −  = (0, 0)  = (.01, .01). 

Thus we get 

Min f = f (X6) = f (X7) = - 1.2496   - 1.25,  

when x1 = -1 and x2 = 1.48. 
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4.11 Summary 

In direct search methods, derivatives of the function to be minimized are not needed, these methods are 

suitable for functions which are not differentiable. 

A function ( )xf  with a unique optimal value (either a unique maxima or minima) in  b,a  is called 

unimodal function. 

In Fibonacci method the initial interval of uncertainty say  b,a  is given. Also the function to the optimized 

to a given degree of accuracy must be unimodal in the interval of uncertainty. 

Golden section method differs from Fibonacci method in that the total number of experiments to be 

conducted in golden section method are unlimited.  

In Univariate method, we move in axial directions covering all directions, taking one direction at a time. 

This will complete one cycle of iterations. The process will be over when no further improvement in the 

value of the given function to be minimized is possible in any direction of a cycle. In this method the rate 

of convergence is slow. 

Pattern search method is used to accelerate the rate of convergence. Powell’s method being the method of 

conjugate directions, it converges in at most two cycles of iterations. 

Indirect search methods are used for the functions having derivatives along with finding the value of 

function at the search point. These methods are also called Gradient Methods. 

In Steepest decent method, we start from an initial point called the base point and movement is made in 

the direction of steepest direction. This method is also called Cauchy’s method. 

 

4.12 Terminal Questions 

Q.1. Use Fibonacci method to find maximum of ( ) ( )xxxf −= 5  given that ( )xf  is an unimodal function is interval 

 8,0  in which the maximum lies. 

Q.2. Minimize the function ( ) ( )x/tanx.
x

.
.xf 1650

1

750
650 1

2

−−
+

−=  by golden section method in interval 

 80,  with n = 6. 

Q.3. Minimize f (X) = f (x1, x2) = 2x1
2+x2

2+x1-x2+2x1x2 using Univariate method taking X1= 








0

0
as the starting point 

(base point). 

Q.4. Minimize f (X) = 3x1
2+x2

2-2x1x2-4x1-3x2 by Hooke’s and Jeeve’s method, taking starting base point as X1 = (0, 

0) and x1 = x2 =1. 

Q.5. Minimize f (x1, x2) = 4 x1
2 + 3x2

2 -5x1 x2 -8x1 using Powell’s method taking X1 = (0, 0) as the starting point. 
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Q.6. Minimize f (x1, x2) = 2x1
2 + x2

2 starting from the point X1 = (1, 2) and using Steepest descent method solve up 

to two iterations.  

Answer 

1.    x = 2.66667,  f(x) = 6.22222. 

2.    x = 0.4055,  f(x) = -0.30658. 

3.    x1 = -1, x2 = 1.5,  f (X) = -1.25.  

4.    x1 = 1.75, x2 = 3.2.5,  f (X) = -8.375.  

5.    x1 = 48/23, x2 = 40/23.  

6.    f (X) = 1.0336. 
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UNIT-5: Non-Linear Programming-II 

 

Structure 

5.1  Introduction 

5.2  Objectives 

5.3   Complex Method 

5.4  Zoutendijk Method (Method of Feasible Direction) 

5.5  Indirect Method 

5.6   Transform Method 

5.7  Penalty Function and Penalty Methods  

5.8  Formulation of Penalty Function  

5.9  Summary 

5.10  Terminal Questions 

 

5.1 Introduction 

 

In unit five, we will explore constrained non-linear optimization problems. A diverse range of non-linear 

programming problems exists, categorized based on the characteristics of the objective function f(X) and 

the constraints gj(X). This unit will delve into search methods designed to address constrained non-linear 

programming problems. Initially, we will examine search techniques in one dimension, followed by an 

exploration in two dimensions. The methods employed to tackle both unconstrained and constrained 

problems are further classified into the following two categories. 

1. Direct Search Methods  

2. Decent Methods 

 

5.2       Objectives 

 

After reading this unit the learner should be able to understand about the constrained problems and their 
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solution method: 

▪ Complex Method 

▪ Zoutendijk Method (Method of Feasible Directions) 

▪ Indirect method 

▪ Transform Method 

▪ Penalty function and Penalty Methods: 

(i) Interior Penalty Function Method  

(ii) Exterior Penalty Function Method 

 

 

5.3       Complex Method 

 

Complex method deals with the constrained optimization problems of the type 

Min Z = f (X)             …… (5.1) 

Subject to gi(X)  0, j =1, 2, 3, ............, m                     ..…. (5.2) 

X = (x1, x2, ….., xn)
T and xi

(l)  xi  xi
(u), i =1, 2, ….., n       ..…. (5.3) 

xi
(l) = lower bound on xi and xi

(u) = upper bound on xi.  

Conditions in (5.3) are called side constraints. For a minimizations problem in n variables if we consider 

k points where k  n+1 then the figure formed on joining them is known a complex. We shall consider the 

minimization problem in two variables and take k = 2n =4. These four points will form the vertices of the 

complex. 

Working procedure for the case of two variables x1 and x2: 

Step-I: In complex method one point X1 is given and remaining (2n-1) = 3 (n = 2 here) points, X2, X3 and 

X4 are obtained one at a time by using random members ri,j, 0 ri,j  1. Calculate 

xi,j = xi
l+ ri,j [xi

(u)- xi
(l)], i = 1, 2 and  j = 2, 3, 4 

xi,j = i
th component of the point Xj. It is worth noticing that point X2, X3 and X4 thus generated satisfy side 

constraint (5.3) but may not satisfy all constraint in (5.2). In case a point say X4 is not satisfying all 

constraints in (5.2), then a new point denoted as X4
(1) is obtained by moving X4 half way towards (in the 

direction of ) the centroid X0 = (X1+X2+X3)/3 of the remaining points X1, X2, X3 i.e., X4
(1) = (X0+Xj)/2. 

We check if new point X4
(1) satisfies all constraints in (5.2) or not. If not, we further get a new point X4

(2) 

by moving X4
(1) half way towards the centroid X0 given above. We proceed this way until a feasible point 
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X4 satisfying (5.2) is obtained. Thus we get four feasible points X1, X2, X3 and X4 all satisfying conditions 

(5.2) and (5.3) and they form the vertices of starting complex. 

Step-II: Calculate f (X1), f (X2), f (X3) and f (X4) and mark the largest and the least value obtained. Let f 

(X) be largest at Xn = X4 say and smallest at Xl then the process of reflection is used to determine a new 

point Xr as Xr =(1+)X0-Xh where   R and X0 is the centroid of all vertices except Xh that is X0 = 

(X1+X2+X3)/3. Now check the feasibility of Xr 

(i) If Xr is feasible and f (Xr)  f (Xh), then Xh is replaced by Xr and move on step-II. 

(ii) If f (Xr)  f (Xh), a new trial point Xr is found by taking new  = old /2 and is tested for further 

satisfaction of the condition f (Xr)  f (Xh). We continue the process until the condition         f (Xr)  f (Xh) 

is satisfied and this way value of  will become smaller and smaller. 

(iii) If Xr is not obtained in any manner such that f (Xr)  f (Xh) then we neglect the whole reflection 

process and new reflection process is started by taking Xh which gives the second largest value of the 

function.  

Now for the convergence, the procedure ends when distance between any two vertices among X1, X2, X3, 

X4 becomes smaller than the prescribed value of . 

 

Examples 

Example.1. Minimize f (X) = f (x1, x2) = (x1 -1)2+(x2-1.5)2-0.25, 

Subject to x1+x2  4, 0  x1  2 and 1  x2  3 by complex method with X1 = .
1.1

7.0








  

Solution: Here constraint is g(X)= x1+x2 –4  0 and side constraints are 0  x1  2 & 1  x2  3. 

Consider 4 vertices X1, X2, X3 and X4 of the complex with X1=









1.1

7.0
 

Let us choose the random numbers 

             r1, 2 = 0.4, r1, 3 = 0.6, r1, 4 = 0.8 

             r2,2 = 0.5, r2,3 = 0.7, r2,4 = 0.9 

to find the remaining three vertices X2, X3 and X4 using the formula 

             xi,j= xi
(l)+ ri,j[xi

(u)-xi
(l)], i =1, 2; j =1, 2, 3, 4. 

Where xi,j is the ith component of vertex Xj. 

Here x1
(l) =0, x1

(u) = 2 and x2
(l) =1, x2

(u) = 3. 
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Therefore  x1, 2 = x1
(l)+r1, 2 [x1

(u) – x1
(l)] =0.8 

x1, 3 = x1
(l)+r1, 3 [x1

(u) – x1
(l)] =1.2 

x1, 4 = x1
(l)+r1, 4 [x1

(u) – x1
(l)] =1.6 

x2, 2 = x2
(l)+r2, 2 [x2

(u) – x2
(l)] =2 

x2, 3 = x2
(l)+r2, 3 [x2

(u) – x2
(l)] =2.4 

x2, 4 = x2
(l)+r2, 4 [x2

(u) – x2
(l)] =2.8 

Thus the first simplex consist of the vertices  

,
8.2

6.1
and

4.2

2.1
,

2

8.0
,

1.1

7.0
4321 








=








=








=








= XXXX  

 g(X1) = x1+x2 = 0.7+1.1 = 1.8  4 

Similarly g(X2) = 2.8  4, g(X3) = 3.6  4 and g(X4) = 4.8  4. 

g(x) is not satisfied at vertex X4 and hence it is replaced by some point in the feasible region. 

X0, the centroid of satisfying vertices is  









=

++
=

83.1

9.0

3

321
0

XXX
X  

Thus new X4 vertex is  

X4 = X4
(1) = 









=

+

315.2

25.1

2

40 XX    

and   g(X4
(1)) = 3.565  4. 

Thus X4
(1) lies in the feasible region and the initial complex has the vertices X1, X2, X3 and X4=X4

(1) with 

  ,
315.2

25.1
and

4.2

2.1
,

2

8.0
,

1.1

7.0
)1(

44321 







==








=








=








= XXXXX  

and f (X1) = 0, f (X2) = 0.04, f (X3) = 0.60 and f (X4
(1)) = 0.4 767.. 

f (X3) = 0.60 gives the maximum value and  f (X1) = 0 is the minimum value 

So we take X3 = Xh with f (Xh) = 0 .6  and X1 =Xl,  f (Xl) = 0 

The new centroid X0 is obtained as  
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.15.0)(and
805.1

917.0

3
0

)1(

421
0 −=








=

++
= Xf

XXX
X  

f (X0)  f (Xh)   

    f (X) is decreasing from  Xh(=X3) toward X0. So let us find Xr using reflection process as Xr = 

(1+)X0-Xh  

Taking =1, Xr =2X0-Xh 









21.1

634.0
  

and   f (Xr) = -0.034944. 

As Xr feasible and f (Xr)  f (Xh). So we proceed further by considering the different values of  as 

(i) Taking =0.1 then we have 

 Xr
(1) = 1.1 X0-0.1 Xh  

= (1.1) 









805.1

917.0
-0.1 









4.2

2.1
 









=

7455.1

8887.0
 

and f (Xr
(1)) = -0.1773. 

(ii) Taking =0.2 then we have 

 Xr
(2) = 1.2 X0-0.2 Xh  

           = (1.2) 









805.1

917.0
-0.2 









4.2

2.1
 









=

686.1

8604.0
 

and f (Xr
(2)) = -0.1959. 

(iii) Taking =0.3 then we have 

 Xr
(3) = 1.3 X0-0.3 Xh  

         = (1.3) 









805.1

917.0
-0.3 









=









6265.1

8321.0

4.2

2.1
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and f (Xr
(3)) = -0.2058. 

(iv) Taking  = 0.4 then we have 

 Xr
(4) = 1.4 X0-0.4 Xh  

         = (1.4) 









805.1

917.0
-0.4 









=









567.1

8038.0

4.2

2.1
 

and f (Xr
(4)) = -0.2070. 

(v) Taking =0.5 then we have 

 Xr
(5) = 1.5 X0-0.5 Xh  

            = (1.5) 









805.1

917.0
-0.5 









=









5075.1

7755.0

4.2

2.1
 

and f (Xr
(5)) = -0.1995. 

Since the decreasing of the values of f continues up to Xr
(4), so let us replace the vertex Xh=X3 with  highest 

values by Xr
(4)  to get the new complex with vertices 

        








=

1.1

7.0
1X      and    f(X1) = 0 

        








=

1.1

8.0
2X       and     f (X2) = 0.04 

        








==

567.1

8038.0
)4(

3 rXX       with  f (X3) = f (Xr
(4)) = -0.207016 

  and    







=

315.2

25.1
4X      with  f (X4) = f (X4

(1)) = -0.476725 

Thus f (X4) = f (X4
(1)) gives the maximum values and f (X3) = f (Xr

(4))  gives the minimum value. 

So Xh= 








=

315.2

25.1
4X

  

 with    f (X4) = -0.476725 

 and   Xl= X3= Xr
(4)=










567.1

8038.0
     with    f (X3) = f (Xl) = -0.207016  
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The centroid X0 = (X1+ X2+ X3)/3 = 









5557.1

7679.0
  with f (X0) = -0.19303 

 f (Xl)- f (X0)=0.014. 

Thus if the desired accuracy is  = 0.01, then the above solution is accepted and therefore 

Min f (X) = -0.2070 at X3 i.e., when x1=0.8038 and x2=1.5557. 

 

5.4 Zoutendijk Method (Method of Feasible Direction) 

 

Consider the problem 

   Min f (X)        .…(5.4)  

Subject to  gj(X)  0, j = 1, 2, …….…., m      ….(5.5) 

 X= (x1, x2, ……, xm)T 

In this method of feasible direction, we have choose the starting point Xi  (i = 1 for starting point) which 

satisfy all the constraints in (5.5) and move to a better point Xi+1 (the point where value of the function in 

(5.4) is lesser than that it has at Xi) as per the iterative formula given as 

  Xi+1 = Xi+i Si 

Where Xi  is the Starting point for i
th iteration.  

Si is the direction in which to move. 

i = length of the step to be taken in the direction of Si. 

Xi+1 is the point determined at the end of i
th iteration 

Care should be taken to choose i such that new point Xi+1 is in feasible region. Further the search direction 

is found such that 

(i) Even a very small movement in that direction violets none of the constraints in (5.5) and           

(ii)  The value of the function f (X) in (5.4) decreases. 

Feasible Direction:  

A direction S which satisfies condition (i) is called feasible direction. One way to determine the feasible 

direction is: if at Xi,  

   ( )  0)(
0

=








+
=

ij
T
iiiij XgSSXg

d

d

i



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then direction Si is feasible direction. 

 

Usable Feasible Direction:  

A direction Si which satisfies both the conditions given in (i) and (ii) is known as usable feasible direction. 

Further a direction Si will be a usable feasible direction if 

(a) ( )  0)(
0

=








+
=

i

T

iiii XfSSXf
d

d

i




                   

…..(5.6)

  

(b)

 

( )  0)(
0

=








+
=

ij
T
iiiij XgSSXg

d

d

i


            

…..(5.7) 

We can reduce the value of f by taking step lengths in such a direction Si as described above. The process 

terminates at Xi if f (Xi) = 0. Zoutendijk method is a method of feasible directions.  

 

Examples 

 

Example.2. Using the method of feasible directions due to Zoutendijk method 

Min f (X) = x1
2+x2

2-2x1-3x2+3 

Subject to g1(X) = x1+x2  4 taking the initial point X1 = .
0

0







   

Solution: Given that  

X1 = 









0

0
,  

 f (X) = x1
2+x2

2-2x1-3x2+3, x1+x2  4 

Thus we have 

 g1(X) = x1+x2 - 4. 

Then we have    

f (X1) = 3 and g(X1) = -4  0. 

Step-I: Here g(X1)  0 so search direction S1 is  
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S1 = - f (X1) = - .
3

2

/

/

)0,0(2

1

1









=













=X
xf

xf
 

After normalization we have 

 S1 = .
1

3/2








 

Step-II: To obtain a new point X2 we take a step of length 1 in the direction of - f (X1)  to arrive at  X2 

=X1+1S1 = [(2/3)1, 1] 

f (X2) = f [(2/3)1, 1]  

= (13/9) 1
2-(13/3)1+3 

To find 1 for minimum f, we have 

5.10
3

13

9

26
11

1

==−=







f   

and    0
9

26
2

1

2

=






f
.  

Thus f is minimum when 1=1.5 giving  

        X2 = (0, 0)+1.5(2/3, 1)  

= (1, 1.5)  

     and   g(X2) = -1.5  0. 

So the new search direction S2 is  

S2 = - f (X2)  

                  = 
.

0

0

/

/

)5.1,1(2

1

1









=













=X
xf

xf   

which implies that there is no search direction available to get minimum f.  

Hence the minimum f = -0.25 

 At X = X2 = (1, 1.5), i.e., x1 = 1 and x2 = 1.5. 
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5.5  Indirect Method  

 

In using the technique of indirect method for solving a NLPP, the function to be minimized must be 

differentiable. Here we discussed two important indirect methods: 

1. Transform Techniques 

2. Penalty Function Methods’ 

 

5.6 Transform Techniques 

 

In the constraints gj(X) in a non-linear optimization problem exhibit simple forms in independent 

variables, it becomes feasible to apply variable transformations. Through these transformations, the 

constraints can be automatically satisfied. Consequently, it becomes possible to convert a constrained 

optimization problem into an unconstrained one by employing these transformation techniques.  

Some of typical transformations of independent variables are: 

(i) If lower and upper bounds on xi are given as:  

li  xi  ui,                              ……(5.8) 

then these can be satisfied by transforming the variable xi as 

                 xi= li+( ui- li) sin2yi                                                                                              ......(5.9) 

Where yi is the new variable which can take any value. 

(ii) If xi  (0, 1), then we can use one of the following transformations: 

    (a) xi = sin2yi        

    (b) xi=cos2yi       

    (c) 
ii

i

yy

y

i
ee

e
x

−
+

=         

     (d) 
2

2

1 i

i

i
y

y
x

+
=                    ….(5.10) 

(iii) If the design variable is restricted to assume only positive values then one of the following 

transformations can be used: 

   (a) xi= yi                   
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   (b) xi= yi
2      or   

   (c) xi=eyi        ….(5.11) 

(iv) If xi  (-1,1), then we can use: 

   (a) xi = sin yi                   

    (b) xi= cos yi    or   

     (c) 
21

2

i

i

i
y

y
x

+
=

      

….(5.12) 

Note that, to use above transformations, the constrained function gi(X) should be simple. In case it is not 

possible to eliminate, all the constraints using by change of variables, then it is better not to use the 

transformation method. 

 

Examples 

 

Example.3. A courier service does not accept rectangular packets of more than 42 cm in length. If 

{length+2(width+height)} is at most of 72 cms, then compute the maximum volume of the 

rectangular packet. 

Solution: Let us consider x1, x2 and x3 be the length, width and height of the rectangular packet then the 

formulation of the problem is 

 Max f (X) = x1x2x3        ….. (5.13) 

Subject to  x1+2x2+2x3  72,            …… (5.14) 

  x1  42,            ….(5.15) 

x1, x2, x3  0.           ……(5.16) 

Let us transform xi’s into yi’s by taking  

y1 = x1, y2 = x2  

and   y3 = x1+2x2+2x3 

These imply that x3 = (1/2)(y3-y1-2y2)                      …..(5.17) 

Thus constraints (5.14), (5.15) and (5.16) can be written as: 

0  y1  42,  

0  y2  36,  
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                 and   0  y3  72,                        …..(5.18) 

The upper bound for yi’s in (5.18) can easily be obtained (say for y2, taking x1 = x3 = 0 in (5.14), we get 

2x2  72. Thus x2 = y2  36). 

The constrained in (5.18) are automatically satisfied if we define z1, z2 and z3 as:  

    yi = li+(ui-li) sin2 zi     …..(5.19) 

Using (5.18) and (5.19) we have 

y1 = l1+(u1-l1) sin2 z1 = 42 sin2 z1       …..(5.20) 

y2 = l2+(u2-l2) sin2 z2 = 36 sin2 z2       …..(5.21) 

y3 = l3+(u3-l3) sin2 z3 =72 sin2 z3     …..(5.22) 

So the original problem reduces to 

   Max f = (1/2) y1y2 (y3-y1-2y2) 

           = (1/2) (42 sin2 z1) (36 sin2 z2)(72 sin2 z3-42 sin2 z1-72 sin2 z2) 

 Subject to 0  sin2 zi   1, i =1, 2, 3              …… (5.23) 

For minimum f, we have 

       0
1

=




z

f
   

     0sin72sin
6

7
sinsincossin1512 2

2

1

2

3

2

2

2

11 =







−− zzzzzz              ….(5.24) 

0
2

=




z

f
    

       0sin2sin
12

7
sincossinsin108864 2

2

1

2

3

2

221

2 =







−− zzzzzz  ….(5.25) 

0
3

=




z

f
    

       0cossinsinsin108864 332

2

1

2 = zzzz             ….(5.26) 

From (5.25), we have 

sin2 z1 = 0    z1 = 0    y1 = 0     f = 0 which is not acceptable. 
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sin2 z2 = 0    z2 = 0    y2 = 0     f = 0 which is not acceptable. 

If  sin z3 = 0    z3 = 0    y3 = 0   f is negative which is not acceptable. 

If cos z3 = 0     z3 =/2     …...(5.27) 

From (5.24), we have 

 0sin72sin
6

7
sin 2

2

1

2

3

2 =−− zzz  

    7 sin2z1 +6 sin2 z2 =6           …...(5.28) 

From (5.25), we have 

 
2

2

1

2

3

2 sin2sin
12

7
sin zzz −− = 0  

    7 sin2z1 +24 sin2 z2 =12          …...(5.29) 

Subtract Equation (5.28) from Equation (5.29), we have 

   18 sin2z2 = 6  

  sin2z2 = 1/3. 

From (5.28), we have 

 7 sin2 z1 +6(1/3) = 6  

  sin2z1 = 4/7. 

Hence y1 = 42 (4/7) =24, y2 = 36(1/3) = 12, y3 = 72. 

               x1 = 24, x2 = 12, x3 = 12 

 and Max f = 3456 cm3. 

 

5.7  Penalty Function Method 

 

Consider the problem  

Min f (X)        ..… (5.30)  

Subject to  gj(X)  0, i = 1, 2, ………., m        

 hi(X) = 0, i = 1, 2, ……., p, X En  
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The penalty method transforms problem (5.30) into a sequence of problems, each devoid of constraints.  

In tackling problem (5.30), the penalty method introduces constraint effects by modifying the objective 

function, akin to the approach used in the Big-M method of artificial variable technique in the simplex 

method.  

Consequently, to address the constrained optimization problem outlined in (5.30), we introduce an 

auxiliary unconstrained function. 

F (X, rk) = f (X)+P(X, rk)      …..(5.31) 

Where P(X, rk) is a function of constraints gj(X) and hi(X) and rk is a positive parameter such that 

  ( )XfrXF k
rk

min),(minlim
0

=
→

. 

 

5.8  Formulation of Penalty Function  

 

On the basis of the formulation of penalty function, the penalty function method is divided into two 

categories: 

1. The Interior Penalty Method 

2. The Exterior Penalty Method  

In the interior penalty method, the form of penalty function P(X, rk), which is a function of constraint 

functions gj(X) and hi(X) and a positive parameter rk is  

P(X, rk) =  +−
==

p

i
i

m

j
kj

k Xh
rXg

r
1

2

1

)(
1

)(

1                  ……(5.32) 

In the interior penalty method the minimum of the auxiliary function F(X, rk) as defined above in (5.31) 

is approaching to the minimum of the objective function f (X) from points inside the feasible region as rk 

tends to zero. 

In exterior penalty method we take the form of penalty function P(X, rk) as  

  P(X, rk) = ( )   +
==

p

i
i

m

j
k

j

k

Xh
r

Xg
r 1

2

1

2
)(

1
)(,0max

1
 ……(5.33) 

and minimize the auxiliary function F(X, rk) for a sequence of decreasing values of rk i.e., minimum of 

F(X, rk) approaches to minimum of f (X) from the points of infeasible region as rk tends to zero. 

We will illustrate the above interior and exterior penalty based method through the following examples. 
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Examples 

 

Example.4. Minimize f(X) = f (x1, x2) = (x1+2)3+3x2+1 

  Subject to x1  2, x2  0. 

Solution: Given problem can be re-written as 

f (X) =  (x1+2)3+3x2+1 

  Subject to 2-x1  0, -x2  0. 

Hence the auxiliary unconstrained problem becomes 

Minimize F(X, rk) = (x1+2)3+3x2+1-rk .
1

2

1

21








−

− xx
 

For minimization of F, we have 

 0
)2(

)2(3
2

1

2

1

1

=
−

−+=




x

r
x

x

F k
 

( )
3

4
22

1
krx =−  

2/1

1
3

4or













+= krx  

and 
2

22

3
x

r

x

F k−=



 

3
2

krx =  

Thus we have 

  
2/1

1
3

4 







+= krx  

and 
3

2
krx =   

are the possible feasible values of x1 and x2.  
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Now as rk →0, x1= 2 and x2 =0. 

( )XfrXF k
rk

min),(minlim
0

=
→

= 65, when x1 = 2 and x2 = 0. 

The solution of the given problem tending to x1 = 2 and x2 = 0 can be seen from the following table as  rk 

→0 through four values 10, 0.1, 0.001 and 0.0001 given to rk for k = 1, 2, 3 and 4. 

 

k rk x1 x2 F(X, rk) f (X) 

1 10 2.414 10.826 117.556 92.478 

2 0.1 2.045 0.183 70.508 67.739 

3 0.001 2.005 0.018 65.529 65.274 

4 0.0001 2.000 0.000 65.000 65.000 

 

Above table shows, how the values of auxiliary function F(X, rk) are approaching to the values of given 

function f (X) as rk is tending to zero through positive values. 

 

Example.5. Minimize f(X) = 2x 

  Subject to x  3 using interior penalty method. 

Solution: The given problem can be written as 

                           Min f (X) = 2x 

  Subject to           g1(x) = 3- x  0. 

The auxiliary unconstrained problem can be written as 

Minimize F(X, rk) = 2x-rk 








− x3

1

   

 such that 

( )XfrXF k
rk

min),(minlim
0

=
→

 

For minimization of F, we have 
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,
2

3

0
)3(

2
2

k

k

r
x

x

r

x

F

+=

=
−

−=




 

and

  

0
3

2
32

2


−

−
=





)x(

r

x

F k

  

at 
2

3 krx += .

 

Now as rk →0 at x = 3. 

 ( ) 6min),(minlim
0

==
→

XfrXF k
rk

, when x = 3. 

Note that this is the problem in one variable x. 

 

Example.6. Minimize f(X) = x1
2+2x2

2 

  Subject to 2x1+5x2  10 using exterior penalty method. 

Solution: The given problem can be written as 

f (X) = x1
2+2x2

2 

  Subject to g1(x) = 2x1+5x2 -10  0  

The auxiliary function F(X, rk) in exterior penalty method is given as 

Minimize F(X, rk) = x1
2+2x2

2+ 

kr

1
[Max. (0, 2x1+5x2-10)]2 

For minimization of F, (r=1/rk), we have  

          

0)1052(
4

2 211 =−++=



xx

r
x

x

F

k
    

04020)82( 21 =−++ rrxxr

     

….(5.34)

 

          

0)1052(104 212

2

=−++=



xxrx

x

F

   

0100)504(20 21 =−++ rxrrx   ….(5.35)

 

From equations (5.34) and (5.35), we have 
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rr

x

r

x

1328

1

200160

21

+
==  

332

40

332

40
1

+
=

+
=

krr

r
x

 

and  
332

50

332

50
2

+
=

+
=

krr

r
x  

Now as rk →0, we get 

   
33

50
 and

33

40
21 == xx  

and minimum f (X) = (40/33)2+2(50/33)2  

                                = 200/33.  

Hence the minimum of the f (X) is 200/33.  

 

5.9 Summary 

 

In solving NLPP, the function to be minimized need not be differentiable and only computational work is 

needed. In such conditions direct methods (like Complex Method, Zoutendijk Method etc.) are convenient 

to use. In using the technique of indirect methods for solving a NLPP, the function to be minimized must 

be differentiable. In such cases indirect methods (like Transform Techniques, Penalty Function Methods 

etc.) are used. 

 

5.10 Terminal Questions 

 

Q.1. Minimize f (X) = f (x1, x2) = (x1 -1)2+(x2-2)2, 

Subject to x1+x2  4, x1-x2  2, x1  0 and x2  0 by complex method with X1 = .
5.1

5.0







   

Q.2. Using the method of feasible directions due to Zoutendijk method 

Minimize f (X) = x1
2+x2

2-4x1-4x2+8 

Subject to g1(X) = x1+2x2 -4  0 taking the starting point X1 = .
0

0








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Q.3. Min f (X) = x1
2+x2

2-6x1-8x2+10 

  Subject to 4x1
2+x2

2  16, 3x1+5x2  15 

 Using (i) Interior penalty method (ii) Exterior penalty method. 

 

Answer 

1.    x1 =1, x2 =2.  

2.     x1 =1.6, x2 = 1.2,  f (X) = 0.8.  

3.     x1 =3, x2 = 4.  
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UNIT-6: Quadratic Programming 

 

Structure 

6.1  Introduction 

6.2  Objectives 

6.3   Convex and Concave Functions 

6.4  Kuhn Tucker Conditions 

6.5  Quadratic Programming 

6.6   Wolfe’s Modified Simplex Method  

6.7  Beale’s Method  

6.8  Summary 

6.9   Terminal Questions 

 

6.1 Introduction 

 

In the present unit we shall discuss about the convex and concave functions, Kuhn-Tucker conditions, 

quadratic programming problems which is solved by two important techniques named as Wolfe’s 

modified simplex method and Beale’s method. Quadratic programming (QP) is a type of mathematical 

optimization problem that deals with quadratic objective functions subject to linear equality and inequality 

constraints. The goal of quadratic programming is to find the values of the decision variables (x) that 

minimize (or maximize) the quadratic objective function while satisfying the given linear constraints. 

Quadratic programming problems arise in various fields, such as finance, engineering, operations 

research, and machine learning. Common applications include portfolio optimization, structural design, 

and support vector machines in machine learning. 

 

6.2 Objectives 

 

After reading this unit the learner should be able to understand about: 

▪ the Convex and Concave functions 
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▪ the Kuhn-Tucker conditions 

▪ the quadratic programming problem  

▪ Wolfe’s Modified Simplex Method 

▪ Beale’s Method 

 

6.3 Convex and Concave Functions 

 

A function f(x) is said to be convex over a convex set S, if for any two point x1 and x2 in S 

  f[x1+(1-)x2]  f(x1)+(1-)f(x2);   0    1 

A function f(x) is said to be concave over a convex set S if for any two points x1 and x2 in S  

f[x1+(1-)x2]  f(x1)+(1-)f(x2);        0   1 

Note:  

1. A function f(x) is said to be convex iff the Hessian matrix H(x) of second partial derivatives is positive 

semi-definite.  

2. A function f(x) is said to be concave iff the Hessian matrix H(x) of second partial derivatives is negative 

semi-definite. 

 

6.4 Kuhn-Tucker Conditions 

 

This section we shall discussed the Kuhn-Tucker conditions under certain restrictions for identifying the 

stationary points of constrained non-linear optimization problems. Consider the optimization problem 

                                Optimization (Max or Min) Z=f(X)            …. (6.1) 

  s.t.  g j(X)  0;  j = 1, 2, 3, ………, m         ….. (6.2) 

Converting the inequality constraints into the equality constraints by adding slack variables sj
2, we have 

    g j(X) + sj
2 = 0            ….. (6.3) 

Now we define a Lagrangian function 

     L(x1, x2,……., xn, 1, 2, …….., m) = f(X)+ ( ) 2

1
jj

m

j
j sXg +

=

                             ….. (6.4) 

The Kuhn-Tucker necessary conditions for extreme points are  
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     0=




js

L        

         g j(X) + sj
2 = 0;   j = 1, 2, 3, ………, m                 ….. (6.6) 

and      0=




jy

L  

      2j sj = 0;   j = 1, 2, 3, ………, m                 ….. (6.7) 

From Equations (6.6) and (6.7), we have 

    j g j (X) = 0 

               j  = 0 

or         g j (X) = 0. 

Case-I: If gj (X) = 0 at the optimum point then the constraint is called active constraints and we can 

determine the optimum solution. 

Case-II: If j = 0 at the optimum point then it is known as an inactive constraints. 

Note: If the given optimization problem is a minimization problem with constraints of the form g j (X)0 

then j 0 but if the given problem is a maximization problem with constraints of the form gj(X)  0 then 

j  0.  

Consider some of the maximization or minimization problems in the following terms. 

(i)        Maximize Z= f(X) 

s.t.  g j(X)  0 ;  j = 1, 2, 3, ………, m  

For the function f(X) maxima, we have  

    

0
1

=



+





=

m

j i

j

j

i x

g

x

f


           

;  i = 1, 2, 3, ………, m  

                    j g j (X) = 0 ;  j = 1, 2, 3, ………, m 

 and          j   0. 
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(ii)        Maximize Z= f(X) 

s.t.  g j(X)  0 ;  j = 1, 2, 3, ………, m  

For the function f(X) maxima, we have 

    

0
1

=



+





=

m

j i

j

j

i x

g

x

f


           

;  i = 1, 2, 3, ………, m  

                    j g j (X) = 0 ;  j = 1, 2, 3, ………, m 

 and          j   0. 

(iii)        Minimize Z= f(X) 

s.t.  g j(X)  0 ;  j = 1, 2, 3, ………, m  

For the function f(X) maxima, we have

  

        

0
1

=



+





=

m

j i

j

j

i x

g

x

f


           

;  i = 1, 2, 3, ………, m  

                    j g j (X) = 0 ;  j = 1, 2, 3, ………, m 

 and          j   0. 

(iv)        Minimize Z= f(X) 

s.t.  g j(X)  0 ;  j = 1, 2, 3, ………, m  

For the function f(X) maxima, we have 

    

0
1

=



+





=

m

j i

j

j

i x

g

x

f


           

;  i = 1, 2, 3, ………, m  

                    j g j (X) = 0 ;  j = 1, 2, 3, ………, m 

 and          j   0. 

 

Examples 

 

Example.1. Solve the following problem 

                                              Minimize f(X) =x1
2+x2

2+x3
2 
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s.t.                                           g1(X) = 2x1+x2-50 

                                                g2(X) = x1+x3-20 

                                                g3(X) = 1-x10 

                                                g4(X) = 2-x20 

                                                g5(X) = -x30. 

Solution: it is given that  

                                        Minimize f(X) = x1
2+x2

2+x3
2                                                      …(6.8) 

s.t.  ...(6.9)

0x- = (X)g                                                

0 x-2 = (X)g                                                

0 x-1 = (X)g                                                

0 2-x+ x= (X)g                                                

0 5-x+x2 = (X)g
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
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

 

Now define a Lagrangian function by introducing slack variable sj
2, we have 

             L(x1, x2, x3; 1, 2, 3, 4, 5; s1, s2, s3, s4, s5) = f(X)+   +
=

5

1

2

J
jjj s)X(g                    …(6.10) 

From equation (6.8), (6.9) and (6.10), we have 

L = x1
2+x2

2+x3
2+1(2x1+x2-5+s1

2)+2(x1+x3-2+s2
2)+3(1-x1+s3

2)+4(2-x2+s4
2)+5(-x3+s5

2) 

                  …(6.11) 

The Kuhn-Tucker necessary conditions for minimization of L (with gj(X)  0) are 

   .3,2,1;0 ==



i

x

L

i

 

   .5,4,3,2,1;0 == jg jj  

.5,4,3,2,1;0 = jj  

Differentiate partially Equation (6.11) and we get 
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   .5,4,3,2,1;0 = jj         …..(6.14)  

Let 3 0 and 4 0, we have  

 x1 = 1, x2 = 2, x3 = 0 and 5 =0.. 

If we take x1 = 1, x2 = 2, x3 = 0 then equation (6.13) is satisfied. 

Now from Equation (6.13), we have 

                                     2x1+x2-5 ≠ 0 

and                                 x1+x2-2 ≠ 0   

so 1 = 0 and 2 = 0. 

 From Equation (6.12), we have 

 2-3 = 0    3 = 2 

4-4 = 0    4 = 4 

2-5 = 0    2= 5 

Hence the optimum solution is x1 = 1, x2 = 2, x3 = 0, 1 = 2 = 5 = 0, 3 = 2 and 4 = 4  

and  minimize f = (1)2+(2)2+(0)2 = 5.    
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6.5 Quadratic Programming 

 

A non-linear programming problem involved objective function is quadratic and constraints are in linear 

form is known as quadratic programming. Here we shall discuss two methods to solve quadratic 

programming problems: 

1. Wolfe's modified simplex method 

2. Beale’s method 

  

6.6 Wolfe’s Modified Simplex Method 

 

To solve a quadratic programming problem using Wolfe’s modified simplex method, first we use Kuhn-

Tucker conditions to express the problem in such a form to apply the computational procedure based on 

the simplex method. The procedure to solve a quadratic programming problem by Wolfe’s modified 

simplex method as follows: 

Consider a quadratic programming problem 

 +==
= =

n

j
k

n

k,j
jkjjj xdxxc)X(fZMax

1 12

1

 

 
=

n

j
ijij bxa

1

 

.n,.....,j,m.....,i,x j 21210 ==  

 Where kjjk dd =  for all j  and k  and where 0ib . 

Step 1: If the given quadratic programming problem is in the minimization form, then first convert it into 

maximization form. 

Step 2: Now convert the inequality constraints of the given problem into equations by introducing the 

slack variables 
2

is  in the 
thi  constraint ( )mi .....2,1=  and the slack variables 

2

jms +  in the 
thi  non-negativity 

constraints ( )nj .....2,1=  

Step 3: Now construct the Lagrangian function 

( ) ( ) ( )
=

++

==

+−−







+−−=

n

j

jmjjm

n

j

iijij

m

i

i sxsbxaxfsxL
1

2

1

2

1

,,    

Where ( ) ( ) ( )nmnmn ssssxxxx ++ ===  ,.....,,,.....,,,......., 212121
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Step 4: Differentiate the ( ),, sxL  partially in respect to the components of and,sx  and equating to 

zero the first order partial derivatives. Construct the Kuhn-tucker conditions from the resulting equations. 

Step 5: Now introduce the non-negative artificial variables njA j ,.....2,1, =  in the Kuhn-tucker condition, 

we have   = +−+
= =

+

n

k

m

i
jmijikjkj axdc

1 1

0 for .n,....,j 21=   

Step 6: Construct the objective function 

  nA.....AAZMax −−−−= 21  

Step 7: Find the initial basic feasible solution to the following LPP: 

Max nA.....AAZ −−−= 21  subject to the constraints: 

jjjmij

m

i
i

n

k
kjk cAaxd −=++− +

== 11

      

iinj

n

j

ij bxxa =+ +

=


1

        

0,,, + jjmij xA          

Where misx in ,....,2,1,
2

1 ==+  and satisfying the complementary slackness conditions (restricted basis 

conditions) 

0
11

=+
=

+

=

+ i

m

j

inj

n

j

jm xx   

Step 8: Now use phase I of artificial variable techniques (two phase method) to find an optimum solution 

to the Linear Programming Problem (LPP) of step 7, which is satisfying the complementary slackness 

conditions.  

This optimum solution is an optimum solution for the given quadratic programming problem also. 

 

Examples 

 

Example.2. Use Wolfe’s modified simplex method to solve the Quadratic programming problem: 

Max 
2

221

2

121 22264 xxxxxxZ −−−+=  

s.t. ,xx 22 21 +
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.x,x 021   

Solution: The given problem is maximization problem.  

Consider 0and0 21  xx  also as the inequality constraints, convert the inequality constraints into 

equations by introducing slack variables
2

2

2

1 s,s and 
2

3s  respectively.  

The modified problem is 

Max 
2

221

2

121 22264 xxxxxxZ −−−+=   

   22
2

121 =++ sxx  

   0
2

21 =+− sx  

   0
2

32 =+− sx  

Construct the Lagrangian function  

( )32132121 ,,,,,,, sssxxLL =  

     = ( ) ( ) ( ) ( ) 02222264
2

323

2

212

2

1211

2

221

2

121 =+−−+−−−++−−−−+ sxsxsxxxxxxxx   

Differentiating partially with respect to 32132121 ,,,,,,, sssxx and equating to zero, we get  
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L
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


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On simplification, we have 

424 2121 =−++ xx  

     6242 3121 =−−+ xx
                                 …. (6.14)

 

       22
2

121 =++ sxx  

       0
2

33

2

22

2

11 =++ sss     02312

2

11 =++ xxs 
                               …(6.15)

 

       3210
2

121 ,,i,,s,x,x i =  

A solution 21,j,x j =  of equation (6.14) above, satisfying equation (6.15) shall necessarily be an optimal 

one for maximizing L.  

To obtain the solution to the above simultaneous equation (6.14) we introduce the artificial variables 1A  

and 2A  (Both non-negative) in the first two constraints of equation (6.14) and construct the new objective 

function Max 
21 AAZ −−=  

Max 21 AAZ −−=   

s.t. 424 12121 =+−++ Axx   

   6242 23121 =+−++ Axx   

  22 321 =++ xxx  

  0,, 321 xxx  

  .,,i,A,A i 321021 =  

Where we have replaced 
2

1s  by 
3x  and satisfying the complementary slackness condition  

   0= ii x   

The optimum solution to the above LPP shall now be obtained by the phase-I of artificial variable 
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technique. Thus the starting simplex table is 

cost → 
0 0 0 0 0 0 -1 -1 Minimum 

ratio 

1/ xxB  
Variable → 1x  

2x  3x  
1  

2  3  
1A  

2A  

Table 

No. 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 
7

 8

 

 

1 

-1 

-1 

0 

1A  

2A  

3x
 

4 

6 

2 

 

2 

1 

2 

4 

2 

0 

0 

1 

1 

2 

0 

-1 

0 

0 

0 

-1 

0 

1 

0 

0 

0 

1 

0 

1→ 

3 

2 

cj-Zj 6 6 0 3 -1 -1 0 0  

 

In the table 1 we see that 1x  or 
2x  are the variables with most positive entry 6 in cj-Zj row, let 1x  enter 

the basis and A1 leaves. The next simplex table is: 

cost → 
0 0 0 0 0 0 -1 Minimum 

ratio 

2x/xB  
Variable → 1x  2x  3x  

1  2  3  
2A  

Table 

No. 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 
8

 

 

2 

0 

-1 

0 

1x  

2A  

3x
 

1 

4 

1 

1 

0 

0 

1/2 

3 

 

0 

0 

1 

1/4 

3/2 

-1/4 

-1/4 

1/2 

1/4 

0 

-1 

0 

0 

1 

0 

2 

4/3 

2/3→ 

cj-Zj 0 3 0 3/2 1/2 -1 0  

 

4 

3/2 
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In the table 2 we see that 
2x  is the variable with most positive entry 3 in cj-Zj row, and hence will enter 

the basis and x3 leaves. The next simplex table is:  

cost → 
0 0 0 0 0 0 -1 Minimum 

ratio 

1/xB  
Variable → 1x  

2x  3x  
1  

2  3  
2A  

Table 

No. 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 
8

 

 

3 

0 

-1 

0 

1x  

2A  

2x
 

2/3 

2 

2/3 

1 

0 

0 

0 

0 

1 

-1/3 

-2 

2/3 

1/3 

 

-1/6 

-1/3 

0 

1/6 

0 

-1 

0 

0 

1 

0 

2 

1→ 

….. 

cj-Zj 0 0 -2 2 0 -1 0  

 

In the table 3 we observe that 1  is the variable with most positive entry 2 in cj-Zj row and hence will 

enter the basis, and A2 leaves. The next simplex table is:  

 

cost → 
0 0 0 0 0 0 Minimum 

ratio  

Variable → 1x  2x  3x  
1  2  3  

Table 

No. 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 

 

4 

0 

0 

0 

1x  

1  

1/3 

1 

5/6 

1 

0 

0 

0 

0 

1 

0 

-1 

1/2 

0 

1 

0 

-1/3 

0 

1/6 

1/6 

-1/6 

-1/6 

2 

1→ 

….. 

2 
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2x
 

cj-Zj 0 0 0 0 0 0  

 

In the above table 4, cj-Zj  0 for all j, therefore solution is optimal.  

Thus the optimal solution is 
6

5
,

3

1
21 == xx

 
and  

Max 
2

221

2

121 22264 xxxxxxZ −−−+=  

  

22

6

5
2

6

5
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1
2

3

1
2
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5
6

3

1
4 








−
















−








−








+








=  

                 .
6

25

36

50

18

10

9

2

6

30

3

4
=−−−+=   

 

Example.3. Use Wolfe’s modified simplex method to solve the Quadratic programming problem: 

Max 
2

121 232 xxxZ −+=   

s.t. ,xx 44 21 +  

,xx 221 +  

   0, 21 xx  

Solution: The given problem is a maximization problem. Consider 00 21  xandx  also as the 

inequality constraints, convert the inequality constraints into equations by introducing slack variables
2

2

2

1 s,s , 
2

3s  and 
2

4s  respectively. The modified problem is 

  Maximize 
2

121 232 xxxZ −+=        

s.t.  44
2

121 =++ sxx  

  2
2

221 =++ sxx  
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  0
2

31 =+− sx  

  0
2

42 =+− sx  

Construct the Lagrangian function 

( )4321432121 ,,,,,,,,, ssssxxLL =  

    
( ) ( ) ( ) ( ) ( )2

424

2

313

2

2212

2

1211

2

121 244232 sxsxsxxsxxxxx +−−+−−−++−−++−−+=   

Differentiating partially with respect to 
4321432121 ,,,,,,,,, ssssxx  and equating to zero, we have 

042 3211

1

=+−−−=



x

x

L
 

043 421

2

=+−−=




x

L
 

02 11

1

=−=



s

s

L
 

02 22

2

=−=



s

s

L
 

02 33

3

=−=



s

s

L
 

02 44

4

=−=



s

s

L
 

044
2

121

1

=−++=



sxx

L
 

02
2

221

2

=−++=



sxx

L
 

0
2

31

3

=+−=



sx

L
 

0
2

42

4

=+−=



sx

L
 

On simplification, we have 
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24 3211 =−++x  

34 421 =−+                                                                     ....... (6.16) 

44
2

121 =++ sxx
                                                              

2
2

221 =++ sxx  

04231

2

22

2

11 =+++  xxss
                                                            ...... (6.17)

 

 

  

A solution 21,j,x j =  of equation (6.16) above, satisfying equation (6.17) shall necessarily be an optimal 

one for maximizing L.  

To obtain the solution to the above simultaneous equation (6.16) we introduce the artificial variables 
1A  

and 
2A  (Both non-negative) in the first two constraints of equation (6.16) and construct the new objective 

function Max 
21 AAZ −−=  

Now the problem becomes 

Max 21 AAZ −−=   

s.t. 24 13211 =+−++ Ax   

  34 2421 =+−+ A  

  44 321 =++ xxx  

  2421 =++ xxx  

  ,x,x,x,x 4321 .,,,i,,A,A i 4321021 =  

Where we have replaced 
2

1s  by 
2

23 sandx  by 4x  and satisfying the complementary slackness condition 

.xii 0=
  

The optimum solution to the above LPP shall now be obtained by the phase-I of artificial variable 

technique. Thus the starting simplex table is 

 

.,,,i,,s,s,x,x i 43210
2

2

2

121 =
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In the table 1 we see that 1 is the  

 

 

 

variable with most positive entry 5 in cj-Zj row and hence will enter the basis. But
1 will not enter the 

basis because
3x is in the basis (complementary slackness conditions 031 =x ). The next most positive 

entry is 4 for 1x  column in cj-Zj row, so 1x  enter the basis and A1 leaves. The next simplex table is 2. In 

the table 2 we observe that either 21  or  can enter the basis but 
43 xandx  are still in the basis so these 

cannot enter the basis because of the complementary slackness conditions 031 =x and 042 =x . Here
2x

can enter the basis because
4  is not in the basis (complementary slackness conditions 024 =x ). 

cost → 
0 0 0 0 0 0 0 0 -1 Minimu

m ratio 

2x/xB  
Variable → 1x  2x  3x  

4x  1  2  3  
4  2A  

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 10

 

cost → 
0 0 0 0 0 0 0 0 -1 -1 Minimu

m ratio 

1/ xxB
 

Variable → 1x  
2x  3x  

4x  
1  

2  3  
4  

1A  
2A  

Table 

No 

CB Basic 

Variabl

e
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 9

 10

 

 

 

1 

 

-1 

-1 

0 

0 

1A  

2A  

3x
 

4x
 

2 

3 

4 

2 

 

0 

1 

1 

0 

0 

4 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1 

4 

0 

0 

1 

1 

0 

0 

-1 

0 

0 

0 

0 

-1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1/2→ 

…. 

4 

2 

cj-Zj 4 0 0 0 5 2 -1 -1 0 0  

4 
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2 

 

0 

-1 

0 

0 

1x  

2A  

3x
 

4x
 

1/2 

3 

7/2 

3/2 

1 

0 

0 

0 

0 

0 

 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1/4 

4 

-1/4 

-1/4 

1/4 

1 

-1/4 

-1/4 

-1/4 

0 

1/4 

1/4 

0 

-1 

0 

0 

0 

1 

0 

0 

… 

… 

7/8→ 

3/2 

cj-Zj 0 0 0 0 4 1 0 -1 0  

 

Now use entering and leaving variable rules to get the new simplex table. 

cost → 
0 0 0 0 0 0 0 0 -1 Minimu

m ratio 

1/xB  
Variable → 1x  

2x  3x  
4x  

1  
2  3  

4  
2A  

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 
5

 6

 7

 
8

 10

 

 

 

3 

 

0 

-1 

0 

0 

1x  

2A  

2x
 

4x
 

1/2 

3 

7/8 

5/8 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1/4 

-1/4 

0 

0 

0 

1 

1/4 

 

-1/16 

-3/16 

-1/4 

1 

-1/16 

-3/16 

-1/4 

0 

1/16 

3/16 

0 

-1 

0 

0 

0 

1 

0 

0 

2 

3/8→ 

…. 

…. 

cj-Zj 0 0 0 0 4 1 0 -1 0  

 

In the table 3 we see that either 21  or  can enter the basis but 4x  is still in the basis so 2 cannot enter 

the basis because of the complementary slackness condition 042 =x . Hence 1  enter the basis. Now use 

entering and leaving variable rules to get the new simplex table: 

 

4 

4 
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cost → 
0 0 0 0 0 0 0 0 Minimu

m ratio  

Variable → 1x  
2x  3x  

4x  
1  

2  3  
4  

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 

 

 

4 

 

0 

0 

0 

0 

1x  

1  

2x
 

4x
 

5/16 

3/4 

59/64 

49/64 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1/4 

-1/4 

0 

0 

0 

1 

0 

1 

0 

0 

3/16 

1/4 

-3/64 

-9/16 

-1/4 

0 

1/16 

3/16 

1/16 

-1/4 

-1/16 

-3/64 

2 

3/8 

…. 

…. 

cj-Zj 0 0 0 0 0 0 0 0  

 

In the above table 4, cj-Zj  0 for all j, therefore solution is optimal.  

Thus the optimal solution is
16

5
1 =x , 

64

59
2 =x

 
and  

Max
2

121 232 xxxZ −+=  









−








+








=

256

25
2

64

59
3

16

5
2  

19.3
256

818

256

50708160
==

−+
=  

 

Example.4 Use Wolfe’s modified simplex method to solve the Quadratic programming problem:      

Max 
2

2

2

12121 32436 xxxxxxZ −−−+=  

 s.t. ,xx 121 +
 

           432 21 + xx  
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  0, 21 xx  

Solution: The given problem is a maximization problem. Consider 00 21  xandx  also as the 

inequality constraints, convert the inequality constraints into equations by introducing slack variables
2

2

2

1 s,s , 
2

3s  and 
2

4s  respectively. The modified problem is 

Max 
2

2

2

12121 32436 xxxxxxZ −−−+=   

   1
2

121 =++ sxx  

   432
2

221 =++ sxx  

   0
2

31 =+− sx  

   0
2

42 =+− sx  

Construct the Lagrangian function  

( )4321432121 ,,,,,,,,, ssssxxLL =  

     ( ) ( ) ( ) ( )2

424

2

313

2

2212

2

1211

2

2

2

12121 432132436 sxsxsxxsxx)xxxxxx( +−−+−−−++−−++−−−−+=   

Differentiating partially with respect to 
4321432121 ,,,,,,,,, ssssxx  and equating to zero, we have          

02446 32112

1

=+−−−−=



xx

x

L
 

03643 42121

2

=+−−−−=



xx

x

L
 

02 11

1

=−=



s

s

L
  

02 22

2

=−=



s

s

L
  

02 33

3

=−=



s

s

L
  

02 44

4

=−=



s

s

L
  

01
2

121

1

=−++=



sxx

L


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0432
2

221

2

=−++=



sxx

L


 

0
2

31

3

=+−=



sx

L


 

0
2

42

4

=+−=



sx

L


 

On simplification, we have 

6244 32121 =−+++ xx  

      3364 42121 =−+++ xx                                                       ….(6.18) 

     1
2

121 =++ sxx  

     432
2

221 =++ sxx  

04231

2

22

2

11 =+++  xxss
                                                  .… (6.19)

 

43210
2

2

2

121 ,,,i,s,s,x,x i =  

A solution 21,j,x j =  to equation (6.18) above and satisfying equation (6.19) shall necessarily be an 

optimal one for maximizing L.  

To determine the solution to the above simultaneous equation (6.18) we introduce the artificial variables 

1A  and 2A  (both non-negative) in the first two constraints of equation (6.18) and construct the dummy 

objective function  

Max .AAZ 21 −−=  

Now the problem becomes 

Max 21 AAZ −−=   

s.t.   6244 132121 =+−+++ Axx   

   3364 242121 =+−+++ Axx   

  1321 =++ xxx  

  432 421 =++ xxx  

 04321 x,x,x,x  
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 .,,,i,A,A i 4321021 =  

Where we have replaced 
2

1s  by 
2

23 and sx  by 
4x  and satisfying the complementary slackness condition 

.xii 0=   

The optimum solution to the above LPP shall now be obtained by the phase-I of artificial variable 

technique.  

Thus the starting simplex table is 

 

cost → 
0 0 0 0 0 0 0 0 -1 -1 Minimum 

ratio 

1/ xxB  
Variable → 1x  

2x  3x  
4x  

1  
2  3  

4  
1A  

2A  

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 9

 10

 

 

 

1 

 

-1 

-1 

0 

0 

1A  

2A  

3x  

4x
 

6 

3 

1 

4 

4 

 

4 

 

1 

 

2 

4 

 

 

 

1 

 

3 

0 

 

0 

 

1 

 

0 

0 

 

0 

 

0 

 

1 

1 

 

1 

 

0 

 

0 

2 

 

3 

 

0 

 

0 

-1 

 

0 

 

0 

 

0 

0 

 

-1 

 

0 

 

0 

1 

 

0 

 

0 

 

0 

0 

 

1 

 

0 

 

0 

3/2 

1/2→ 

1 

4/3 

cj-Zj 8 10 0 0 2 5 -1 -1 0 0  

 

In the table 1 we see that 
2x  is the variable with most positive entry 10 in cj-Zj row and hence will enter 

the basis and A2 leaves. The next simplex table is: 

 

 

6 
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cost → 
0 0 0 0 0 0 0 0 -1 Minimu

m ratio 

 
Variable →          

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 9

 
 

 

 

2 

 

-1 

0 

0 

0 

 

 

 

 

4 

1/2 

1/2 

5/2 

4/3 

 

 

 

1/3 

 

0 

0 

 

1 

 

0 

 

0 

0 

 

0 

 

1 

 

0 

0 

 

0 

 

0 

 

1 

1/3 

 

1/6 

 

-1/6 

 

-1/2 

0 

 

½ 

 

-1/2 

 

-3/2 

-1 

 

0 

 

0 

 

0 

2/3 

 

-1/6 

 

1/6 

 

1/2 

1 

 

0 

 

0 

 

0 

3 

3/4→ 

3/2 

… 

cj-Zj 4/3 0 0 0 1/3 0 -1 2/3 0  

 

In the table 2 we see that  is the variable with most positive entry 4/3 in cj-Zj row and hence will enter 

the basis and x2 leaves. The next simplex table is: 

cost → 
0 0 0 0 0 0 0 0 -1 Minimu

m ratio 

 
Variable →          

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 9

 

1/ xxB

1x 2x
3x 4x 1 2 3 4 1A

1A

2x

3x

4x

1x

1/ xxB

1x 2x
3x 4x 1 2 3 4 1A

2/3 
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3 

 

-1 

0 

0 

0 

 

 

 

 

3 

3/4 

1/4 

5/2 

0 

 

1 

 

0 

 

0 

-2 

 

3/2 

 

-1/2 

 

0 

0 

 

0 

 

1 

 

0 

0 

 

0 

 

0 

 

1 

0 

 

1/4 

 

-1/4 

 

-1/2 

-1 

 

3/4 

 

-3/4 

 

-3/2 

-1 

 

0 

 

0 

 

0 

1 

 

-1/4 

 

 

 

1/2 

1 

 

0 

 

0 

 

0 

3 

…. 

4/3→ 

5 

cj-Zj 0 -2 0 0 0 -1 -1 1 0  

 

The next simplex table is:  

cost → 
0 0 0 0 0 0 0 0 -1 Minimum 

ratio 

 
Variable →          

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 9

 

 

 

4 

 

-1 

0 

0 

0 

 

 

 

 

6 

1 

1 

2 

4 

 

1 

 

0 

 

0 

4 

 

1 

 

-2 

 

1 

0 

 

1 

 

4 

 

-2 

0 

 

0 

 

0 

 

1 

 

 

0 

 

-1 

 

0 

2 

 

0 

 

-3 

 

0 

-1 

 

0 

 

0 

 

0 

0 

 

0 

 

1 

 

0 

1 

 

0 

 

0 

 

0 

6→ 

 

…. 

 

… 

 

…. 

cj-Zj 0 4 0 0 1 2 -1 0 0  

1A

1x

3x

4x

1/ xxB

1x 2x
3x 4x 1 2 3 4 1A

1A

1x

4

4x

1/4 

1 
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In the table 3 we see that  is the variable with most positive entry 1 in cj-Zj row and hence will enter 

the basis and x3 leaves. In the table 4 we see that either x2 or 1 can enter the basis but 4  is still in the 

basis so 2x cannot enter the basis because of the complementary slackness condition 042 =x .  

Hence 
1  enter the basis and A1 leaves.  

Now use entering and leaving variable rules to get the new simplex table: 

 

cost → 
0 0 0 0 0 0 0 0 Minimum 

ratio 

 
Variable →         

Table 

No 

CB Basic 

Variable
 

XB 1

 2

 3

 
4

 5

 6

 7

 
8

 

 

 

5 

 

0 

0 

0 

0 

 

 

 

 

6 

1 

7 

2 

4 

 

1 

 

4 

 

0 

4 

 

1 

 

2 

 

1 

0 

 

1 

 

4 

 

-2 

0 

 

0 

 

0 

 

1 

1 

 

0 

 

0 

 

0 

2 

 

0 

 

-1 

 

0 

-1 

 

0 

 

-1 

 

0 

0 

 

0 

 

1 

 

0 

6→ 

 

…. 

 

… 

 

…. 

cj-Zj 0 0 0 0 0 0 0 0  

 

In the above table 5, cj-Zj  0 for all j, therefore solution is optimal.  

Thus the optimal solution is 01 21 == x,x

 
and   

Minimum 
2

2

2

12121 32436 xxxxxxZ −−−+= 02006 −−−+= .4=  

4

1/ xxB

1x 2x
3x 4x 1 2 3 4

1

1x

4

4x
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6.7 Beale’s Method 

 

Consider a quadratic programming problem 

Max ( ) QXXXcXf TT

2

1
+=   

s.t.   ;Xandbor,,AX 0=  

,RXwhere n A  is ,nm b  is 1m , c  is 1n , and Q is a nn  symmetric matrix. 

The procedure to solve a quadratic programming problem by Beale’s method as follows: 

Step 1: If the given quadratic programming problem is in the minimization form, then convert it into 

maximization form. 

Step 2: Put the given QPP in standard form using slack and surplus variables.  

Step 3: Choose arbitrarily any m  variables as the basic variables, so that the remaining mn − variables 

become non-basic. The basic and non-basic variables are  

( )
mBBBB X,X,XX −−−−=

21
 and ( )

mnNBNBNBNB XX,XX
−

−−−−=
21

 respectively.  

Step 4: Write each basic variable 
iBx  in terms of non-basic variables s'X

iNB  )'( anyifsuand i
 using the 

given (as well as additional, if any) constraints. 

Step 5: Write the objective function ( )Xf  in terms of non-basic s'X
iNB  )'( anyifsuand i

. 

Step 6: Evaluate the partial derivatives of ( )Xf  formulated above with respect to the non-basic variables 

at the point ( ).uandX NB 00 == Here three cases arise: 

Case-1: If 
( )

0

0
0

=


















=
=

u
NBXkNBx

Xf
   for each mn,,,k −= 21  

and  
( )

0

0
0

=












=
=

u
NBXiu

Xf
   for each i  

then the current basic solution is optimal. Go to step 9. 

Case-2: If 
( )

0

0
0




















=
=

u
NBXkNBx

Xf
   for at least one k 
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Choose the most positive one. The corresponding non-basic variables will enter the basis. 

Case-3:  If 
( )

0

0
0

=


















=
=

u
NBXkNBx

Xf
   for each mn,,,k −= 21  

and 

( )
0

0
0
















=
=

u

X
i kNBu

Xf
  for sum ri =  

then introduce a new non-basic variables ju  defined by 











=

ru

f
u

2

1
 and treat 

ru  as a basic variable (to 

be ignored later) and go to step 4. 

Step 7: Consider 
kNB xX

i
=  be the entering variable identified in step 6 (case-2). Find the minimum of the 

ratios 




















kk

ko

hk

ho ,min

 

for all basic variables 
hx  where 

ho is the constant term and 
hk is the coefficient 

of 
kx  in the expression of basic variables 

hx  when expressed in terms of the non-basic ones, and 
ko is the 

constant term and 
k is the coefficient of 

kx  in .
x

f

k


  

(i) If the minimum ratio occurs for some
ho

ho




 the corresponding basic variables, 

hx  will leave the basis. 

(ii) If the minimum ratio occurs for some 
kk

ko




the exit criterion corresponds to a non-basic variables. In 

this case introduce an additional non-basic variables called a free variable defined by 

  
k

i
x

f
u




=

2

1
   (

iu  is unrestricted) 

Which relation becomes an additional constraint equation. 

Step 8: Now go to step 4 and repeat the procedure until an optimal basic solution is reached. 

Step 9: Find the optimal values of 
BX  and ( )Xf  by setting 0=NBX  in their expressions obtained in 

steps 4 and 5. 

 

Examples 

 

Example.5. Use Beale’s method to solve the following NLPP 
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Max 
2

121 32 xxxZ −+=  

         s.t. 42 21 + xx  

             .x,xand 021   

Solution: The given QPP is  

Max 
2

121 32 xxxZ −+=        

         s.t. 42 21 + xx  

              .x,xand 021   

Put the given QPP in standard form using slack variable
3x , we get  

Max 
2

121 32 xxxZ −+=        

         s.t. 42 321 =++ xxx  

              .x,x,xand 0321   

Now we have 
3x  as basis variable and 

21, xx  as non-basis variable i.e., 

( ) ( )213 ,, xxXxX NBB ==  

Then we have  

213 24 xxx −−=  

 and ( ) 2

121 32 xxxXf −+=
 

Differentiate partially f with respect to x1 and x2 both sides, we get   

 ( ) 222
0,1

01
21

=−=











=

=

xx

X

x
x

f

NB

 

and

 

( ) 33 0,

02
21

==











=

=

xx

X NB

x

f
 

Here the most positive x2 so 2x  enter the basis. 

2
0

3

2

4

22

20

32

3 =












−
=




















,min,min o  and 

3x  leave the basis. 

PGMM-102/133



 

Now ( ) ( )312 x,xX,xX NBB ==  then we have 

      
( ) 31312

2

1

2

1
24

2

1
xxxxx −−=−−=

 

and

 

2

1311
2

1

2

1
232 xxxxf −








−−+=  

2

1311
2

3

2

3
62 xxxx −−−+=  

            
3

2

11
2

3

2

1
6 xxx −−+=  

Differentiate partially above f with respect to x1 and x3 both sides, we get  

2

1
2

2

1

0,

1

01 31

=







−=













== xxX

x
x

f

NB

 

and

  
2

3

2

3

03

−=







−=















=NBX
x

f
 

Here 1x  enter the basis. 

4

1

2

21

21

2

11

10

21

20 =












−−
=



















 /
,

/
min,min which corresponds to 

11

10




 

so 2x  not leave the basis.  

Now we introduce a new non-basis variable 1u  such that 

11

1

1
4

1
2

2

1

2

1

2

1
xx

x

f
u −=








−=




=  

( ) ( )3121 ,,, xuXxxX NBB ==  

11
4

1
ux −=  

31312
2

1

4

1

2

1
2

2

1

2

1
2 xuxxx −








−−=−−=  

     
31

2

1

2

1

8

1
2 xu −+−=  

31
2

1

2

1

8

15
xu −+=  
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and

 
311

2

3

2

1
6 xxxf −








−+=  

311
2

3

4

1

2

1

4

1
6 xuu −








+−








−+=  

          311
2

3

4

1

4

1
6 xuu −








+








−+=    

3

2

1
2

3

16

1
6 xu −−+=        

          
3

2

1
2

3

16

97
xu −−=  

Differentiate partially above f with respect to x3 and u1 both sides, we get  

2

3

2

3

0,03 31

−=







−=















== xxX NB

x

f
 

and

  

( ) 02
13 ,1

01

=−=












=

ux

X

u
u

f

NB

 

This gives the optimal solution.  

Hence the optimal solution is 
8

15

4

1
21 == x,x

 
and Max .Z

16

97
=

 

 

Example.6 Use Beale’s method to solve the following NLPP 

 Min 
2

221

2

11 22266 xxxxxZ +−+−=  

  s.t. 221 + xx  

        .x,xand 021   

Solution: The given QPP is  

Min 
2

221

2

11 22266 xxxxxZ +−+−=  

  s.t. 221 + xx  

        .x,xand 021   
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Convert the minimization objective function into a maximization to get 

 ( ) 2

221

2

11 22266 xxxxxXfZMax −+−+−==−  

Put the given QPP in standard form using slack variable
3x , we get  

Min 
2

221

2

11 22266 xxxxxZ +−+−=  

  s.t. 2321 =++ xxx  

        .x,xand 021   

Choosing arbitrary 
3x  as the basic variable, we have 

 ( ) ( )213 , xxXandxX NBB ==  

Expressing 
BX  and ( )xf  in terms of 

NBX , we have 

 
213 2 xxx −−=  

and  =f
2

221

2

11 22266 xxxxx −+−+−  

Differentiate partially f with respect to x1 and x2 both sides, we get   

 ( ) 6246
0
0

21

01
2

1 =+−=











=
=

=

x
x

X

xx
x

f

NB

 

and ( ) 042
0
0

21

02
2

1 =+−=











=
=

=

x
x

X

xx
x

f

NB

 

Here the most positive 1x  so 1x  enter the basis. 

2

3

4

6

1

2

11

10

31

30 =












−−
=




















,min,min  which corresponds to 

11

10




 so x3 not leave the basis. 

Now we introduce a new non-basic free variables 1u , defined by 

 21

1

1 23
2

1
xx

x

f
u +−=




=  

Now ( ) ( )1213 ,,, uxXxxX NBB ==  

 
211

2

1

2

1

2

3
xux +−=  
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 221213
2

1

2

1

2

3
22 xxuxxx −








+−−=−−=

21
2

3

2

1

2

1
xu −+=  

and       =f
2

221

2

11 22266 xxxxx −+−+−  

      ( ) 2

2211 2326 xxxx −+−+−=  

      
2

222121 2
2

1

2

1

2

3
3

2

1

2

1

2

3
26 xxxuxu −








+−+−








+−+−=  

      ( ) 2

22121 2
2

1

2

1

2

3
36 xxuxu −








+++−+−=  

      ( )( ) 2

21212 233
2

1
6 xuxux −++−++−=  

      ( )  2

2

2

2 23
2

1
6 xx −++−=  

       2

2

2

122 269
2

1
6 xuxx −−−++−=  

     
2

2

2

12

2

2 2
22

6

22

9
6 x

uxx
−−−++−=  

     
2

22

2

1

2

3
3

22

3
xx

u
−−−

−
=  

Differentiate partially above f with respect to x2 and u1 both sides, we get  

 ( ) 333
0
0

2

02
2

1 =−=











=
=

=

u
x

X

x
x

f

NB

 

and ( ) 0
0
0

1

01
1

2 =−=











=
=

=

u
x

X

u
u

f

NB

 

Here 2x  enter the basis. 

3

1

3

3

21

23

23

21

22

20

12

10

32

30 =












−−
=
























,

/

/
,

/

/
min,,min   

This implies 
3x  will leave the basis and new variables are 

PGMM-102/137



 

 ( ) ( )3121 ,,, xuXxxX NBB ==  

 
312

3

2

3

1

3

1
xux −+=  

 
211

2

1

2

1

2

3
xux +−= 








−++−= 311

3

2

3

1

3

1

2

1

2

1

2

3
xuu

311
3

1

6

1

6

1

2

1

2

3
xuu −++−=  

       
31

3

1

3

1

3

5
xu +−=  

and  ( )22

2

1 2
2

3

22

3
xx

u
f −+−−=  

      







+−−








−++−−= 3131

2

1

3

2

3

1

3

1
2

3

2

3

1

3

1

2

3

22

3
xuxu

u
  

      ( )( )3131

2

1 2521
6

1

22

3
xuxu

u
+−−++−−=  

     ( )2

313313

2

1131

2

1 42102525
6

1

22

3
xuxxuxuuxu

u
−+−+−++−+−−=  

    
2

313

2

1
3

1

2

1

6

4

6

4

66

8

6

4

6

5

22

3
xux

u
x

uu
−+−−++−−=  

    
13

2

331

2

1
6

4

6

4

3

4

6

4

6

4

6

4
uxxxuu +−−+−−=  

    
2

3133

2

11
3

2

3

2

3

4

3

2

3

2

3

2
xuxxuu −+−−+−=  

Differentiate partially above f with respect to x3 and u1 both sides, we get  

 
3

4

3

4

3

2

3

4

0
0

31

03
1

3

−
=








−−−=















=
=

= u
x

X

xu
x

f

NB

 

and 
3

2

3

2

3

4

3

2

0
0

31

01
1

3

=







+−=













=
=

= u
x

X

xu
u

f

NB

 

Since 0
1






u

f
 so this solution can be further improved.  

Now 
3x  does not enter the basis. Thus we introduce another non basic free variable 2u  defined by  
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  31

1

2
3

1

3

1

3

1

2

1
xu

u

f
u +−=




=  

 ( ) ( )23121 ,,,, uxXuxxX NBB ==  

321
2

1

2

3

2

1
xuu +−=  

312
3

2

3

1

3

1
xux −+= 332

3

2

2

1

2

3

2

1

3

1

3

1
xxu −








+−+=  

     
32

2

1

2

1

2

1
xu −−=  

311
3

1

3

1

3

5
xux −−= 332

3

1

2

1

2

3

2

1

3

1

3

5
xxu −








+−−=

332
3

1

6

1

2

1

6

1

3

5
xxu −−+−=  

    
32

2

1

2

1

2

3
xu −+=  

2

3

2

11331
3

2

3

2

3

2

3

4

3

2

3

2
xuuxxuf −−+−+−=  

    ( ) 2

33131
3

2

3

4
1

3

2

3

2
xxuxu −−−++−=  

   
2

3332332
3

2

3

4

2

1

2

3

2

1
1

2

1

2

3

2

1

3

2

3

2
xxxuxxu −−








−+−+








+−+−=  

  ( )( ) 2

3332332
3

2

3

4
312231

6

1

3

2
xxxuxxu −−−+−++−+−=  

  ( )( ) 2

332332
3

2

3

4
3131

6

1

3

2
xxuxxu −−+++−+−=  

   ( )  2

33

2

2

2

3
3

2

3

4
91

6

1

3

2
xxux −−−++−=  

     2

33

2

23

2

3
3

2

3

4
921

6

1

3

2
xxuxx −−−+++−=  

  
2

33

2

23

2

3

3

2

3

4

2

3

3

1

66

1

3

2
xxux

x
−−−+++−=  

2

23

2

3
2

3

3

5

2

1

2

1
uxxf −−−−=  
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Differentiate partially above f with respect to x3 and u2 both sides, we get  

              
3

5

3

5
3

03

−=







−−=















=

x
x

f

NBX

 

and 0
2

3
2

02

=







−=













=

u
u

f

NBX

 

This give the optimal solution. Ignoring the free variable
1u , the optimal solution is 

  
2

1
,

2

3
21 == xx

  

and              .fZ
2

1

2

1
=








−−=−=  

 

7.7 Summary 

 

Quadratic programming problems can be solved using two important methods: Wolfe's modified simplex 

method and Beale's method. Quadratic programming itself is a type of math problem where you try to find 

the best values for certain things (called decision variables) while following specific rules (constraints). 

This is often used in finance, engineering, operations research, and machine learning. People apply it to 

various tasks, like figuring out the best investment portfolio or designing structures. Wolfe's method and 

Beale's method are two approaches to solve these kinds of problems effectively. 

 

7.8 Terminal Questions 

 

Q.1 Write a short note on quadratic programming problem. 

Q.2. State Kuhn-Tucker Conditions. Use them to solve 

                                  Min f(x, y, z) = x2+y2+z2+20x+10y 

s.t.                                     x  40, 

                                                 x+y  80, 

                                             x+y+z  120. 

Q.3. Use Wolfe’s modified simplex method to solve the Quadratic programming problem: 

Max
2

1212 xxxZ −+=   
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s.t. ,xx 632 21 +
 

42 21 + xx  

 and 0, 21 xx  

Q.4. Use Wolfe’s modified simplex method to solve the Quadratic programming problem: 

Min 
121

2

2

2

1 622 xxxxxf −−+=  

s.t. 162 21 − xx   

0,and 21 xx  

Q.5. Use Beale’s method to solve the Quadratic programming problem: 

Max 
2

2

2

121 364 xxxxf −−+=  

s.t.       42 21 + xx   

.0,and 21 xx  

Q.6. Use Beale’s method to solve the Quadratic programming problem: 

( ) ( ) ( )2

3

2

2

2

113
2

1
2

4

1
xxxxxXfMax ++−−=  

s.t. 1321 =+− xxx  

        .0,,and 321 xxx  

 

  Answer 

 

2. At (40, 40, 40), f = 6000. 

3.  x1=2/3, x2=14/9, max Z=22/9. 

4.   x1=0, x2=1, min f =2. 

5.  x1=2, x2=1, max f =7. 

6.  x1=1/8, x2=0, x3=7/8  max f =1/64. 
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UNIT-7: Separable Programming Problem 

 

Structure 

7.1  Introduction 

7.2  Objectives 

7.3   Separable Programming 

 7.4  Procedure for solving separable programming problem 

7.5   Summary 

7.6  Terminal Questions 

 

7.1 Introduction 

 

In the present unit we shall discuss about the Separable programming problems and with its applications 

in detailed. Separable programming is a type of mathematical optimization technique that exploits the 

separability structure within the objective function. In separable programming, the objective function can 

be expressed as the sum of individual functions, each dependent on a subset of the decision variables. This 

separability property simplifies the optimization process, as the overall problem is decomposed into 

smaller, more manageable sub problems. 

 

7.2  Objectives 

 

After reading this unit the learner should be able to understand about: 

▪ the Separable programming problem 

▪ procedure for solving separable programming problem 

 

7.3 Separable Programming 

 

Separable programming is a mathematical programming in which the functions or terms involved in 

objection function and constraints are separable functions. A function of n-variables ( )nxxxf ,......, 21
 is 
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said to be separable if it can be written as the sum n-functions ( ) ( ) ( )nn xfxfxf ,........., 2211
  each is a 

function of single variable .n,......,i,xi 1=   

Thus ( )nxxf ,......,1
 is called a separable function if  

     ( ) ( ) ( ) ( ) ( )1.7............,......, 22111 nnn xfxfxfxxf +++=  

Thus the general form of a separable programming is 

( ) ( ) ( ) ( ) ( )nn xf.........xfxfXfZminorMax +++== 2211   

s.t.           ( ) ( ) ( ) 1

1

22
1

11
1 bxg......xgxg nn =+++  

      ( ) ( ) ( ) 2

2

22
2

11
2 bxg......xgxg nn =+++  

      ( ) ( ) ( ) mnn
mmm bxg......xgxg =+++ 2211  

0,.....,, 21 nxxx  

To use the simplex method is solving a separable programming, first the functions involved in the problem 

are approximated by piecewise linear functions. For this let us consider a function ( )xf  which is 

continuous in the interval  ., 41 aa and ( )xf


 be the function shown by dotted lines in the Fig (7.1). 

 

    

 

      ( )xf  ( )xf


  

   

  

 

 1a  x             2a        x             
3a                    x  4a          axisx −   

Fig. 7.1 showing the approximation of the function f(x) by continuous line segments ( )xf


 

 

( )xf


 in  21,aa  is a straight line segment whose equation is 

y-axis 
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( ) ( )
( ) ( )

( ) 211

12

12
1 axa,ax

aa

afaf
afxf −

−

−
=−



 

or      ( ) ( )
( ) ( )

( ) ( )2.7, 211

12

12

1 axaax
aa

afaf
afxf −

−

−
+=



 

As      ( ) ,1,, 211121 aaxaax  −+=              (for same 
1  such that 10 1   ) 

or          ( )3.70,,1, 21212211 =++=  aax  

or          ( ) ( )4.7.....1221 aaax −=−   

Now using equation (7.4) from (7.2), we get 

      ( ) ( ) ( ) ( )5.7....2211 afafxf  +=


 

Similarly for interval  ,a,a 32  we have 

          
( ) ( ) ( )   ( )6.7,, 323322 aaxafafxf +=



           

or      ( )7.7....3322 aax  +=  

      
( ) ( ) ( ) ( )8.7....4433 afafxf  +=



 

     
 ( ) ( )9.7....,, 434433 aaxaax +=   

Combining Equation (7.3) and Equations (7.5) to (7.8), we have 

( ) ( ) ( ) ( ) ( )44332211 afafafafxf  +++=


                                                                  …. (7.10)
 

432101432144332211 ,,,i,s'and,aaaax i ==++++++=   

With restrictions (i) at most two 0' si  with rest zero 
…. (7.11)

 

                  and (ii) only adjacent s'i are allowed to be positive.    

Conditions in (7.11) are called restricted basis conditions. 

In above derivation ( )xf


 is the piecewise linear approximation of a non-linear function ( )xf  in the interval 

 41 a,a  and si '  are called the weights and sai '  are called breaking points of the 
thi  interval. Thus to 

solve an NLPP, we shall denote the breaking points of the 
thi  variable 

ix  be 
21

, ii aa …… and the weight 
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associated with thK  breaking points of the 
thi  variable by

K

i . 

Note.1. Separable programming gives the approximate solution of the problem 

Note.2. Greater the number of breaking points, better will be the approximation. 

 

7.4 Procedure for Solving Separable Programming Problem  

 

In solving a separable programming problem we use the following steps: 

Step-1. Identify the terms which are not linear in the objective function and the constraints. 

Step-2. Find the range of the variable 
ix  in which terms are not linear and divide it into integer breaking 

points (for simplified calculation) sa
K

i '  (kth breaking points) and associate weights s'
K

i  with these points. 

Step-3. Prepare a table of calculated values of the functions at the breaking points. 

Step-4. Write the given problem into the form an approximated LPP. 

Step-5. Solve by simplex method the approximated LPP using restricted basis condition till optimality. 

 

Examples 

 

Example.1. Using separable programming to solve the following NLPP 

               
4

21 xxZ.Max +=  

         s.t.  ( )12.7...923
2

21 + xx   

             and         0, 21 xx  

Solution: Here ( ) ( ) ,xxf,xxf
4

222111 ==  ( ) ( ) 2

22

2

211

1

1 23 xxg,xxg ==  

Here ( )22 xf  and ( )2

2

2 xg  are not linear. 

From constraint (7.12), we have 

                                          .32 x  

Let us linearize ( ) ( )  .3,0in and 2

2

222 xgxf  
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     02 =x         1                                       2                                         3 

k K
a2

 ( )K
af 22

 ( )K
ag 2

2

2  

1 0 0 0 

2 1 1 2 

3 2 16 8 

4 3 81 18 

 

Thus we have 

( ) ( ) ( ) ( ) ( ) ( )4

2

4

2

3

2

3

2

2

22

2

2

1

22

1

2222 afafafafxfxf  +++=


 

                               
4

2

3

2

2

2 8116  ++=  

and ( ) ( ) 4

2

3

2

2

22

1

22

1

2 1882  ++=


xgxg  

Thus the given problem is approximated to LPP 

Max ( ) ( ) 4

2

3

2

2

212211 8116  ++++= xxfxfZ  

918823.
4

2

3

2

2

21 +++ xts  

4,3,2,1,0,0,1 21

4

2

3

2

2

2

1

2 ==+++ Kx
K

  

and at most two consecutive 02 
K

  (restricted basis conditions). 

The standard form of above LPP is  

4

2

3

2

2

21 8116  +++= xZMax  

918823. 3

4

2

3

2

2

21 =++++ xxts   
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1
4

2

3

2

2

2

1

2 =+++   

0,4,3,2,1,0,0 321 = xKx
K

 is slack variable. 

Now 1

2  can enter, then 3

2   leaves, but 1

2  and 4

2  are not consecutive so 1

2  cannot enter. Next 

promising candidate is 2

2   to enter.  

But if 2

2  enters, then again 3

2  leaves which is not possible as 2

2  and 4

2  are not consecutive.  

So table 3 gives the approximate optimal solution of the problem and is given by 

..ZMaxand, 522
10

1

10

9 4

2

3

2 ===   

or 5.22
10

255

10

81

10

144
08116,0

4

2

3

2

2

2

4

21 ==++=++= xx  

Cost →      1      1           16            81           0            0 Minimum 

Ratio 

j
i

Bi
X



 Variable →    x1           
2

2         
3

2        
4

2           x3                
1

2  

Table 

No. 

CB Basic 

Variable 

XB   1
          

2
           

3           5                 4                6 

 

1 

 

 

0 

0 

x3 


1

2  

9 

1 

    3  2            8           18             1            0 

    0  1                        1              0           1 

8

9

   

  
→= 1

1

1  

cj-Zj   1    1            16          81           0            0  

 

 

2 

 

0 

0 

x3 

3

2  

1 

1 

  3          -6            0                            1            -8 

  0 1       1              1             0            1 

→
10

1

   

  

1
1

1
=  

cj-Zj   1  -15            0          65 0          -16  

10 

1 
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3 

0 

0 

4

2
3

2  

1/10 

9/10 

  3/10 -6/10       0           1          1/10        -8/10 

 -3/10 16/10      1           0         -1/10        18/10 

 

cj-Zj -18.5        24           0           0        -65/10        36  

 

Note: If a variable in any separable programming is non-linear even at one place in objective function or 

constraint(s), then it has also to be linearized at a place where it is linear. 

 

Example.2 Using separable programming to solve the following NLPP 

 
4

21 xxZMax +=  

 0,,923. 21

2

2

2

1 + xxxxts  

Solution: Here  

     ( ) ( ) ,xxfxxf
4

222111 ==
 

( ) ( ) 2

22

1

211

1

1 2,3 xxgxxg ==
            …. (7.13) 

From the constraint ,xx 923
2

2

2

1 +
 we have .xandx 32 21   

Let 32,1,0,2,1,0
4

2

3

2

2

2

1

2

3

1

2

1

1

1 ======= aandaaaandaaa  be the breaking points for 

variables 
21 xandx  respectively. 

We calculate the values of sgandsf ii ''  as per the following tables 

 

 

 

 

 

 

 

Table-7.1 

K K
a1

 ( )K
af 11

 ( )K
ag 1

1

1
 

1 0 0 0 

2 1 1 3 

3 2 2 12 
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Using calculated values in table 7.1 & 7.2 from Equation (7.13), we have 

( ) 3

1

2

1

3

1

2

1

1

111 2210  +=++xf  

( ) 4

2

3

2

2

222 8116  ++=xf  

( ) 3

1

2

11

1

1 123  +=xg  

( ) 4

2

3

2

2

22

1

2 1882  ++=xg  

                  

 

 

 

 

             

 

      

Table-7.2 

Thus the given problem approximated in the form of linear programming problem is 

4

3

3

2

2

2

3

1

2

1 81162  ++++=ZMax   

91882123
4

2

3

2

2

2

3

1

2

1 ++++ t.s  

1
3

1

2

1

1

1 =++   

1
4

2

3

2

2

2

1

2 =+++   

and the restricted basis conditions all 4321210 ,,,j;,is'
j

i ==  they should be consecutive. The 

standard form is  

4

3

3

2

2

2

3

1

2

1 81162  ++++=ZMax   

91882123.
4

2

3

2

2

2

3

1

2

1 =++++ ts  

1
3

1

2

1

1

1 =++   

1
4

2

3

2

2

2

1

2 =+++   

K K
a2

 ( )K
af 22

 ( )K
ag 2

1

2
 

1 0 0 0 

2 1 1 2 

3 2 16 8 

4 3 81 18 
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Almost two 0'0' 2  sands
jj

i   and they should be consecutive. 

Cost → 1 2         1         16        81       0         0       0 Minimum 

Ratio 

j
i

Bi
X



 Variable → 1
2     1

3      2
2      2

3      2
4      

3x      1
1    2

1  

Table 

No. 

CB Basic 

Variable 

XB  1
       

2
        

3       4       5       6          7        8 

 

 

1 

 

 

0 

0 

0 

x3 

1
1  

 2
1  

9 

1 

1 

3       12         2        8         18        1        0        0 

1       1          0         0          0         0        1       0 

0       0          1                    1         0        0        1 

  

     
8

9

 

… 

→= 1
1

1  

cj-Zj 1        2         1         16       81       0       0        0  

 

 

2 

0 

0 

16 

x3 

1
1  

2
3  

1 

1 

1 

3        12       -6         0                    1        0        -8 

1        1        0         0          0          0        1         0 

0        0        1         1          1          0        0         1 

→
10

1  

-----

   
111 =/  

cj-Zj 1       2        -15         0         65      0        0     -16  

 

 

3 

81 

0 

16 

2
4  

1
1  

2
3  

1/10 

1 

9/10 

 3/10   12/10   -6/10     0      1     1/10     0     -8/10 

1          1           0        0        0        0       1         0 

-3/10   -12/10   16/10    1      0    -1/10    0   18/10 

 

cj-Zj  -37/2     -76      24      0        0     -13/2     0       36  

 

In table 1, 
4

2 is the candidate to enter the basis but it cannot enter because of restriction basis conditions.  

1 

 10 
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Next promising candidate to enter the basis is 3

2 , when 3

2  enters the basis 1

2  leaves. In table 2, 4

2  

enter and 
3x  leaves. 

In table 3, 1

2  and 2

2 are the candidates to enter but they cannot enter as in both the cases restriction basis 

conditions are not satisfied. 

Hence the approximate optimal solution is 

 
10

1
,

10

9
,1

4

2

3

2

1

1 === 
 
. 

0210
3

1

2

1

1

11 =++= x  

1.2
10

318

10

1
3

10

9
232.10

4

2

3

2

2

2

1

22 =
+

=+=+++= x
 

i.e., .
2

45
axand1.2,0 21 === ZMxx  

 

7.4 Summary 

 

Separable programming is a mathematical programming in which the functions or terms involved is 

objection function and constraints are separable functions. Separable programming is particularly 

beneficial in certain applications, such as machine learning, where the optimization of complex models 

involves managing numerous variables and functions. By exploiting the separability of the objective 

function, optimization algorithms can efficiently navigate the solution space. 

 

7.5 Terminal Questions 

 

Q.1. Use Separable programming to solve the Quadratic programming problem: 

( ) 21 23 xxXfMax +=  

s.t. 164
2

2

2

1 + xx  

      1 2and , 0.x x   

Q.2. Use Separable programming to solve the Quadratic programming problem: 

( ) ( ) ( )2

2

2

1 73216 −−−−= xxXfMax  
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s.t. 162

2

1 + xx  

    1 2and , 0.x x   

 

Answer 

1.  x1 = 1, x2 = 24/7, max f = 69/7. 

2.   x1 = 3, x2 = 7, max f =16. 
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Block-3 

Dynamic Programming Problems 

Dynamic programming is a method for efficiently solving a broad range of search and optimization 

problems that exhibit the property of overlapping subproblems and optimal substructure. In dynamic 

programming, the key idea is to break down a complex problem into simpler, overlapping subproblems 

and solve each subproblem only once, storing the solutions to subproblems in a table to avoid redundant 

computations. One classic example of a dynamic programming problem is the Fibonacci sequence 

calculation. The recursive approach to calculating Fibonacci numbers has exponential time complexity 

due to redundant computations. However, dynamic programming allows us to store the results of 

previously solved subproblems and reuse them to compute the solution for larger subproblems. 

Dynamic programming is applicable to various problems beyond Fibonacci, including shortest path 

problems, sequence alignment, and many optimization problems. It provides an efficient way to solve 

problems by breaking them down into smaller, solvable subproblems and storing the results for reuse. 

Bellman's Principle of Optimality is a key concept in dynamic programming, providing a foundation for 

solving complex problems by iteratively breaking them down into simpler subproblems. This principle is 

widely used in various fields, including operations research, control theory, and artificial intelligence, 

where dynamic programming techniques are applied to find optimal solutions to problems with 

overlapping subproblems and optimal substructure. 

In the eighth unit , we shall discussed about the dynamic programming, Bellman’s principle of optimality, 

dynamic programming solution procedure using forward and backward techniques. Solution of linear 

programming problem using dynamic programming and applications of dynamic programming problem 

are also discussed in details in unit ninth.  

PGMM-102/154



 

UNIT-8: Introduction to Dynamic Programming 

 

Structure 

8.1 Introduction 

8.2 Objectives 

8.3  Dynamic Programming 

8.4 Bellman’s Principle of Optimality 

8.5 Dynamic Programming Algorithm for solving Shortest Route Problem  

8.6  Dynamic Programming Using Calculus Method 

8.7  Summary 

8.8  Terminal Questions 

 

8.1 Introduction 

 

In this chapter we shall be considering the problems which will be solved by breaking the problem into 

different parts called stages.  Assuming that it is possible to split the problem into different stages and the 

problem of each stage is solvable easily. For this we shall consider problems in the form of various models. 

Using Bellman’s principle of optimality we have obtained the solution of these models. As applications 

of dynamic programming in solving travelling salesman problem, have been discussed in details. 

The term "programming" in dynamic programming doesn't refer to computer programming but is used in 

the mathematical sense, indicating a plan or strategy. Dynamic programming is a problem-solving 

technique used to tackle complex problems by breaking them down into simpler subproblems. The key 

idea is to solve each subproblem only once and store the solutions, avoiding redundant computations.  

The technique is particularly effective for optimization problems, where the goal is to find the best solution 

among a set of feasible solutions. Dynamic programming is often applied to problems in which the same 

subproblems are solved multiple times, and the solutions to these subproblems can be reused to solve the 

overall problem more efficiently. 

8.2   Objectives 

 

After reading this unit the learner should be able to understand about the: 
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• Dynamic programming 

• Bellman’s principle of optimality 

• dynamic programming solution procedure using forward and backward techniques 

• shortest route problem using dynamic programming 

 

8.3   Dynamic Programming 

There arise many occasions in business and industry where many decisions are to be taken to tackle a 

problem. It is not possible to take all these decisions simultaneously but are to be taken one by one at 

different stages. The problems where such situations of taking decision at different stages arise are called 

multistage decision problems. A multistage decision problem can be solved by a mathematical technique 

called “Dynamic Programming” based on the principle developed by Richard Bellman in early 1950s 

called Bellman’s principle of optimality.  

When we solve a problem by dynamic programming the following terms will be used very frequently. 

Stage 

In dynamic programming, the problem is divided into various sub problems. Each sub problem is known 

as a stage. At each stage various decision alternates are available and out of these the optimum decision 

is selected. 

State 

At each stage, again a number of choices are available, known as states. For each such choice alternatives 

are there, known as state variables. By analyzing the effect of these state variables the optimum decision 

is taken for its use in the next stage. 

Optimal Decision Rule 

This rule specifies the decision to be made as a function of state variable and the stage number. This is 

also a policy that transforms the state at a given stage into a state associated with the next stage. 

Optimal Policy 

The rule that optimizes the value of the objective function at a particular stage is known as optimal policy.   

 

8.4  Bellman’s Principle of Optimality 

 

Bellman's Principle of Optimality is a fundamental concept in dynamic programming, named after 

mathematician and computer scientist Richard Bellman. The principle states that an optimal policy has 

the property that whatever the initial state and initial decision are, the remaining decisions must constitute 
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an optimal policy with regard to the state resulting from the first decision.  In simpler terms, the principle 

asserts that an optimal solution to a problem can be constructed by breaking it down into smaller 

subproblems, and the optimal solution to each subproblem contributes to the overall optimal solution.  

“Whatever the initial state and the initial decisions are the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision”. As seen in the light of dynamic 

programming, a multi-stage process is one in which a number of single-stage processes considered as 

function of single variable are connected so that the optimum solution of one stage is used in the 

succeeding stage.  

Thus according to Bellman’s principle of optimality, the problem of decision making must be split up in 

different stages and the optimal decisions be taken sequentially. The various iterations of decision making 

process are shown below: 

 

Fig.8.1 Division of Optimization Problem in Stages 

 

Dividing the problem of optimize Z=f(X) in a sequential manner as 

 

Fig.8.2 Optimization Problem in Stages with Optimum returns 
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Procedure discussed above is called backward recursion, because the stage transformation function is of 

the type si= Ti(si+1, xi+1). This is convenient when sn is specified. When s1 is specified, then it would be 

convenient to reverse the direction. This is called forward recursion. 

 

8.5  Dynamic Programming Algorithm for solving Shortest Route Problem 

 

The Shortest Route Problem is a classic optimization problem, and dynamic programming provides an 

effective algorithmic approach to solving it. One common application of dynamic programming for this 

problem is the Bellman-Ford algorithm.  

A variety of problems can be solved by dynamic programming using the principle of optimality. Any 

problem which can be broken into stages and decision can be taken stage wise using the principle of 

optimality, can be solved by dynamic programming. Computations in dynamic programming while 

solving shortest route problem, mathematically can be expressed as follows. Let fi(xi) be the shortest 

distance to node xi at the stage i.  

Define d(xi-1, xi) = distance from node xi-1 to node xi. Compute fi from fi-1. Using the following recursive 

equation  

( ) ( ) 
111

),(
,)(

1
−−−

+=
−

iiii
xxroutesfeasibleall

ii
xfxxdMinxf

ii

 

  

Where i =1, 2, 3, …, n (n= number of stages) 

This is known as forward dynamic programming. The backward recursive equation is 

( ) ( ) 
111

),(
,)(

1
+++

+=
+

iiii
xxroutesfeasibleall

ii
xfxxdMinxf

ii

  Where i =1, 2, 3, …, n (n= number of stages). 

The Bellman-Ford algorithm is a dynamic programming approach used to solve the Shortest Route 

Problem in graphs. This algorithm efficiently finds the shortest paths from a designated source vertex to 

all other vertices in a weighted graph, even when negative-weight edges are present, as long as there are 

no negative cycles. 

 

Examples 

 

Example.1. A travelling salesman has to go from city 1 to city 7. The distances between various cities 

are given in the following diagram: 
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Using dynamic programming, find the minimum distance covered by the salesman. Also find the 

optimal path. 

Solution. To solve this problem by dynamic programming, first we decompose it into stages. Then we 

carry out the computation for each stage separately. The optimum result at each stage is used in finding 

the optimum at the succeeding stage.  

Here we are solving this problem by backward recursive equation which is given below: 

( ) ( ) ,,)( 111
)1,(

+++
+

+= iiii
ixixroutesfeasibleall

ii xfxxdMinxf

 

 i =1, 2, 3, …………, n  

(n is the number of stages). 

We have f4(x4)=0, for x4=7. The associated order of computation is f3 →f2 →f1. 

 

Stage-3. Node 7 (x4=7)  is connected to node 5 and 6 (x3 =5 or 6) with exactly one route each. Results can 

be summarized as  
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 d(x3, x4) Optimum Solution 

x3 x4=7 f3(x3) x4
* 

5 9 9 7 

6 6 6 7 

Stage-2. Route (2, 6) is not a feasible alternative as it does not exist. The optimum solution at stage 2 

reads as follows: 

 

 

If you are in cities 2 or 4 the shortest route passes through city 5 and if you are in city 3, the shortest route 

passes through city 6. 

Stage-1. From node 1, we have three alternative routes (1, 2), (1, 3) and (1, 4). Using f2(x2) from stage 2, 

we can compute the following table: 

 

 

 

 

 

The optimum distance is 21 and optimum route is 1→4→5→7. 

Note. We can solve this problem by exhaustively enumerating all the routes between nodes 1 to 7 (there 

 d(x2, x3)+ f3(x3) Optimum Solution 

x2 x3=5 x3=6 f2(x2) x3
* 

2 12+9=21 --- 21 5 

3 8+9=17 9+6=15 15 6 

4 7+9=16 13+6=19 16 5 

 d(x1, x2)+ f2(x2) Optimum Solution 

x1 x2=2 x2=3 x2=4 f2(x2) x2
* 

1 6+21=27 7+15=22 5+16=21 21 4 
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are five such routes). However in a large network, exhaustive enumeration is not efficient computationally. 

 

Example.2. A travelling salesman has to go from city 1 to city 10. The distances between various 

cities are given in the following diagram: 

 

Using dynamic programming, find the minimum distance covered by the salesman. Also find the 

optimal path. 

Solution. We can solve the given dynamic programming problem either using forward dynamic 

programming or backward dynamic programming.  

We solve the problem using backward dynamic programming.  

First we divide the problem into four stages as per the following diagram: 
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Stage-4. In the stage 4 there are two states 8 and 9, and decision variables are 18 and 14. 

 

To State → 

From State 

         

Decision Optimum 

Decision 

Optimum 

Distance 
10 

8 18 10 18 

9 14 10 14 

 

Stage-3. In the stage 3 there are three states 5, 6 and 7, and decision variables are (12, 18), (18, 16) and 

(10, 18) respectively. 
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Stage-2. In the stage 2 there are three states 2, 3 and 4, and decision variables are (12, 16, 18), (10, 10, 8) 

and (12, 10, 17) respectively. 

 

 

Stage-1. In the stage 1 there is one state 1 and decision variables is (8, 12, 14). 

 

 

 

To State → 

From State 

         

Decision Optimum 

Decision 

Optimum 

Distance 
8 9 

5 12+18=30 18+14=32 8 30 

6 18+18=36 16+14=30 9 30 

7 10+18=28 18+14=32 8 28 

To State → 

From State 

         

Decision Optimum 

Decision 

Optimum 

Distance 
5 6 7 

2 12+30=42 16+30=46 18+28=46 5 42 

3 10+30=40 10+30=40 8+28=36 7 36 

4 12+30=42 10+30=40 17+28=45 6 40 

To State → 

From State 

         

Decision Optimum 

Decision 

Optimum 

Distance 
2 3 4 

1 10+42=52 12+36=48 16+40=56 3 48 
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Hence optimum (shortest) route is 1→3→7→8→10 and the optimum (minimum) distance is 48 units. 

 

8.6  Dynamic Programming using Calculus Method 

 

Here we shall discuss the problems which can be solved using dynamic programming techniques through 

calculus method. We illustrate the following cases: 

Case-1. When both the objective function and the constraint are in additive form. 

Let us consider the problem 

Max (or Min) Z =f1(x1)+f2(x2)+……….+fn(xn)  = 
=

n

i
ii xf

1

 

 s.t. a1 x1 +a2 x2 +a3 x3+……….+ an xn  ≥ or = or  b 

 or bororxa
n

i
ii =

=1

 

         and (a1, a2, a3,…., an)  0, (x1, x2, x3,…., xn)  0 and b0 

      or ai 0, xi 0 and b0. 

To solving this type of problem, first we define the state variables si’s as 

sn= a1 x1 +a2 x2 +a3 x3+……….+ an xn  ≥ or = or  b 

sn-1= a1 x1 +a2 x2 +a3 x3+……….+ an-1 xn-1  = sn- an xn=Tn-1(sn, xn) 

sn-2= a1 x1 +a2 x2 +a3 x3+……….+ an-2 xn-2  = sn-1- an-1 xn-1=Tn-2(sn-1, xn-1) 

 

… … … … … … … 

… … … … … … … 

si= a1 x1 +a2 x2 +a3 x3+……….+ ai xi  = si+1- ai+1 xi+1=Ti(si+1, xi+1) 

… … … … … … … 

… … … … … … … 

s2= a1 x1 +a2 x2 = s3- a3 x3=T2(s3, x3) 

s1= a1 x1 =s2- a2 x2=T1(s2, x2) 
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Where si =Ti(si+1, xi+1), i=1, 2, 3,…., n-1 are called state transformation functions connecting different 

states. The recursive relations are  

Fi(si) =Max (or Min) [fi (xi)+ Fi-1(si-1)]; i=1, 2, 3,….,n. 

and F1(s1)=f1(x1). 

Now we can start with F1(s1) and recursively optimize to get F2(s2), F3(s3), …………,  Fn(sn).  

This is forward dynamic programming. Also we can solve this type of problem by using backward 

dynamic programming technique. 

Case-2. When the objective function is in additive form and the constraint is in multiplicative form.  

Case-3. When the objective function is in multiplicative form and the constraint is in additive form.  

 

Examples 

 

Example.3. Solve the following problem using dynamic programming: 

  Min Z= x1
2+x2

2+x3
2 

  s.t. x1 +x2 +x3 ≥15 

and  x1, x2,  x3  0. 

Solution. We can solve it either using forward dynamic programming or backward dynamic 

programming. We solve it by using backward dynamic programming. 

Backward Dynamic Programming 

As there are three variables in the problem, we will have three stages to solve the problem using dynamic 

programming. 

Now we define the state variables as: 

  s1= x1 +x2 +x3 ≥15       

s2= x2 +x3= s1- x1       

s3= x3= s2- x2        

The recursive relations are 

F3(s3) = x3
2=  (s2- x2)

2 

F2(s2) = min [x2
2+ F3(s3)]  
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          = min (x2
2+x3

2) 

            = min [x2
2+(s2- x2)

2] with respect to x2 

F1(s1) = min [x1
2+ F2(s2)] with respect to x1 

For minimum of F2, we have  

0
2

2 =
dx

dF
 

gives 2x2-2(s2- x2) = 0   

  x2= .
2

2s
 

Also =
2

2

2

2

dx

Fd
2+4=4 which is positive.  

Therefore F2 in minimum at x2 = .
2

2s
 

F2(s2) = .
222

2

2

2

2
2

2
2

2 ss
s

s
=






















−+








 

Now  F1(s1)=
( )








 −
+=








+

2
min

2
min

2

112

1

2

22

1

xs
x

s
x  

For minimum of F1, we have 

 0
1

1 =
dx

dF
 

gives  2x1- (s1- x1) = 0    

   x1= .
3

1s
 

Also =
2

1

1

2

dx

Fd
2+1=3 which is positive.  

Therefore F1 in minimum at x1= .
3

1s
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Thus F1(s1)= .15,
3

1

2
1 s

s
 

Now Min Z= min [x1
2+x2

2+x3
2] 

      = min F1(s1) 

 = .1575
3

)15(
1

2

== sfor  

Here x1 = (s1/3) = 5. 

Min Z=75, for x1=5, s2= s1- x1=10, x2= ,5
2

2 =
s

s3= s2- x2=5, x3=s3=5. 

Hence Min Z=75, for x1=5, x2= 5, x3=5. 

 

Example.4. Solve the following problem using dynamic programming: 

Min Z= x1
2+x2

2+x3
2+x4

2 

  s. t. x1 x2 x3 x4 =16 

and  x1, x2, x3, x4  0. 

Solution. We define the state variables as: 

 s1= x1            

s2= x1 x2           

s3= x1 x2x3           

s4= x1 x2x3 x4           

This gives s1=x1= ,
2

2

x

s
 s2 = ,

3

3

x

s
 s3 = .

4

4

x

s
 

As there are four decision variables in the problem, we shall have four stages in the form of following four 

recursive relations: 

F1(s1)= x1
2= s1

2 

F2(s2) = min [x2
2+ F1(s1)]   = 









+

2
2

2
22

2min
x

s
x  with respect to x2 

PGMM-102/167



 

  F3(s3)= min [x3
2+ F2(s2)] with respect to x3 

  F4(s4)= min [x4
2+ F3(s3)] with respect to x4 

For minimum of F2, we have 

 0
2

2 =
dx

dF
 

gives 2x2-2 
3
2

2
2

x

s
= 0  

   x2= .2s  

Also =
2

2

2

2

dx

Fd
2+6

4
2

2
2

x

s
which is positive.  

Therefore F2 in minimum at x2= .2s  

F2(s2) = ( )
( )

.2 22

2

2
22

2 s
s

s
s =














+  

Now    F3(s3)= min [x3
2+ F2(s2)] 

F3(s3)=  
2

2

3 2min sx +  

For minimum of F3, we have 

 0
3

3 =
dx

dF   

gives 2x3- 2
2
3

3

x

s  = 0    

      x3= .
3/1

3s
    








=

3

3
2

x

s
s  

Also =
2
3

3
2

dx

Fd
2+4

3
3

3

x

s
 which is positive.  

Therefore F3 in minimum at x3= .
3/1

3s  
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Thus F3(s3)= 3 .
3/2

3s  

Now F4(s4) = min [x4
2+ F3(s3)] 

          =   







+=+

3/2

4

3/2

42

4

3/2

3

2

4 3min3min
x

s
xsx  

For minimum of F4, we have  

0
4

4 =
dx

dF
  

gives 2x4- 2
3/5

4

3/2

4

x

s
 = 0   

  x4= .
4/1

4s  

Also =
2

4

4

2

dx

Fd
2+

3/8

4

3/2

4

3

10

x

s
 which is positive.  

Therefore F4 in minimum at x4= .
4/1

4s  

Thus F4(s4)= 4 .
2/1

4s  

( ) .216
4/14/1

44 === sx   

Now we have 

 s3= ,8
2

16

4

4 ==
x

s
 

 x3= ,2)8( 3/13/1

3 ==s   

s2 = ,4
2

8

3

3 ==
x

s
 

x2= ,242 ==s  
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 s1 = .2
2

4
1

2

2 x
x

s
===  

Hence Min Z=16, for x1= x2= x3=x4= 2. 

 

Example.5. Solve the following problem using dynamic programming: 

 Max Z=x1x2x3 

            s.t.  x1 +x2 +x3=5 

x1, x2,  x3  0. 

Solution. We first define the state variables as: 

 s1= x1            

s2= x1+ x2           

s3= x1 +x2 +x3=5          

This gives  

s1= x1= s2- x2 

s2= x1+ x2= s3-x3 

s3= x1 +x2 +x3=5  

Recursive relations are 

F1(s1) = x1= s1 

F2(s2) = max [x2 F1(s1)] = max (x2.s1) = max [x2. (s2- x2)] with respect to x2 

F3(s3) = max [x3.F2(s2)] with respect to x3 

For maximum of F2, 0
2

2 =
dx

dF
 

gives  s2-2x2= 0   

  x2= .
2

2s
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Also =
2

2

2

2

dx

Fd
-2x2 which is negative.  

Therefore F2 in maximum at x2= .
2

2s
 

Thus F2(s2) = .
4

2

2s
 

Now  F3(s3)=
( )








 −
=









4
.max

4
.max

2

33
3

2

2
3

xs
x

s
x  

For minimum of F3, we have  

0
3

3 =
dx

dF
  

gives  (s3-x3)
2-2x3(s3-x3) = 0  

  (s3-x3) (s3-3x3) = 0 

       or (s3-3x3) = 0  [s3-x3≠0 because x2= s3-x30, x2≠0 because if x2=0, then max Z=0.] 

 i.e.,  x3= .
3

3s
 

Also =
2
3

3
2

dx

Fd
6x3-4s3 = -2s3  0 which is negative.  

Therefore F3 in maximum at x3= .
3

3s
 

Thus F3(s3)= 
( )

.5
27

125

27

5

27
3

33
3 === sfor

s
 

Now we have 

 x3= ,
3

5

3

3 =
s

 s2= s3- x3=
3

10

3

5
5 =− , x2= ,

3

5

2

1
.

3

10

2

2 ==
s

s1= s2- x2=
3

5

3

5

3

10
=− , x1=s1=

3

5
.   

Hence Max Z=
27

125
, for x1= x2= x3=

3

5
. 
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8.7 Summary 

 

Dynamic programming is like a problem-solving superhero that tackles complex issues in a smart and 

efficient way. Imagine you have a big problem, and dynamic programming helps by breaking it down into 

smaller, more manageable parts. The cool trick is that it solves these smaller problems only once and 

stores the solutions so it doesn't have to repeat itself. The technique is particularly effective for 

optimization problems, where the goal is to find the best solution among a set of feasible solutions.  

Dynamic programming is often applied to problems in which the same subproblems are solved multiple 

times, and the solutions to these subproblems can be reused to solve the overall problem more efficiently. 

 

8.8 Terminal Questions 

 

Q.1. Write a short note on Dynamic programming problem: 

Q.2. State the Bellman’s Principle of Optimality. 

Q.3. What do you mean by stage and state? 

Q.4. Find the shortest route of the following problem: 

 

 

Q.5. Find the shortest path for the following travelling salesman problem: 
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Q.6. Solve the following problems using dynamic programming: 

Min Z= x1
2+x2

2+2x3
2 

  s.t. x1 +x2 +2x3 =12 

and  x1, x2,  x3  0. 

Q.7. Solve the following problems using dynamic programming: 

   Min Z= x1
2+x2

2+x3
2 

          s.t.   x1 x2 x3 =27 

       and    x1, x2,  x3  0. 

Q.8. Solve the following problems using dynamic programming: 

Max Z= x1 x2 x3
 

         s.t. x1 +x2 +x3  =12 

      and  x1, x2,  x3  0. 

 

Answers 

 

4.  1→2→3→5→7; 17 units. 
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5.   1→3→4→8→9; 47 units. 

6.  x1= x2=x3=3, Min. Z=36. 

7.  x1= x2=x3=3, Min. Z=27. 

8.  x1= x2=x3=4, Max. Z=64. 
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UNIT-9: Applications of Dynamic Programming 

 

Structure 

9.1  Introduction 

9.2  Objectives 

9.3   Solving a Linear Programming Problem Using Dynamic Programming 

9.4  Applications of Dynamic Programming 

9.5  Summary 

9.6  Terminal Questions 

 

9.1 Introduction 

 

In this unit we shall discuss about the solution of linear programming problem using dynamic 

programming problem and application of dynamic programming problem. Dynamic programming is a 

powerful optimization technique that is used to solve problems by breaking them down into simpler, 

overlapping subproblems and solving each subproblem only once, storing the solutions to subproblems in 

a table to avoid redundant computations. Dynamic programming is widely used in various fields due to 

its ability to efficiently solve problems with optimal substructure and overlapping subproblems.  

Dynamic programming can be applied to a wide range of problems in different domains where optimal 

solutions can be found by solving subproblems efficiently and avoiding redundant computations. Dynamic 

programming is used in algorithms like Dijkstra's and Floyd-Warshall for finding the shortest paths in a 

graph. In diverse algorithmic applications, dynamic programming plays a pivotal role, exemplified by its 

utilization in algorithms like Dijkstra's and Floyd-Warshall. The versatility of dynamic programming 

extends beyond graph-related challenges to encompass problem-solving in finance, bioinformatics, 

natural language processing, and more. The hallmark of dynamic programming lies in its capacity to 

disassemble intricate problems into simpler components, fostering optimal solutions through the 

systematic resolution of subproblems. This systematic approach and the storage of solutions for 

subsequent reuse contribute to the widespread adoption of dynamic programming across a spectrum of 

problem domains. 

 

9.2  Objectives 

After reading this unit the learner should be able to understand about the : 
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▪  solving a Linear Programming Problem Using Dynamic Programming  

▪ applications of Dynamic Programming 

 

9.3   Solving a Linear Programming Problem Using Dynamic Programming 

 

Suppose a linear programming problem with n decision variables and m constraints. This problem can be 

considered as n-stage dynamic programming problem with m state variables because there are n-decision 

variables in the problem. However it becomes complicated if we take n  3. So we consider a linear 

programming problem with two decision variables and m-constraints as: 

 Max Z=c1 x1 + c2 x2 

              s. t.    

 

 Stage-1    Stage-2         Resources 

We develop an algorithm for solving this problem by forward dynamic programming as: 

Stage-1.   ( )
1 12 2 2 22 22 2

1
11 21 1

1 1

0 , , ..........,

1 1
x m m

m

b a b a xb a x
x

a a a

F x Max c x
−  −− 

   
    

=  

 

1 12 2 2 22 22 2

1
11 21 1

0 , , ..........,

1 1
x m m

m

b a b a xb a x
x Min

a a a

Max c x
− −−

  =
 
 

=  

     Here      x1
*= Min 













 −−−

1

22,..........,

21

2222
,

11

2121

m
a

x
m

amb

a

xab

a

xab

          ..… (9.1) 

             F1(x2) = Max c1 












 −−−

1

22,..........,

21

2222
,

11

2121

m
a

x
m

amb

a

xab

a

xab

  

Stage-2. We have 

a11 x1 

a21 x1 

… 

… 

… 

am1 x1 

+ 

+ 

… 

… 

… 

+ 

a12 x2 

a22 x2 

… 

… 

… 

am2 x2 

 

 

 

 

 

 

b1 

b2 

… 

… 

… 

bn 
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             F2(x2) = Max 






+











 −−−

22
1

22

21

2222

11

2121

1
,..........,, xc

a

xab

a

xab

a

ab
Minc

m

mmx

     

..… (9.2) 

            s.t.     x2









222

2

12

1 .,..........,,
m

m

a

b

a

b

a

b
Min        ..… (9.3) 

Explain (9.3) gives upper bound on x2.  

Now to calculate 











 −−−

1

22

21

2222

11

2121
,..........,,

m

mmx

a

xab

a

xab

a

ab
Min .  

We proceed as follows: 

(i) We consider 

11

2121

a

xab −
 to be less than or equal to remaining 

21

2222

a

xab −
,

31

2323

a

xab −
, ….., 

1

22

m

mm

a

xab −
 one by one and find a condition on x2. Thus getting (m-1) conditions on x2 and then 

take intersection of all these to get the maximum x2 provided ai j 0 for i and j. Then we find x1 from 

(9.1) and Max Z from (9.2). This will give one set of solution. 

(ii) Now we consider 

21

2222

a

xab −
to be less than or equal to (i.e., minimum of remaining) 

11

2121

a

xab −
,

31

2323

a

xab −
, ….., 

1

22

m

mm

a

xab −
and proceeding as in (i),we will get another set of solution. 

Repeating this process we will get at most m such solutions. Among these solutions consider that one 

which gives the optimum solution of the problem. 

 

Examples 

 

Example.1. Solve the following problem using dynamic programming: 

 Max Z=500x1 +800x2 

              s.t.             5x1 +6x2  60 

              x1 +2x2  16  

   x1  8  

   x2  6 
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and      x1, x2  0. 

Solution. The given problem can be written as:  

 Max Z=500x1 +800x2 

              s.t.             5x1 +6x2  60 

              x1 +2x2  16  

   x1 +0.x2 8  

   0.x1+x2  6 

and      x1, x2  0.  ….. (9.4) 

As there are two variables in the problem, we shall have two stages to solve the problem using dynamic 

programming. We can solve it either using forward dynamic programming or backward dynamic 

programming. Let us first solve it by using backward dynamic programming. 

Stage-1.  F1(x1) = 
1

8,2216,
5

2660

1
0

500 xMax
x

x
x

















−

−


 
          = 

1

8,2216,
5

2660
1

0

500 xMax
x

x
Minx 








−

−
=

 

     Here x1
*= Min 








−

−
8,216,

5

660
2

2 x
x

           

             F1(x2) = Max 500 







−

−
8,216,

5

660
2

2 x
x

  

Stage-2. We have 

             F2(x2) = Max 

 

 
22

2 8008,216,
5

660
500 xx

x
Min +








−

−

   

..… (9.5) 

            s.t.     x2  66,
2

16
,

6

60
=









Min      ..… (9.6) 

Now to calculate 







−

−
8,216,

5

660
2

2 x
x

Min . We proceed as follows: 

Case-I. Assuming 8 to be minimum, we have 
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 8 
5

660 2x−     x2  
3

10  

Also     8  16-2x2    x2  4, x2  0. 

Thus we have 0  x2 
3

10 .  

Using equation (9.5), we get 

 Max Z = Max [5008+800 x2],     









3

10
0 2x  

 = Max [4000+800
3

10 ] 

 = 
3

20000    when x2=
3

10  and x1
*=8.      …. (9.7) 

Case-II. Let 







−

−
8,216,

5

660
2

2 x
x

Min =
5

660 2x− . Then we have 

5

660 2x−  8      x2  
3

10  

Also  
5

660 2x−  16-2x2       x2  5, x2  0. 

Thus we have 
3

10  x2 5.  

Using equation (9.5), we get 

 Max Z= Max ,800
5

660
500 2

2









+







 −
x

x   







 5

3

10
2x  

 = Max [6000+200 x2] 

 = 7000    when x2=5 and x1
*=6.    ….. (9.8) 

Case-III. Let 







−

−
8,216,

5

660
2

2 x
x

Min =
2216 x− . Then we have 

 16-2x2  8   x2 4. 
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Also 16-2x2  
5

660 2x−    x2  5, x2  0. 

Thus we have 

 x2  5. 

From equation (9.6), we have  

x26.  

Therefore we have  

5  x2  6. 

Now using equation (9.5), we have 

Max Z = Max [500(16-2x2)+8x2],   (5x26) 

 = Max [8000-200x2] 

 = 7000   when x2=5 and x1
*=6     ….. (9.9) 

From equations (9.7), (9.8) and (9.9), the optimal solution is 

Max Z = Max 






7000,7000,

3

20000
 

                       = 7000 which is for x1
*=5 and x2=6. 

 

Example.2. Solve the following problem using dynamic programming: 

 Max Z=10x1 +8x2 

              s.t.             2x1 +x2  25 

             3 x1 +2x2  45  

   x2  10 

and      x1, x2  0. 

Solution. The given problem can be written as:  

 Max Z=10x1 +8x2 

              s.t.             2x1 +x2  25 

PGMM-102/180



 

             3 x1 +2x2  45  

   0.x1+ x2  10 

and      x1, x2  0.     ... (9.10) 

As there are two variables in the problem, we shall have two stages to solve the problem using dynamic 

programming. We can solve it either using forward dynamic programming or backward dynamic 

programming. Let us first solve it by using backward dynamic programming. 

Stage-2.  F2(x2) = 
2

10,
2

1
345

,
1

225
2

0

8 xMax
x

xx
























 −
−

 

          = 
2

10,
2

1
345

,
1

225
2

0

8 xMax
x

xMinx












 −
−=

 

     Here x2
*= Min 







 −
− 10,

2

1
345

,
1

225
x

x            

             F2(x1) = Max 8 






 −
− 10,

2

1
345

,
1

225
x

x   

Stage-1. We have           

                     F1(x1) = Max 

 
































 −
−+ 10,

2

1
345

,
1

2258110
x

xMinx

   

..… (9.11) 

            s.t.     x1 
2

25

3

45
,

2

25
=









Min      ..… (9.12) 

Now to calculate 






 −
− 10,

2

1
345

,
1

225
x

xMin .  

We proceed as follows: 

Case-I. Assuming 10 to be minimum, we have 

  10  25-2x1   

  x1  
2

15  

Also          10  2

1
345 x−
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  x1  
3

25 , x1  0. 

Thus we have  

0  x1 
2

15 .  

Using equation (9.11), we get 

 Max Z = Max [10 x1+810],     









2

15
0 1x  

 = Max [10
2

15 +80] 

 = 155 when x1=
2

15  and x2
*=10.      …. (9.13) 

Case-II. Let 






 −
− 10,

2

1
345

,
1

225
x

xMin =25-2x1.  

Then we have 

2

1
345

1
225

x
x

−
−    

   x1  5 

Also  101225 − x       

   x1  
2

15 , x1  0. 

Thus we have 

  x1  .
2

15

   

From equation (9.12) we have  

x1  
2

25  

Therefore we have 

 
2

15   x1  
2

25 .  
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Using equation (9.11), we get 

 Max Z = Max [10 x1+8(25-2x1)],     









2

25

2

15
1x  

   = Max [200-6x1] 

  = 155   when x1=
2

15  and x2
*=10.      …. (9.14) 

Case-III. Let 






 −
− 10,

2

1
345

,
1

225
x

xMin = 2

1
345 x−

.  

Then we have 

1
225

2

1
345

x
x

−
−

    

   x1  5 (not applicable) 

Also 10
2

1
345


− x

      

   x1 
3

25 , x1  0. 

Thus we have  

x1  .
3

25  

From equation (9.12) we have  

x1  
2

25  

Therefore we have  

3

25   x1  
2

25 .  

Using equation (9.11), we get 

Max Z = Max [10 x1+8 ( )
2

345
1

x−
],     










2

25

3

25
1x  

   = Max [10 x1+180 -12x1] 
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   = Max [180 -2x1] 

  =  
3

490   when x1=
3

25  and x2
*=10.    …. (9.15) 

From equations (9.13), (9.14) and (9.15), the optimal solution is 

Max Z = Max 







3

490
,155,155  

                       =  
3

490  which is for  x1=
3

25  and x2=10.  

 

9.4  Applications of Dynamic Programming 

 

Example.3. A vessel which can carry a load of at most 7 units is loaded with three items. The weight 

per unit of different items and their values are given below. How many units of each item be loaded 

in the vessel so as to maximize the value of the loaded items.  

 

Item Weight/Unit Value/Unit 

1 1 20 

2 3 90 

3 2 70 

 

Solution. Suppose x1, x2 and x3 be the number of units of items 1, 2 and 3 loaded respectively. The given 

problem can be formulated as: 

Max Z=20x1+90 x2+70 x3 

            s.t.  x1 +3x2 +2x37 

x1, x2,  x3  0 and integers. 

The decision variables are discrete here, so we cannot use calculus method and solve the problem in tabular 

form. Now we define the state variables as: 
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 s1= x1         …. (9.16) 

s2= x1 +3x2        …. (9.17) 

s3= x1 +3x2 +2x3  7       …. (9.18) 

This gives 

s1= x1= s2-3x2 

s2= s3- 2x3 

s3= x1 +x2 +x3  7  

Recursive relations are 

F1(s1)= f1(x1) = 20 x1 = 28 s1 

F2(s2) = Max [f2(x2) + F1(s1)] 

F3(s3) = Max [f3(x3) + F2(s2)] 

From equation (9.18), we have 

x1=0,1, 2, 3, 4, 5, 6, 7;  

x2=0, 1, 2;  

x3= 0, 1, 2, 3. The state transformations are shown in following tables 1 and 2:
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               Table-1                                                                                  

Table-2 

 

In table 1 the entries are s2= s3-2x3. (Table 1 gives possible values of s2) Then we prepare table 2, in which 

entries are s1=s2-3x2 values (that is s1 can assume for various combinations of s2 and x2 values). Now we 

prepare Table 3, 4 and 5 for using recursive relations: 

 

 

x1=s1 0 1 2 3 4 5 6 7 

F1(s1)=f1(x1)=20 x1 0** 20* 40 60 80 100 120 140 

                 Table-3       

 f2(x2)=90 x2 F1(s1) f2(x2)=90 x2 F2(s2) 

x3 

s3 

0 1 2 3 

0 0 --- --- --- 

1 1 --- --- --- 

2 2 0 --- --- 

3 3 1 --- --- 

4 4 2 0 --- 

5 5 3 1 --- 

6 6 4 2 0 

7 7 5 3 1 

x2 

s2 

0 1 2 

0 0 --- --- 

1 1 --- --- 

2 2 --- --- 

3 3 0 --- 

4 4 1 --- 

5 5 2 --- 

6 6 3 0 

7 7 4 1 
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x2 

s2 

0 1 2 0 1 2 0 1 2 Max of 

rows 

0 0 --- --- 0 --- --- 0 --- --- 0 

1 0 --- --- 20* --- --- 20* --- --- 20* 

2 0 --- --- 40 --- --- 40 --- --- 40 

3 0 90 --- 60 0** --- 60 90* --- 90** 

4 0 90 --- 80 20 --- 80 110 --- 110 

5 0 90 --- 100 40 --- 100 130 --- 130 

6 0 90 180 120 0 0 120 150 180 180 

7 0 90 180 140 80 20 140 170 200 200 

 Table-4 

In table-4: 

(a) We enter values in possible position. The possible positions are dictated by Table 1. 

(b) To get the F1(s1) matrix, we read x1 from Table 2 and then read F1(s1) from Table 3. 

(c) The last column gives the maximum with respect to x2 for a fixed s2. 

The above is the solution of second sub-problem. Now we proceed to calculate F3(s3), which will give the 

optimal value for this problem. To get F3(s3), we construct Table 5. 

 

 

 f3(x3)=70 x3 F2(x2) f3(x3)+F2(x2) F3(x3) 

Max 

of 
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Rows 

      x3 

s3 

0 1 2 3 0 1 2 3 0 1 2 3  

0 0 --- --- --- 0 --- --- --- 0 --- --- --- 0 

1 0 --- --- --- 20 --- --- --- 20 --- --- --- 20 

2 0 70 --- --- 40 0 --- --- 40 70 --- --- 70 

3 0 70 --- --- 90 20 --- --- 90 90 --- --- 90 

4 0 70 140 --- 110 40 --- --- 110 110 140 --- 140 

5 0 70 140 --- 130 90 20 --- 130 180 180 --- 160 

6 0 70 140 210 180 110 40 0 180 180 180 210 210 

7 0 70 140 210 200 130 90** 20* 200 200 230**  230* 230*** 

 Table 5 

 

In Table 5, to get matrix F2(s2),we read s2 from Table 1 and then read corresponding F2(s2) from Table 4. 

From the last column of Table 5, we see that largest F3(s3)=230 is for s3 and x3.now we trace back the 

entries which gave this largest value. These entries give the optimal solution. This is shown in table by 

marking the optimal entries by (*). From Table 4 and Table 3, we have s2=1, x2=0 and s1=x1=1 

respectively. The optimal values are x1=1, x2=0, x3=3 and maximum value is 230. 

In this problem, Table 5 shows that there is an alternative optimal solution. This solution, we have shown 

by marking entries with (**). The alternate optimal solution is x3=2, x2=1, x1=0 and maximum value is 

230.  

 

9.4 Summary 

 

Dynamic programming serves as a potent optimization technique, employed to address problems by 
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decomposing them into manageable, overlapping subproblems. The approach entails solving each 

subproblem only once and storing solutions in a table to prevent redundant computations. This 

methodology is extensively utilized across various domains due to its efficacy in efficiently tackling 

problems characterized by optimal substructure and overlapping subproblems. 

 

9.5 Terminal Questions 

Q.1. Write a short note on applications of dynamic programming. 

Q.2. Solve the following problems using dynamic programming: 

            Min Z= x1
2+x2

2+x3
2 

              s.t.   x1 +x2 +x3 ≥10 

              and   x1, x2,  x3  0. 

 

Q.3. A vessel which can carry a load of at most 4 tons is loaded with three items. The following table 

gives the unit weight, wi, in tons and the unit revenue, ri, in thousand Rs. for items i. How many units of 

each item be loaded in the vessel so as to maximize the value of the loaded items.  

 

Item i wi ri 

1 2 31 

2 3 47 

3 1 14 

 

 

Answers 

2.  x1= x2=x3=10/3. Min. Z=100/3. 

3.  x1=2, x2=0, x3= 0. Maximum value is 62,000. 
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Block-4 

Advanced Optimization Techniques 

In the context of operations research, networking typically refers to the study and optimization of 

networks, where a network is a collection of interconnected nodes and links. Operations research utilizes 

various mathematical and analytical methods to model, analyze, and optimize the flow of resources, 

information, or activities within these networks. Networking in operations research provides valuable 

tools for decision-makers to optimize resource allocation, improve efficiency, and make informed 

decisions in various domains where interconnected systems play a crucial role.  

Game theory is an important branch of mathematics and economics that studies the strategic interactions 

between rational decision-makers, known as players, in situations where the outcome of each player's 

choice depends on the choices of others. It is a framework for analyzing and understanding the behavior 

of individuals, organizations, or countries in competitive or cooperative situations. 

Goal programming is a special type of mathematical optimization technique used to solve decision-making 

problems where multiple, often conflicting, objectives need to be considered simultaneously. It is 

employed in situations where there is a need to achieve several goals, and these goals may have different 

priorities or importance levels. The primary aim of goal programming is to find a solution that minimizes 

the deviations from the specified goals. 

Integer programming problems are generally more challenging to solve than linear programming problems 

without integer constraints. Traditional optimization techniques may involve exploring a large solution 

space. Branch and bound, cutting-plane methods, and specialized algorithms like branch and cut are 

common approaches used to solve integer programming problems. Applications of integer programming 

can be found in various fields, including manufacturing, logistics, finance, and project management, where 

decisions involve discrete choices or whole quantities. 
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UNIT-10: Networking 

 

Structure 

10.1 Introduction 

10.2 Objectives 

10.3  Terminologies used in Networking 

10.4 Networking 

10.5 Shortest Route Problem 

10.6  Minimum Spanning Tree Problem 

10.7 Maximum Flow Problems  

10.8 Summary 

10.9  Terminal Questions 

 

10.1 Introduction 

 

Network analysis holds significant importance in electrical theory and communication systems, 

encompassing applications in circuits, pipelines, mobile networks, roads, transportation, railways, airlines, 

blood vessels, production, resource management, distribution, planning, scheduling, and control of 

research and development projects, among others. Transportation and assignment problems, both 

categorized as Linear Programming Problems (LPP), are examples of network optimization models.  

In this chapter, we will delve into the discussion of specific network optimization problems, including the 

shortest route problem, minimum spanning tree problem, and maximum flow problems. 

 

10.2  Objectives 

 

After reading this unit the learner should be able to understand about: 

• the terminologies used in networking 

• the networking 
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• the shortest route problem 

• the minimum spanning tree problem 

• the maximum flow problem 

•  

10.3 Terminologies Used in Networking  

 

A graph G is a collection of vertices (V) that may or may not be connected to each other by edges (E). In 

other words, a graph G is a set of points (known as vertices denoted by V) connected by lines (called 

Edges denoted by E). For example, the graph with 6 vertices, ( )654321 ,,,,, VVVVVVV = and 8 edges, 

( )87654321 ,,,,,,, eeeeeeeeE =  are given below (Fig. 10.1): 

 

 
 

                                                                                                

                   

              

  

   

Fig 10.1 Graph with 6 vertices and 8 edges 

A graph G is said to be a weighted graph in which weight are assigned with each edge. For example, Fig 

10.2 is a weighted graph.  

   3 

                                 P                                                        Q 

 4                                          7 

    6 

                               R S 

 11 

Fig 10.2 Weighted Graph 

A graph G is said to be labeled graph in which each vertex is assigned a unique name or label. Fig 10.3 

shown a labeled graph. A graph G is said to be complete in which every vertex is connected to every other 

 

 

 

 

 
V3  
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vertex i.e. at least one edge exists between every pair of vertices. It is denoted by Kn. Fig. 10.4 shown a 

K4 graph (complete graph).  

 

 

 

  

 

 

                                

 Fig. 10.3 Labeled Graph     Fig. 10.4 Complete Graph K4  

 

A graph is said to be finite which have finite no of vertices as well as finite no of edges otherwise, it is 

called infinite graph. An edge is incident with a vertex if the edge is joined to the vertex. If there is an 

edge joining a pair of vertices, those vertices are said to be adjacent otherwise they are non-adjacent. The 

number of edges which are connected to a given vertex is called the degree of that vertex. It is denoted by 

d(V). The degree of self -loops counted twice. In Fig. 10.2, 

( ) ( ) ( ) ( ) ( ) ( ) .vd,vd,vd,vd,vd,vd 133432 645321 ====== A vertex is said to be Isolated if a vertex 

having no incident edge. A vertex have a zero degree is called isolated vertex. A vertex is said to be 

pendant vertex if a vertex having one degree.is pendant vertex.  

A walk is defined of a graph G is an alternating sequence of finite vertices of edges. Which is beginning 

and ending with vertices. No edge traversed more than once in a walk whenever a vertex may appear more 

than once. A walk to begin and end at the distinct vertex is called open walk. A walk to begin and end at 

the same vertex is called closed walk. An open walk in which on vertex appears more than once is called 

a path and also called a simple or elementary path. In a path, total no of edge is called the length of a path. 

A self-loop can be included in a walk but not in a path. In fig. 10.1, 46112234586 vevevevevev is a path. 

A closed walk in which no vertex (except the beginning and ending vertex) appears more than once is 

called a circuit and also called a cycle, elementary cycle, circular path and polygon. Every circuit is not a 

self-loop but every self-loop is circuit. In Fig. 10.1, 16455432211 vevevevevev is a circuit. A graph G is 

said to be connected if there is at least one edge between every pair of vertices in G. otherwise, we can 

say the graph is disconnected but a disconnected graph consists of two or more connected graphs each of 

these connected graph is known as a component. 

A tree is a connected graph without any circuit. By the definition of the tree it is clear that tree is connected 

simple and a cyclic graph. The trees are represented by symbol T. The graph show in Fig 10.5 are the 

examples of tree. 

 

Q 

R S 

P 
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     T1                                              T2                                     T3                                                T4  

Fig 10.5 The trees of order 6 

A path in any graph is tree because there is no circuit in path. A tree with only one vertex is called a trivial 

tree and all other trees are called non trivial trees. A tree with n vertices has exactly (n – 1) edges. A 

connected graph G is said to be minimally connected if deletion of any edge from G, then the graph G is 

disconnected. The graph shown in Fig. 10.6 is minimally connected graph. 

             * * * * * 

Fig. 10.6 Minimally connected graph 

The distance between two vertices of a tree is easy because there is no circuit and therefore there is one 

and only one path between every pair of vertices. The distance between the vertices of tree T shown in 

Fig. 10.7 is: 

     a 

 

                                                  b                       c 

 

      d                      e                     f 

                                                   Fig 10.7 Tree  

 

Here d(a, b) = 1, d(a, d) = 2, d(a, c) = 1, (a, e) = 2, d(a, f) = 2, d(c, d) = 2, d(c, d) = 3, d(e, d) = 4, d(f, d) 

= 4 and so on. Two special types of trees called the rooted and binary tree. A tree in which one vertex is 

distinct from all other vertices is called a rooted tree.  

A tree in which there is exactly one vertex of degree two and each of the remaining vertices of degree one 

or three is called a binary tree. Binary tree is also a rooted tree because the vertex of degree 2 is distinct 

from all other vertices, hence the vertices with degree 2 is root of the binary tree.  

 Binary trees are widely used in computer applications such as searching methods known as binary 
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search, sorting methods know as heap sort. The vertex with degree one in a binary tree are called external 

vertices or terminal vertices and all the other vertices are called internal vertices. The number of vertices 

in binary tree is always odd. The number of external vertices in binary tree is 
( )

.
n

2

1+

 
The number of 

internal vertices in binary tree is 
( )

.
n

2

1−
 Source is the starting event of a project. It is an event with only 

succeeding but no proceeding activity. Sink is the last event showing the end of a project. It is an event 

with only preceding but no succeeding activity. 

 

10.4 Networking 

 

A network can be characterized as a collection of points or nodes linked by connections or arrows. 

Essentially, it is a graph where a flow can traverse the branches. In a network, the branches intersect 

exclusively at nodes. The challenge within network analysis involves identifying a course of action that 

minimizes certain performance metrics, such as time, distance, cost, and more. 

 

10.5 Shortest Route Problem 

 

The objective of determining the most concise path from an origin to a destination within a network is 

termed the shortest route problem, alternatively recognized as the minimum path problem. To address the 

challenge of identifying the minimum path, we will explore the method known as Dijkstra's method, 

pioneered by F.W. Dijkstra in 1959. Let ui be the shortest path from node 1 to node i and dij is an arc 

length (i, j). The label for node j is defined as [uj, i] = [ui+dij, i], dij  0. 

In Dijkstra algorithm, there are two types of node labels: temporary and permanent. A temporary label 

can be replaced with another label, if a shortest route to the same node can be found. If no shortest route 

can be found then it becomes node with permanent label. The procedure to determine the shortest route 

using Dijkstra’s algorithm consists of the following steps: 

Step-1: First label the node 1, with permanent label [0, ⎯], and set j = 1. 

Step-2: Find the temporary labels [ui+dij, i] for each node j that can be reached from node i. If the node j 

has already labeled [uj, r] through another node r, such that ui+dij < uj, then replace [uj, r] with [ui+dij, i]. 

Otherwise [ui+dij, i] is the permanent label of node j. 

Step-3: For j<n, set j= next j, to reach permanent label. If all the nodes have permanent labels, then stop. 
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Examples 

 

Example.1. Determine the shortest route from the following network: 

 

 

 

 

 

 

Sol. It is given that the network has 4 nodes. The calculations for these nodes are as follows: 

Node.1: [0,⎯]. 

Node.2: [0+3, 1] = [3, 1]. 

Node.3: [0+5, 1] = [5, 1] and [3+1, 2] = [4, 2]. 

Node.4: Reached from nodes 2 and 3: [3+8, 2] = [11, 2] and [4+6, 3] = [10, 3]. 

 

 

 

 

 

 

 

 

Fig. 10.8 Showing Shortest Route 

 

Thus the shortest route covers a distance of 10 units. Now back tracking from node 4 (Fig. 10.8), by 

checking the second elements of the labels, we find the possible route as 1→2→3→4. 
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[4, 2] 

[5, 1] 
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[11, 2] 

[3, 1] 
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Example.2: Find the shortest route from the following network: 

 

 

 

  

 

 

 

Sol. It is given that the network has 6 nodes. The calculations for the nodes are as follows: 

Node.1: [0, ⎯]. 

Node.3: [0+2, 1]=[2, 1]. 

Node.2: [0+4, 1]=[4, 1] and [2+3, 3]=[5, 3]. 

Node.4: [4+6, 2]=[10, 2] and [2+3, 3]=[5, 3]. 

Node.5: [4+3, 2]=[7, 2], [2+5, 3]=[7, 3] and [5+3, 4]=[8, 4]. 

Node.6: [5+5, 4]=[10, 4] and [7+6, 5]=[13, 5]. 

 

 

 

 

 

 

 

 

 

 

Fig. 10.9 Showing Shortest Route 
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Thus the shortest route covers a distance of 10 units. Now back tracking from node 6 (Fig. 10.9), by 

checking the second elements of the labels, we find the possible route as 1→3→4→6. 

 

Example.10.3: Find the shortest route from the following network: 

 

 

 

  

 

 

 

 

 

Sol. It is given that the network has 7 nodes. The calculations for the nodes are as follows: 

Node.1: [0, ⎯]. 

Node.2: [0+2, 1]=[2, 1]. 

Node.3: [0+3, 1]=[3, 1]. 

Node.4: [0+4, 1]=[4, 1]. 

Node.5: [2+4, 2]=[6, 2], [3+2, 3]=[5, 3] and [4+1, 4]=[5, 4]. 

Node.6: [2+5, 2]=[7, 2], [3+6, 3]=[9, 3] and [4+3, 4]=[7, 4]. 

Node.7: [3+7, 3]=[10, 3], [5+5, 5]=[10, 5] and [7+4, 6]=[11, 6]. 
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Fig. 10.10 Showing Shortest Route 

 

Thus the shortest route covers a distance of 10 units.  

Now back tracking from node 6 (Fig. 10.10), by checking the second elements of the labels, we find the 

possible routes are 

 1→3→5→7  or  1→4→5→7 or 1→3→7. 

 

10.6 Minimum Spanning Tree Problem 

To determine the minimum spanning tree using a straightforward method initially introduced by J.W. 

Kruskal in 1956, the approach involves selecting the smallest edge length to build the growing minimum 

spanning tree, ensuring it remains loop-free.  

Consider nodes labeled 1, 2, 3, ..., n. The procedure for finding the minimum spanning tree comprises the 

following steps:  

Step-I: First of all write the arc length in the increasing order of magnitude. Take S, the set of nodes of 

minimum spanning tree. 

Step-II: Take the minimum arc length (i, j), ij, both i, j not belonging to S (chose arbitrarily in case of 
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2 

2 

3 
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1 
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3 

5 

6 

7 
7 
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[10, 3] 

[10, 2] 

[11, 6] 

[7, 2] 

[9, 3] 

[7, 4] 

[3, 1] 

[4, 1] 

[2, 1] 
[5, 4] 

[5, 3] 

[6, 2] 
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tie). 

Step-III: Now set S=S{i, j}. If S connecting all nodes then stop and check if S consists of unconnected 

branches then go to step IV otherwise go to step II. 

Step-IV: Connect the unconnected branches by minimum arcs and stop. 

 

Examples 

 

Example.10.4. Find the minimum spanning tree from the following network: 

 

 

 

 

 

 

 

Sol. First write the arc length in the increasing order of magnitude: (2, 3), (1, 2), (1, 3), (3, 4) and (2, 4). 

Iteration-1: Take the minimum length arc (2, 3), therefore we have  

S = (2, 3) 

Iteration-2: Now minimum arc length (1, 2), therefore we have  

S = {1, 2, 3} 

Iteration-3: Next minimum arc length (1, 3), but 1, 3 are in S so neglect (1, 3). 

Iteration-4: Now minimum length arc (3, 4), therefore we have  

S = {1, 2, 3, 4}. 

All nodes are now connected.  

Hence the length of the given tree is 11. 

 

Example.18.5. Determine the minimum spanning tree from the following network: 

9 

6 

1 

3 

2 

4 

5 

3 

2 
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Sol. Write the arc length in the increasing order of magnitude:  

(1, 2), (2, 3), (1, 6), (1, 5), (4, 5), (3, 4), (3, 6), (5, 6) and (2, 4). 

Iteration-1: Take the minimum length arc (1, 2), S = {1, 2} 

Iteration-2: Now minimum arc length (2, 3), therefore we have  

S = (1, 2, 3} 

Iteration-3: Next minimum arc length (1, 6), therefore we have  

S = {6, 1, 2, 3}. 

Iteration-4: Next minimum arc length (4, 5) or also be chose (1, 5), therefore we have  

S = {6, 1, 2, 3, 4, 5}. 

Iteration-5: Next minimum arc length (1, 5), therefore we have  

S = {6, 1, 2, 3, 4, 5}. 

All nodes are now connected.  

Hence the length of the given tree is 15. 
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10.7 Maximum Flow Problem 

 

Numerous situations in our daily lives involve the concept of flow rates, such as the flow of oil in pipelines 

and traffic flow. In these scenarios, the objective is to maximize the flow, a problem that can be formulated 

as a Linear Programming (LP) problem. Maximum flow problems typically revolve around directing flow 

through a connected network, starting from a designated node called the source and terminating at another 

node known as the sink. All other nodes in the network are considered transshipment nodes. 

Flow through an arc is permitted only in the direction indicated by the arrowhead, with the maximum flow 

determined by the capacity of that specific arc. At the source, all arcs point away from the node, while at 

the sink, all arcs point into the node. The primary goal is to maximize the total flow from the source to the 

sink, measured in two equivalent ways—either as the amount leaving the source or the amount entering 

the sink. 

The procedure for determining the maximum flow in these problems consists of the following steps: 

Step-I: First find a path from source to sink that can be accommodating a positive flow of the material. 

Step-II: Obtain the maximum flow that can be shipped along the finding path and denoted by it Z (say). 

Step-III: Now decrease the capacity of each branch in the direction of flow of the Z units in this path and 

increase the reverse capacity by Z, and add Z units to the amount delivered to the sink. Again find a path 

from source to sink. If none of exists then go to step IV otherwise go to step II. 

Step-IV: Calculate the maximum flow of the problem is the amount of material delivered to the sink.  

Examples 

 

Example.6. Find the maximum flow for which the arcs and capacities are given in the following: 

Arc Capacity 

1-2 10 

2-3 5 

1-3 7 

2-4 4 

3-4 10 
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Sol. The network for the given maximum flow problem is  

 

 

 

 

 

 

First find a path from source to sink (1-3-4) that can be accommodating a positive flow of the material. 

Obtain the maximum flow (i.e., 7) that can be shipped along the finding path. Now decrease the capacity 

of each branch in the direction of flow of the 7 units in this path (1-3-4) and increase the reverse capacity 

by 7, and add 7 units to the amount delivered to the sink. 

 

 

  

 

 

 

Now find a path from source to sink (1-2-3-4). Obtain the maximum flow (i.e., 3) that can be shipped 

along the finding path. Now decrease the capacity of each branch in the direction of flow of the 3 units in 

this path (1-2-3-4) and increase the reverse capacity by 3, and add 3 units to the amount delivered to the 

sink.  

 

 

 

 

 

Again find a path from source to sink (1-2-4). Obtain the maximum flow (i.e., 4) that can be shipped along 

the finding path. Now decrease the capacity of each branch in the direction of flow of the 4 units in this 

path (1-2-4) and increase the reverse capacity by 4, and add 4 units to the amount delivered to the sink.  
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Here none of path is exists from source to sink that can be accommodating a positive flow of the material.  

Calculate the maximum flow (i.e., 14) of the problem is the amount of material delivered to the sink.  

 

10.8 Summary 

 

To find the shortest route from the origin to the destination in a network, we encounter what is known as 

the shortest route problem. In the Dijkstra algorithm, nodes are classified into two types: temporary and 

permanent. A temporary label can be replaced with another label if a shorter route to the same node is 

discovered. If no shorter route is found, the label becomes permanent. When aiming to obtain the 

minimum spanning tree, the first step involves arranging the arc lengths in ascending order of magnitude.  

Let S represent the set of nodes forming the minimum spanning tree. Now choose the minimum arc length 

(i, j), ij, both i, j not belonging to S (chose arbitrarily in case of tie). In problems related to maximum 

flow, the primary goal is to maximize the overall flow volume from the source to the sink. This flow 

quantity can be assessed in two equivalent manners—either as the amount departing from the source or as 

the amount entering the sink. 

 

10.9 Terminal Questions 

 

Q.1. Explain the Networking. 

Q.2. Write the procedure of minimum spanning tree problem. 

Q.3. Determine the shortest roué from the following network: 

 

 

 

 

Q.4.Find the minimum spanning tree from the following network: 
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Q.5. Find the maximum flow from the following network: 

 

 

 

 

 

 

 

 

 

 

Answer 

3. 7 units, 1→2→4. 

4. [(1, 2), (2, 3), (4, 6), (5, 6), (2, 6)] 

5. 22 units. 
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UNIT-11: Game Theory 

 

Structure 

11.1 Introduction 

11.2 Objectives 

11.3  Game 

11.4 Two-Person Zero-Sum (Rectangular) Games 

11.5 Payoff Matrix 

11.6 Value of the Game 

11.7       Saddle Point  

11.8       Strategies 

11.9 The Lower and Upper Value of the Game  

11.10 Procedure to find the Saddle Point   

11.11 Two person Zero-sum Game with Mixed Strategies  

11.12 Summary 

11.13  Terminal Questions 

 

11.1 Introduction 

 

In practical problem-solving scenarios, such as those in economics, military strategy, and other fields, 

analysts often encounter situations where multiple parties are pursuing conflicting objectives. The 

outcome of each party's actions depends on the choices made by others involved, leading to what is 

commonly referred to as "conflict situations." Examples of such situations include those arising during 

military operations or various economic scenarios, especially those involving free competition among 

entities like firms and industrial enterprises. Conflicting situations in real life are typically intricate.  

However, our objective here is to focus on simpler situations and create a formalized model of the 

scenario. This model, termed a "game," is distinguished from real conflict situations by the presence of 

well-defined rules governing its play. Essentially, a game is defined as a set of rules that guide the 

interactions within it. 
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11.2   Objectives 

 

After reading this unit the learner should be able to understand about: 

▪ the game theory 

▪ two-person zero-sum (rectangular) games 

▪ the payoff matrix and value of the game 

▪ saddle point 

▪ strategies 

▪ the lower and upper value of the game 

▪ procedure to find saddle point 

▪ the minimax principle with pure strategies 

▪ the two person zero sum game with mixed strategies 

 

11.3 Game 

 

A game can be characterized as a conflict of interests between two or more opponents or parties. In the 

first scenario, it is termed a two-person game, and in the latter, a multi-person game. While both types 

exist, two-person games are often more prominent in practical applications, and our focus will be primarily 

on these. In the context of the game, participants are commonly referred to as "players," and the result of 

an encounter is labeled as the parties' "payoff" or gain. 

A fundamental concept in game theory is that of a strategy. For a player, a strategy entails a set of clear 

rules that dictate the selection of each individual move based on the unfolding situation within the game. 

The term "finite game" is used when either player possesses only a finite number of strategies.  

 

           B 

      A 

B1 B2 …  B1 … Bm 

A1 a11 a12 …  a1j … a1m 
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A2 a21 a22 …  a2j .. a2m 

… … … … …  … 

Ai ai1 ai2 …  aij .. a2m 

… … … … …  … 

An an1 an2 …  anj  anm 

 Table 11.1 Payoff Matrix 

 

In a finite game, where player A has m strategies say A1, A2, ………., Am and player B has n strategies 

say B1, B2, ………., Bn is called a m×n game.  

The choice of strategies Ai by player A and Bj  by player B determines the payoff (gain) to player A, 

denoted as aij. The values aij’s can be put in matrix form as given in above. 

This matrix is known as payoff (gain) matrix of player A. Entry aij may be positive (gain to player A) or 

negative (loss to player A) or zero (no loss, no gain to A). 

The matrix of a m×n game is of the form given above will be denoted as (aij)m×n. The strategy (Ai, Bj) 

which when repeated a number of times assumes to a player the maximum possible gain (or minimum 

possible loss) is called an optimal strategy and the corresponding value aij is called the game value denoted 

by . 

 

11.4 Two-Person Zero-Sum (Rectangular) Games 

 

A game featuring only two players, denoted as player A and player B, is termed a two-person zero-sum 

game when the gain of one player (say, A) is equivalent to the loss incurred by the other player (say, B). 

This equality ensures that the sum of their net gains is zero. Two-person zero-sum games are also referred 

to as rectangular games, as they can be effectively represented by a payoff matrix in a rectangular format. 

 

 

11.5 Payoff Matrix 

 

Suppose the player A has m activities (strategies) A1, A2, ………, Am and player B has n activities B1, B2, 
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………, Bn, then a payoff matrix can be formed by adopting the following rules: 

(i) The row designations of each matrix are activities A1, A2, ……, Ai, …, Am available to player A. 

(ii) The column designations of each matrix are activities B1, B2, ……, Bi, …, Bn available to player B. 

(iii) The cell entry “aij” in the payment to player A in A’s payoff matrix when A chooses the activity Ai 

and B chooses the activity Bj. 

(iv) In a zero-sum two person game the cell entry in B’s payoff matrix will be negative of the 

corresponding cell entry “aij” in the player A’s payoff matrix, so that the sum of the payoff matrices of 

player A and player B is ultimately zero. 

 

                                                   
nj BBBB 21  

           Player A             

m

i

A

A

A

A




2

1

 

 

Table 11.2 Representing A’s payoff matrix 

 

                                                   
nj BBBB 21  

           Player B             

m

i

A

A

A

A




2

1

 

 

Table 11.3 Representing B’s payoff matrix 

Note: In practical problems, there is no need of writing B’s payoff matrix as it is just the negative of A’s 

payoff matrix. Thus if ‘aij’ is the gain to player A, then -aij is the gain to player B, so that net gain is zero. 

 

11.6  Value of the Game 

 

The payoff ars at the saddle point (Ar, Bs) is called the value of the game. 
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11.7 Saddle Point 

 

A saddle point (Ar, Bs) of a payoff matrix is the position of such an element in the payoff matrix which is 

minimum in its row and maximum in its column. Mathematically if the payoff matrix (aij) is such that 

( ) ( ) rsij
ij

ij
ji

aamaxminaminmax =







=








then matrix is said to have a saddle point (Ar, Bs) 

 

11.8 Strategies 

 

When two players play a game then they have different alternatives at their disposal to go ahead with the 

game. These alternatives used in the game are called strategies. 

 

Optimal Strategy 

If the payoff matrix (aij) has saddle point (r, s) then Ar and Bs are called the optimal strategies of player A 

and B respectively. 

 

Pure Strategy 

A single alternative when played for certain, then it is called pure strategy. 

 

Mixed Strategy 

If several alternatives with different choices are used to play the game then we call it a game with mixed 

strategy. When saddle point does not exist, mixed strategies are used to find the value of the game. 

 

11.9 The Lower and Upper Value of the Game 

 

Consider the payoff matrix (aij)m×n of the player A (see table 11.1). If player A chooses the strategy Ai, 

then he is sure to get ij
j

amin , j varies from 1 to n. Thus A would like to choose that strategy Ai, i=1, 2, 

…., m for which ij
j

amin  is maximized to get .aminmax ij
ji 








 Denote it by ,a called the lower value of the 

game.  
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Thus       aaminmax ij
ji

=







            ….(11.1) 

On the other hand if player B chosen strategy Bj, then he is sure that player A will not get more than 

ij
i

amax . Thus B would like to choose that strategy Bj which minimizes the maximum gain to player A i.e., 

to have .amaxmin ij
ij









 Denote it by ,a called the upper value of the game.  

Thus   aamaxmin ij
ij

=







             ….(11.2) 

Equations in (11.1) and (11.2) are called maximin and minimax criteria respectively. If == aa (say), 

then the game is said to have a saddle point (i.e., solution to the game exists) and  is the game value 

(payoff to player A). If ija=  (see table 11.1), then we say that the optimal strategy of player A is Ai and 

that of B is Bj. 

 

Note: A game is said to be fair if both the lower and upper values of the game are equal to zero. 

 

Theorem.11.1: If  







= ij

ji
aminmaxa is the lower value and 








= ij

ij
amaxmina  is the upper value of the 

game, then lower value is always less than or equal to the upper value of the game i.e.,  

.aamaxminaminmaxa ij
ij

ij
ji

=
















=  

Proof.: It is evident that ijij
j

aamin   for any j and i fixed   ….(11.3) 

Also ijij
i

aamax   for any i and j fixed     ….(11.4) 

Let irij
j

aamin =  for j=r       ….(11.5) 

and sjij
i

aamax =  for i=s       ….(11.6) 

Thus from equations (11.5) and (11.6), we have sjijir aaa   for all i and j. 

and hence sj
j

ijir
i

aminaamax 

   
   ….(11.7) 

Using equations (11.5), (11.6) and (11.7), we have  
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ij
ij

ijij
ji

amaxminaaminmax 

          

 
or      ij

ij
ij

ji

amaxminaminmax   

 

11.10 Procedure to find the Saddle point 

The following steps are used to determine the game value of the given game problem: 

Step-I: First choose the minimum element of each row i (i's) of the payoff matrix and write it on the 

extreme right of that row i. 

Step-II: Choose the greatest element of each column j (j's) of the payoff matrix and write it against 

(below) that column j. 

Step-III: If maximum of i's equal to minimum of j's then the common value is the game value otherwise 

game value does not exist in pure strategies.                                      

Step-IV: When (saddle point) does not exist, use mixed strategies to find the value of the game. 

 

Examples 

 

Example.1. How to devise strategies by two warring country. The aim of both the country is to hit the 

other country and devise a way to remain unit. This type of problem is explained with the help of the 

following device. Consider a problem of military operation between two countries A and B. Country A 

has three kinds of weapons A1, A2 and A3. Country B has three kinds of weapons B1, B2 and B3. Country 

A’s goal is to hit its enemy’s aircraft while the other party’s goal is to avoid being hit. When armament 

A1 is used aircrafts B1, B2 and B3 are hit with probabilities 0.9, 0.4 and 0.2 respectively, when armament 

A2 is used, they are hit with probabilities 0.3, 0.6 and 0.8; and when armament A3  is used they are hit 

with probabilities 0.5, 0.7 and 0.2. Formulate the problem in terms of game theory. Also find the lower 

value and upper value of the game? 

Solution. The formulation of the game theory is   

 

           B 

      A 

B1 B2 B3 i 

 A1  0.9 0.4 0.2 0.2 
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A2  0.3 0.6 0.8 0.3 

A3 0.5 0.7 0.2 0.2 

j 0.9 0.7 0.8  

 

Here 1 = 0.2, 2  = 0.3, 3  = 0.2 and 1 = 0.9, 2 = 0.7, 3 = 0.8.  

The lower value of the game 

   a  = max (0.2, 0.3, 0.2) = 0.3.  

The upper value of the game 

   a  = min (0.9, 0.7, 0.8) = 0.7. 

 

Example.2. Two players A and B, each write down simultaneously and independent by of each other, one 

of the four numbers 1, 2, 3 or 4. If the sum of the numbers they have written down is even, then B pays 

that sum to A; if the sum is odd, then A pays that sum to B. 

 (i) Construct the game matrix.  

(ii) Find the lower and upper value of the game. 

(iii) Find the maximin and minimax strategies for players A and B. 

Solution. (i) There are four strategies for player A: writing down 1, A1; writing down 2, A2; writing down 

3, A3; and writing down 4, A4. Opponent B also has the same four strategies: B1, B2, B3 and B4. This is a 

4×4 game with game matrix (payoff matrix of player A) given below: 

 

              B 

      A 

B1 B2 B3 B4 i 

(row maximum) 

 A1  2 -3 4 -5 -5 

A2  -3 4 -5 6 -5 
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A3 4 -5 6 -7 -7 

A4 -5 6 -7 8 -7 

j (column maximum) 4 6 6 8  

 

where  i = minimun of ith row  

and  j = maximum of jth column.  

Evidently B can respond to any strategy chosen in the way which is worst for A. Indeed if A chooses 

strategy A1, for instance, B will always counter it with strategy B4. Strategy A2 will always be countered 

by B3. Strategy A3 will be countered by B4 and A4 will be countered by B3.  

(ii) The lower value of the game  

a = max (-5, -5, -7, -7) =-5.  

      The upper value of the game 

                        a = min (4, 6, 6, 8) = 4. 

(iii) Player A’s, maximin strategy is either of the strategies A1 or A2; employing them systematically he 

can in any case guarantee that his gain is not less than -5 (a loss not greater than 5).  

B’s minimax strategy is B1; employing it systematically he can guarantee that his loss is not greater than 

4. 

Note: 1. If any of the players A or B deviates from these maximin or minimax strategies respectively then 

their gain is adversely affected. 

Note: 2. In the above examples 1 and 2 we have come across the situation in which both players employ 

their minimax strategies is unstable ( )aa  and may be distributed by information received about the 

opposite party’s strategy.  

However there are some games, for which minimax strategies are stable ( )aa = . These are the games for 

which the lower value of the game is equal to the upper one i.e., == aa  (i.e., saddle point and hence 

game value exists). 

 

Example.3. Find the lower and upper value of the game for the game matrix (payoff matrix of player A) 

given below: 
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 








20

04

BPlayer

APlayer
   Does the saddle point exist? 

Solution. The game matrix (payoff matrix of player A) is given below: 

 

           B 

      A 

B1 B2 i 

      A1 4 0 0 

      A2  0 2 0 

       j 4 2  

 

Where   i = minimun of ith row  

and   j = maximum of jth column.  

Max {i} = 0, min {j} = 2.  

Here strategy of player A is a maximin strategy and strategy of player B is a minimax strategy. Lower 

value of the game is 0 and upper game value is 2.  

Hence the lower game value and upper game value are not equal, so we can say that the value of the saddle 

point does not exist. 

 

Example.4. Find the lower and upper value of the game for the game matrix (payoff matrix of player 

A) given below: 

 






 −

32

11

BPlayer

APlayer
                    

Does the saddle point exist? 

 Solution. The game matrix (payoff matrix of player A) is given below: 
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           B 

      A 

B1 B2 i 

     A1  1 -1 -1 

     A2  2 3 2 

      j 2 3  

 

where   i = minimun of ith row  

and   j = maximum of jth column.  

Max {i} = 2, min {j} =2.  

Here strategy of player A is a maximin strategy and strategy of player B is a minimax strategy. Lower 

value of the game is 2 and upper game value is 2.  

Hence the lower game value and upper game value are equal, so we can say that the saddle point exist. 

 

11.11 Two person Zero-sum Game with Mixed Strategies 

 

While solving a game problem, saddle point need not exist always. In such cases we use mixed strategies 

to find the value of the game. Every two person zero-sum game has a solution in mixed strategies. Let 

player A selects the strategy iA  with probability ip  and player B selects the strategy 
jB  with probability 

.n,.....,j;m........,i,q j 2121 ==  ji BA and  can be considered events with probabilities

.,.and eiqp ji  
( ) ( ) jjic qBppAP == and   

 
nj

nj

BBBB

qqqq




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
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Fig 11.4- Matrix representing payoff to player A in mixed strategies 

 

To find the value of the game; we have to find the value of sqsp ji 'and' . We do this by using minimax 

(maximin) criteria. If B selects pure strategy 
jB  then the expected payoff to player A is  

i

m

i

ijmmjjij papapapa 
=

=+++
1

221 ..........  

Player B can select only of the pure strategies ( ),,.......,1 njB j =  and hence player A would like to select 

spi '  in such a way that it maximizes its smallest expected payoff.  

Thus sA'  problem is  

           

( )8.11....,,.........,min
11

2

1

1

,..., 2



















===

i

m

i

ini

m

i

ii

m

i

i

ppp

papapa
Max

mi

 

Subject to the condition that 0',1
1

=
=

spp i

m

i

i
 

Similarly player B would payoff like to select s'q j  which minimize the largest expected payoff to A.  

Thus sB'  problem is  

        

( )9.11...............,,max
11

2

1

1

,..., 2 




















===

j

n

j

mjj

n

j

jj

n

j

j

qqq

qaqaqa
Min

ni

 

Subject to the condition .fors'q,q jj

n

j
j =

=

01
1

 

The value in (11.8) and (11.9) are maximin and minimax expected payoff’s to A respectively by Let these 

be denoted by aa and   respectively. 









= 
===

m

i
iini

m

i
ii

m

i
i pa,........,pa,paMina

11
2

1
1  

Then A’S problem given in (11.8) reduces to  

( )10.11....aZMax A =  

Subject to 011
11

== 
==

s'p,p,n,....,j,apa i

m

i
ii

m

i
ij  

In this case we do not know the value of a , it may be positive or non-positive.  
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We shall assume that a  is equal to some positive number. But to have a  positive it is evidently sufficient 

for all elements 
ija  of the payoff matrix to be non-negative.  

This can always be attained by adding to elements
ija , a sufficiently large positive number C, then the 

value of the game will be increased by C while the solution will remain unchanged.  

The optimum value of the objective function is obtained by subtracting the added constant C.  

Thus without any loss of generality, assume a  to be positive.  

Divide constraints in (11.10) by a  and let ;,...1, mi
a

p
x i

i ==  then problem in equation (11.10) reduces to 

    

( )11.11.......aZMax A =  

s.t      .n,...,,j,xa i

m

i
ij 211

1

=
=

  

Also   
a

p
aa

p
x

m

i
i

m

i

i
m

i
i

11

111

=== 
===

 

Thus we have  

   ( )12.11......
1

......
1

21
=

=+++=
m

i

mi
a

xxxx  

Max aZ A =  is equivalent to min ( )13.11......
1

'
a

Z A =  

Thus A’s problem can be written in the form, 

     mA x,.....xx'ZMin +++= 21  

    s.t     ( )14.11.....1
1


=

i

m

i

ij xa  

.,.....2,1,0' misxi =  

Next we come to B’s problem, let .0a   

This can always be adjusted by adding a constant C to make all entries 
ija  in the payoff matrix positive.  

Thus proceeding exactly in the same way as in reducing A’s problem to LPP form, the B’s problem in 

(11.9) can be reduced in following LPP form,         
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nB y......yyZMax +++= 21  

( )15.11......,....,1,1.
1

miyats j

n

r

ij =
=

 

njsy j ,....,2,1,0' =  

It is important to observe that problems (11.14) and (11.15) are the dual of each other.  

There are feasible ( )njmisqsp ji ,....1;,....1'and' ==  because each player can use pure strategies.  

Consequently there exist feasible sxi '  and sy j '  as a  and a  are positive.  

As a result problem (11.14) and (11.15) have optimal solutions. If one problem has a solution, then other 

problem, also has a solution.  

We prefer to solve that problem which has lesser number of constraints. 

 

Examples 

 

Example.5. Solve the following game the method of LP:

  

















−

−

333

222

111
321

3

2

1

BBB

B

A

A

A

A  

Solution. The game matrix (payoff matrix of player A) is given below: 

 

           B 

      A 

B1 B2 B3 i 

 A1  1 1 1 1 

A2  2 -2 2 -2 
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A3 3 3 -3 -3 

j 3 3 2  

 

The lower value of the game a  = max (1, -2, -3) = 1.  

The upper value of the game a  = min (3, 3, 2) =2. The value of the game lies between 1 and 2.  

Let player A uses strategies Ai’s with probabilities pi ,  == 3211 ,,i,pi  and player B uses strategies 

Bj’s with probabilities qj’s,  == .,,j,q j 3211  

















−

−

333

222

111
321

3

3

2

2

1

1

3

2

1

3

2

1

3

2

1

BBB

q

y

q

y

q

y

A

A

A

p

p

p

x

x

x

 

Player B’s problem is  

  Max ZB=y1+y2+y3=
V

1
 

s.t.    y1+y2+y3  1 

      2 y1-2y2+2y3  1 

      3 y1+3y2-3y3  1 

.,,j,
V

q
y,y

j

jj 3210 ==  

Introducing slack variables y4, y5, y6, the standard form is  

Max ZB= =
V

1
y1+y2+y3+0.y4+0.y5+0.y6 

s.t.     y1+y2+y3 +y4 = 1 

      2 y1-2y2+2y3 +y5 = 1 

      3 y1+3y2-3y3 +y6 = 1 
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.y j 0  

Using simplex method, we get 

 

Cost →  1             1              1         0             0              0 Minimum Ratio 

j
i

Bi
X



 

Variable →  y1           y2              y3            y4            y5             y6 

T. 

No. 

CB Basic 

Variable 

XB 1
           2

             3            4            5                  6 

 

1 

 

 

 

0 

0 

  0 

 

y4 

y5 

y6 

 

1 

1 

1 

    

 1           1              1              1          0             0 

 2          -2                        0              1              0   

 3          3      -3      0              0              1 

1 

→
2

1
   

…       

cj-Zj 1           1            1               0          0             0  

 

 

2 

 

0 

1 

0 

 

y4 

y3 

y6 

 

1/2 

1/2 

5/2 

    

0                          0             1             -1/2            0 

 1   -1       1              0      1/2             0 

6            0           0               0              3/2            1     

→
4

1
                  

….  

…. 

cj-Zj 0            2  0               0             -1/2            0  

 

 

3 

 

1 

1 

0 

 

y2 

y3 

y6 

 

1/4 

3/4 

5/2 

    

0             1          0             1/2          -1/4            0 

1  0     1             1/2           1/4            0 

6  0           0             0             3/2            1 

    

                   

cj-Zj 0  0           0           -1               0             0  

 

2 

2 
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This is the optimal table. Hence y1=0, y2=1/4, y3=3/4. 

Now we have =
V

1
y1+y2+y3= 1

4

3

4

1
0 =++ .V 1=

              

The actual value is 1.  

Using ,
V

q
y

j

j = we have .q,q,q
4

3
1

4

3

4

1
1

4

1
010 321 ======  

Thus player B should strategies B1, B2 and B3 with probabilities .q,q,q
4

3

4

1
0 321 ===  

Ai’s best strategies appear in cj-Zj row under slack variables y4, y5 and y6. Thus .x,x,x 001 321 ===

 

 Using ,
V

p
x i

i = we have .p,p,p 010010111 321 ======  

 

11.12 Summary 

A game can be viewed as a clash of interests involving two or more opponents, referred to as a two-person 

or multi-person game. Two-person zero-sum games are alternatively known as rectangular games, as they 

are depicted by a payoff matrix in rectangular form. A saddle point in a payoff matrix is a position 

occupied by an element that is the minimum in its row and the maximum in its column. 

When a single alternative is played with certainty, it is termed a pure strategy. In contrast, if multiple 

alternatives with different choices are employed during the game, it is referred to as a game with a mixed 

strategy. A game is deemed fair when both the lower and upper values of the game are equal to zero. 

 

11.13 Terminal Questions 

Q.1. Define two person zero sum game. 

Q.2. Define saddle point and strategies.  

Q.3. Find the lower and upper value of the game for the game matrix (payoff matrix of player A) given 

below: 

 









20

03

BPlayer

APlayer                     

Does the saddle point exist? 

Q.4. Find the lower and upper value of the game for the game matrix (payoff matrix of player A) given 
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below: 

 









65

107

BPlayer

APlayer                     

Does the saddle point exist? 

Q.5. Solve the following game the method of LP:

  










−

−

11

11
21

2

1

BB

BPlayer

A

AAPlayer  

Answer 

3.  Lower value = 0 and upper value =2, saddle point does not exists. 

4. Lower value = 7 and upper value =7, saddle point exists. 

5. 0.valuegameand
2/12/1

,
2/12/1

2121
=















 BBAA
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UNIT-12: Goal Programming 

 

Structure 

12.1 Introduction 

12.2 Objectives 

12.3 Formulation of Goal Programming 

12.4 Single Goal Programming 

12.5 Goal Programming Algorithm  

12.6  Multiple Goal Models 

12.7 Multiple Goal Models with equal or no priority  

12.8 Summary 

12.9  Terminal Questions 

 

12.1 Introduction 

 

Goal programming serves as an extension of linear programming (LP), venturing into the realm of multi-

objective programming where multiple objectives come into play. In this framework, there exists more 

than one objective, and the primary aim is to minimize the discrepancies between the actual outcomes and 

desired goals, prioritized according to assigned priorities for different goals.  

The conceptualization of the goal programming model traces back to its initial presentation by Charnes 

and Cooper, who introduced it as an extension of the LP model, albeit without explicitly labeling it as the 

Goal Programming (GP) model. 

 

12.2   Objectives 

 

After reading this unit the learner should be able to understand about: 

• formulation of goal programming 

• single goal objective programming 
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• Goal Programming Algorithm 

• multiple goal model  

• multiple goal model with equal or no priorities  

 

12.3 Formulation of Goal Programming (GP) 

 

Goal programming (GP) involves the formulation of mathematical models to address problems with 

multiple, often conflicting, objectives. If there are m  goals and p resource constraints in a problem then 

the most general GP model can be written in the following form: 

Min  ( )
=

−−++
+=

m

i

iiiii dwdwpZ
1

 

s.t.     .m,.....,i,bddxa
n

j
iiijij 1

1

==−+
=

+−

 

      .pm,.....,mi,bxa ij

n

j
ij ++==

=

1
1

 

Where n,.....,j,x j 1=  are n decision variables; 

m,......,i,pi 1=  are the priorities associated with m goals 

+

iw  is the relative weight of 
+

id  in ith priority level 

−

iw  is the relative weight  of 
−

id  in ith priority level 

=
−

id  derivational variable representing under achievements in ith goal 

=
+

id  derivational variable representing over achievements in ith goal 

Here priorities spi '  are not assigned any values, but this is simply a convenient way of indicating more 

importance of one goal over another. Thus if 
ip  is given more importance than 

jp  that means 
ji pnp   

however large n may be.  

We also indicate this by writing
ji pp  . At the same priority level 

ip  the deviational variables 
−

id   

and 
+

id  may be given different weight in the objective function.  

The person formulating the GP model has to analyze each of m goals carefully. If over-achievements is 
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acceptable 
+

id  (called surplus variable in LP) is removed from the objective function and if under-

achievement is acceptable, 
−

id  (called slack variable in LP formulation) is removed from the objective 

function.  

If the exact achievement of the ith goal is desired, then both 
−

id  and 
+

id  must be included in the objective 

function and ranked to their priority order. In this manner the higher priority order goals are considered 

before the lower priority order goals. 

The following some important definitions and terms are useful for goal programming problem: 

 

Goal equation  

A goal expressed in the form of an equation by using variables 
−

id (under-achievement) and 
+

id  (over-

achievement) is known as goal equation. These variables 
−

id and 
+

id are known as deviational variables. 

 

Priorities in GP model 

The coefficients of deviational variables in the objective function of GP are called priorities. Magnitude 

of priorities reflects the preference order of a goal. 

 

Multiple goals with priorities and weights  

A multiple goal models in which different weights are employed in one or more priority levels to 

distinguish the goal preference are called multiple goals with priorities and weights. 

 

Goal Programming (GP) simplex method 

The modified simplex method used in solving a Goal Programming problem is called Goal Programming 

simplex method. 

 

Resource (structure) constraints 

The constraints that do not directly related to the goals of the problem are called structural or resource 

constraints. Deviational variables are not in corporated into these constraints. These constraints have to 

be satisfied by the solution. 

 

Trade-off function 
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The objective function of a Goal Programming is known as trade-off function. This may be linear or non-

linear. 

 

Example 

 

Example.1. A company produces two types of products A and B. These products are produced in two 

different departments 
1D  and 

2D of the company. Product A requires 2 hrs in department 
1D  and 3 hrs in 

department
2D . Product B requires 2 hrs in department 

1D  and 5 hrs in department
2D . Production time is 

limited in department 
1D  to 60 hrs and in department 

2D  to 80 hrs. The profit per unit of the products A 

and B is Rs. 3 and Rs. 6 respectively. To maximize the profit the company has set a high profit goal of Rs 

1500. The management of the company desires to produce a least 30 units of each product A and B. The 

management is considering this second goal equally to be as important as the first goal which is 

maximizing the profit. Formulate the given problem as a goal programming problem. 

Solution:  

Profit constraint:  

Let =1x  number of product A to be produced.  

=2x  number of product B to be produced 

Therefore, the profit goal is 150063 21 + xx  

The Profit goal equation is  

150063 1121 =−++
+−

ddxx  

Where =
−

1d  amount of under-achievement of profit. 

=
+

1d   amount of over-achievement of profit. 

Resource (structure) constraints: 

6032 21 + xx  

or   6032 321 =++ xxx  

and       8052 21 + xx  

or   8052 421 =++ xxx  

 

Production constraint:  
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Since at least 30 units of each product A and B are desired to be produced, the production constraints can 

be written as: 

30and30 332221 =−+=−+
+−+−

ddxddx  

Here ,x 301   302 x
 thus 

−−

32 and dd  are the deviational variables and are to be included in the 

objective function. 

Objective function:  

With priority ranked goals one objective function have to be formulated for each goal in the goal 

programming. The management have given equal priority to all the goals. Thus the complete GP model 

is formulated as 

Min 
−−−

++= 321 dddZ    (objective function) 

s.t.      150063 1121 =−++
+−

ddxx    (goal 1) 

             30221 =−+
+−

ddx    (goal 2) 

             30332 =−+
+−

ddx    (goal 3) 

             6032 321 =++ xxx  

             8052 421 =++ xxx           Resource constraints 

Where 433322114321 0 x,x;d,d,d,d,d,d,x,x,x,x 
+−+−+−

are the slack variables 

+++

321 d,d,d  are over-achievements for goals 1, 2 and 3 respectively. 

 

12.4 Single Goal Programming 

 

To solve a single goal programming problems we use the standard simplex method. To have clear cut 

understanding of the Goal Programming-Linear Programming relationship consider the following 

example: 

Example 

 

Example.2. A manufacturer products two models 21 pandp which have to go through two machines 1m

and 2m  before getting them in final forms. The machine time available, time required by each product on 

two machines and the profit on each product is given as her the following table: 
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                Product→ 

Machine   

Product Available time (hours) 

1p  2p  

1M  2 3 60 

2M  2 5 80 

Profit 3 5  

 

Find how the manufacturer can earn maximum profit. Further if the manufacturer fives the target of 

achieving maximum profit of Rs. 200 then formulate the problem in GP model. 

Solution: The LP formulation of the problem is  

Max 
21 53 xxZ +=  

               s.t 6032 21 + xx                                                                      ….. (12.1) 

                 8052 21 + xx  

                 0, 21 xx  

Where =1x  number produced of 
1p  product and =2x  number produced of 2p  product 

So the manufacturer objective is to find 21 xandx  so that profit is maximum. If we solve it by simplex 

method the maximum profit .xandxfor,Z 101595 21 ===  

Now in the above problem (12.1), suppose manufacturer fixes the target of achieving maximum profit of 

Rs.200, then the goal programming formulation of the problem is: 

Min −
= 1dZ  or Max −

−=− 1dZ  

s.t.            6032 21 + xx  

                 8052 21 + xx                                                                               ….. (12.2) 

20053 1121 =−++
+−

ddxx   
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     0,,, 1121 
+−

ddxx .  

Here sxi '  are the decision variables and 
−

id  (under achievement) and +

1d (over achievement) are the 

derivational variables. Taking 
43 xandx  as slack variables added to constraints of Equation (12.2), we 

solve the GP models as follows: 

              Costs→ 0           0               0               0               0            -1 Min ratio 

T.N

o. 
BC  Basic 

Variables 
BX  

1x           
2x            +

1d             
3x            

4x           −

1d   

 

 

 

1 

0 

 

0 

 

-1 

3x
 

 

4x  

 

−

1d  

60 

 

80 

 

200 

2              3              0                1              0             0 

 

2                                0                0             1             0 

 

3                5            -1                 0              0             1 

  

60/3 = 20 

 

80/5=16→ 

 

200/5 = 40 

              jj Zc −  3                5          -1                0             0              0  

 

 

 

 

2 

0 

 

0 

 

-1 

3x
 

 

2x  

 

−

1d  

12 

 

16 

 

120 

                 0               0                 1          -3/5             0 

 

2/5            1              0                 0            1/5             0 

 

1               0              -1               0            -1                1 

60/4 =15→ 

 

16/(2/5) = 40  

 

120 

              jj Zc −  1            0             -1                0            -1                0  

 

 

 

0 

 

0 

1x  

 

15 

 

10 

1               0             0                5/4        -3/4             0 

 

0              1             0               -1/2          1/2             0 

 

5 

4/5 
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3  

0 

2x  

 

−

1d  

 

105 

 

0              0            -1               -5/4         -1/4            0 

               jj Zc −  0              0            -1             -5/4          -1/4           0  

 

The optimum solution is .dx,x 1051015
1

121 ===
−  

Here in this problem 105 is under achievement of the maximum profit goal 200. Thus actual profit is 200 

– 105 = 95 which is the same as the maximum profit obtained in LP model.  

Therefore in a single goal programming problem the solution of the problem remains the same as obtained 

using LP model of the problem.  

The main difference between the LP model (12.1) and GP model (12.2) is the objective function. In GP 

model we include deviational variable(s) in the objective function. Also the problem in LP model may be 

a maximization or minimization but in GP model it is always a minimization problem where we minimize 

the some (weighted) of deviations. 

 

12.5    Goal Programming Algorithm  

 

The standard simplex method can easily be used in solving goal programming problems. This is 

accomplish by assigning values to the priority coefficients in the objective function of G.P formulation so 

that the values reflect the same order of relationship as the priorities. 

In the chapter on linear programming, we have already described in detail the steps and procedure of 

simplex method. Here we shall describe how the simplex method algorithm can be modified to solve a 

goal programming problem.  

The following steps are used in G.P algorithm: 

Step 1: Construct the initial modified simplex table which is similar to that of simplex table with only 

difference in ( )
jj zc −  row, where it is splitted into as many different goals row as the number of priorities 

assigned. 

Step 2: Check for optimality. If there is no positive entry in ( )jj Zc −  row for highest priority row pk, then 

the priority pk goal has been met and go to step 6 otherwise go to step 3. 

Step 3: Determine new entering variable by identifying the largest positive entry in pk row. This fixes the 

column of entering variable.  
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Step 4: Determine the departing variable by considering the minimum of ratio of 
BX  column entries with 

corresponding non-negative entries of the column fixed in step 3 as it is done in standard simplex method. 

Step 5: Develop the new table to update the coefficients in the body of the table by using elementary row 

operations. The new ( )jj Zc −  rows are computed in the same manner as would be used in the simplex 

method. The only difference is the tabular representation. As an example compute jZ  by multiplying the 

values in the jth column with corresponding entries of 
BX  column. Then subtract it from 

jc  to get 

( )jj Zc − . Break ( )jj Zc −  into parts, where parts are associated with priority levels. 

To be specific, if there are three priorities 
321 , pandpp  arranged in the order of their importance and 

if 0430 13 +−+=− ppZc jj  then in the jth column we split it as  

( ) ( )

3

0

4

3

2

3211

p

p

pppp:rowZc jj −−

 

This way continue steps 3, 4 and 5 till optimality conditions are satisfied for highest priority pk row and 

go to step 6. 

Step 6: Evaluate the next-lower priority level row ( )kkk ppp ++ 11  by identifying the largest positive 

coefficient for which there are no negative coefficients at a higher priority in the same column. If a tie 

exists in the values of the coefficients that determine the entering variable, break it arbitrarily. 

Note: The lower priority goals must not be satisfied at the expense of higher priority goals. 

 

12.6 Multiple Goal Models 

 

There are three types of multiple goals models: 

1.  Multiple goals models with equal (no) priority 

2. Multiple goals models with priority 

3. Multiple goals models with priority and weights 

For practical purposes, the multiple goals models are most useful in day to day life. 

 

12.7 Multiple Goal Models with equal or no priority  

 

The multiple goal equal priority model of GP is not of much practical value as compared to GP models 

with different priorities attached to different goals. However this model is easy to handle. We illustrate 
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the multiple goal equal priority models through an example given below. 

 

Example 

 

Example.3. A firm is manufacturing 
21 BandB  types of bags. Type 

1B  bags are ordinary and type
2B  are 

luxury bags. These bags are processed through two machines 
21 MandM to get them in final form. Type 

1B  bag requires 20 hours of machine 
1M  and 10 hours of machine 

2M . Type 
2B  bag requires 10 hours 

each of machine
21 MandM . Time available on machine 

21 MandM  is 60 hours and 40 hours 

respectively. The profit earned per bag is Rs.40 and Rs.80 on bags 
21 MandM  respectively. The firm 

wants to maximize profit as much as Rs.1000. In addition to the profit goal, the firm wants to produce at 

least two bags of each type and consider this second goal equally as important as the first profit goal. 

Formulate and solve the given problem as a goal programming problem. Interpret the solution. 

Solution: Formulation:  

Let =1x  number of type 
1B  bags manufactured and =2x  number of type 2B  bags manufactured. 

Resource constraints:  

Time taken on machine M1 to produce 
21, xx  number of bags of type 

21 and BB .xx 21 1020 += Thus we 

have  

 601020 21 + xx  

Similarly for machine ,2M we have 

  401010 21 + xx  

Profit constraints:  

10008040 1121 =−++
+−

ddxx  

Production constraints:  

As ,2,2 21  xx  the production constraints can be written as 

.ddx,ddx 22 332221 =−+=−+
+−+−

 

As the equal priority (no priority) has been given to all the goals, the objective function is minimize the 

sum of deviational: Min 
−−−

++= 321 dddZ  

Thus the complete GP model can be described as 
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Min 
−−−

++= 321 dddZ  

s.t.   601020 21 + xx  

401010 21 + xx  

       10008040 1121 =−++
+−

ddxx    (goal-1) 

         2221 =−+
+−

ddx     (goal-2) 

        
2332 =−+

+−
ddx     (goal-3) 

Where 0,,,,,,, 33221121 
+−+−+−

ddddddxx . 
−−−

321 ,, ddd
 

are the under-achievement 

+++

321 ,, ddd  are the over-achievement of goals 1, 2 and 3 respectively.  

The canonical form is  

Min 
−−−

++= 321 dddZ  or Max 
−−−

−−−=− 321 dddZ  

s.t.   601020 321 =++ xxx  

401010 421 =++ xxx  

 10008040 1121 =−++
+−

ddxx    (goal-1) 

       20 2221 =−++
+−

ddxx    (goal-2) 

       
20 3321 =−++

+−
ddxx    (goal-3) 

Where 0,,,,,,,, 332211321 
+−+−+−

ddddddxxx . 43 x,x are the slack variables 
−−−

321 ,, ddd  are the 

under achievements 
+++

321 ,, ddd  are the over achievements of goals 1, 2 and 3 respectively. 

To solve the problem we use the modified simplex method: 

 

              cj→ 0        0      -1       0       -1        0       -1         0        0       0 Min ratio 

T. 

No. 

BC  B.V

. 
BX  

1x      2x      −

1d     +

1d      −

2d     +

2d     
−

3d      
+

3d     
3x      4x   
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1 

0 

 

0 

 

-1 

 

-1 

 

-1 

3x
 

 

4x  

 

−

1d  

 

−

2d  

 

−

3d  

60 

 

40 

 

100

0 

 

2 

 

2 

20      10       0        0         0        0       0       0       1        0 

 

10    10        0         0         0        0       0        0        0        0 

 

40     80      1       -1        0         0        0         0        0        0 

 

1        0          0        0        1         -1        0        0        0        0 

 

0                   0         0        0          0        1      -1        0       0 

  

60/10 = 6 

 

40/10 =4 

 

1000/80 

 

…….. 

 

2/1=2 min 

              jj Zc −  41     81      0       -1         0        -1        0       1        0       0   

 

 

 

 

2 

0 

 

0 

 

-1 

 

-1 

 

0 

3x
 

 

4x  

−

1d  

               

−

2d  

 

2x  

40 

 

20 

 

840 

 

2 

 

2 

20       0        0        0       0        0       -10      10        1       0 

 

10       0       0       0       0         0       -10                    0       1 

 

40       0          1      -1       0        0      -80       80        0      0 

 

1        0         0         0        1        -1      0         0          0       0 

 

0       1        0         0         0        0       1        -1           0      0 

40/10 =4 

 

20/10=2 

min 

 

840/80 

 

…… 

 

….. 

              jj Zc −  41     0      0       -1       0       -1      -81       80       0      0  

 

 

0 

 

3x
 

 

20 

 

10      0       0       0        0        0         0         0        1      -1 

 

 

1 

10 
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   3 

0 

 

-1 

 

-1 

 

0 

+

3d  

 

−

1d  

 

−

2d  

 

2x           

2 

 

680 

 

2 

 

4 

1     0      0        0        0       0        -1         1         0     1/10 

 

-40    0        1         1        0        0       0       0         0      -8 

 

1        0       0         0       1      -1       0        0         0        0 

 

1        1       0        0        0        0           0      0        0    1/10 

               jj Zc −  -39     0       0         -1        0       -1       -1      0        0       -8  

 

The solution is 2,0,0,2,0,680,0,20,4,0 3322114321 ==========
+−+−+−

ddddddxxxx  

and .Z 682=  

 

Interpretation of the solution obtained:  

Here 6801 =
−

d  implies that profit goal of Rs.1000 is under achievement by Rs.680. Thus actual profit is 

1000 – 680 = 320. Also 22 =
−

d  indicates, the production goal of type 
1B  bags was missed by 2.  

Further 23 =
+

d  indicates that production goal of type 2B  bags was over achievement by 2. 

 

12.8 Summary 

 

The Goal Programming (G.P) model serves as an extension of the Linear Programming (L.P) model. A 

solution in single-objective goal programming closely resembles that obtained through the L.P method. 

Within goal programming, the assignment of priorities to different goals facilitates the prioritized 

accomplishment of the most significant goal. Essentially, lower-priority goals can be achieved first, while 

higher-priority goals are pursued at a potentially higher cost. Goal programming consistently poses a 

minimization challenge, focusing on minimizing deviations from established goals within a predefined set 

of constraints. 
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12.9 Terminal Questions 

 

Q.1. Write a short note on Goal Programming problem. 

Q.2. Explain the Single and multi-goal programming problem. 

Q.3. A manufacturer produces two types of products A and B. The production of each of A and B requires 

one hr of production capacity in the workshop. The workshop of the company has maximum production 

capacity of 80 hr per week. On account of restriction on the sales capacity of these products, maximum 

number of A and B that can be sold are respectively 8 and 10 per week. The profit on the sale of A is Rs. 

100 and B is Rs. 60.  

The manager wants to determine the number of units of each product that should be produced per week 

and sets the following goal to achieve with equal priority:  

Goal 1: The production capacity should not exceed 50 hr per week. 

Goal 2: The sales of the two products A and B must be as much as possible. 

Formulate the problem as GP problem. 

Q.4. Solve the following GP:                  

Min 
−−−

++= 332211 dpdpdpZ     

s.t.      4800300200 1121 =−++
+−

ddxx     

             15222 =−+
+−

ddx     

             5331 =−+
+−

ddx    

             6024 321 =++ xxx  

             7044 421 =++ xxx      

   and
 

.d,d,d,d,d,d,x,x,x,x 03322114321 
+−+−+−

 

 

 

Answer 

3.  Min 
−−+

++= 321 dddZ     

      s.t.      801121 =−++
+−

ddxx     
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                  821 =+
−

dx     

                  1032 =+
−

dx     

     and   .d,d,d,d,x,x 0321121 
−−+−

              

4. .d,x,/d,x,/x 2005251525 13321 ===== +−
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UNIT-13: Integer Programming Problem-I 

 

Structure 

13.1 Introduction 

13.2 Objectives 

13.3  Formulation of Integer Linear Programming Problem 

13.4 Types of Integer Linear Programming Problem  

13.5 All Integer Linear Programming Problem  

13.6  Mixed Integer Linear Programming Problem 

13.7 Zero-One Integer Linear Programming Problem  

13.8        Gomory’s Cutting Plane Method for All Integer Linear  

 Programming Problem 

13.9  Algorithm for Gomory’s Cutting Plane Method 

13.10 Gomory’s Cutting Plane Method for Mixed Integer Linear  

               Programming Problem 

13.11  Difference between Gomory’s Cutting Plane Method for All  

  Integer Linear Programming Problem and Mixed Integer Linear  

               Programming Problem 

13.12 Summary 

13.13  Terminal Questions 

 

13.1 Introduction 

 

In various crucial real-life scenarios, the necessity arises for decision variables to be integers. In Linear 

Programming Problems (LPP), decision variables typically have the flexibility to assume any non-

negative values, whether integer or fractional. However, certain practical problems, including capital 
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budgeting, capacity expansion, shipping schedules, construction schedules, and location selection, 

demand that decision variables take on only integral values. An LPP wherein some or all decision variables 

in the optimal solution are constrained to non-negative integral values is termed an Integer Linear 

Programming Problem (ILPP).  

This chapter will delve into several methods for solving ILPPs, including: (i) Gomory’s Cutting Plane 

Method for All Integer Linear Programming Problems and (ii) Gomory’s Cutting Plane Method for Mixed 

Integer Linear Programming Problems. These techniques provide effective approaches to address the 

challenges posed by decision variables restricted to integer values in real-world problems. 

 

13.2 Objectives 

 

After reading this unit the learner should be able to understand about: 

• the Integer Linear Programming Problem 

• Types of Integer Linear Programming Problem  

• All Integer Linear Programming Problem  

• Mixed Integer Linear Programming Problem 

• Zero-One Integer Linear Programming Problem  

• Gomory’s Cutting Plane Method for All Integer Linear Programming Problem 

• Algorithm for Gomory’s Cutting Plane Method 

• Gomory’s Cutting Plane Method for Mixed Integer Linear Programming Problem 

• Difference between Gomory’s Cutting Plane Method for All Integer Linear Programming  

Problem and Mixed Integer Linear Programming Problem 

 

13.3 Formulation of Integer Linear Programming Problem (ILPP) 

 

The mathematical formulation of Integer Linear programming problem (ILPP) is 

    Max or Min Z = CTX 

          AX = b 

      and   X≥0,  
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Where X = (x1, x2, ……., xn)
T≥0;   

xj’s are integer,  j= 1, 2, ….…., n;  

C= (c1, c2, …….. , cn)
T;  

b= (b1, b2, …….. , bm)T.  

Here are some common important techniques for solving Integer Linear Programming problems (ILPP): 

Branch and Bound 

This technique systematically explores the solution space by dividing it into smaller sub problems. It uses 

bounds to eliminate sub problems that cannot yield an optimal integer solution, thereby reducing the search 

space. 

Gomory's Cutting Plane Method 

Gomory's method involves iteratively adding linear constraints (cutting planes) to the linear programming 

relaxation of the Integer Linear Programming problem. These additional constraints help tighten the 

solution space, leading to an integer solution. 

Branch and Cut 

Branch and Cut is an extension of the Branch and Bound method that incorporates cutting planes. It 

combines the strengths of both techniques to efficiently explore the solution space while gradually 

tightening the bounds. 

Integer Branch and Bound 

This is a modification of the traditional Branch and Bound method specifically designed for Integer Linear 

Programming problems. It uses branching to explore integer solutions and employs bounding techniques 

to eliminate non-optimal branches. 

Dynamic Programming 

Dynamic programming approaches are applicable to certain types of Integer Linear Programming 

problems. They involve breaking down the problem into smaller sub problems and solving them 

systematically, often with recursive formulations. 

Heuristic Methods 

Heuristic methods, such as simulated annealing, genetic algorithms, or tabu search, are optimization 

techniques that may be applied to find near-optimal solutions for large-scale Integer Linear Programming 

problems in a reasonable amount of time. 

Mixed Integer Linear Programming (MILP)  

Specialized solvers designed for Mixed Integer Linear Programming problems, which include both 

continuous and integer decision variables, are available in optimization software packages. These solvers 

often use a combination of the above techniques. 
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Examples 

 

Example.1. A company has to manufacture the circular tops of cylindrical cans. Two sizes: One of smaller 

diameter 10 cm and other of bigger diameter 20 cm are required. They are to be cut from metal sheets of 

dimensions 20 cm by 70 cm. The requirement of smaller size is 30,000 and of larger size 10,000. How to 

cut the tops from metal sheets so that the number of sheets used is minimized. Formulate the Integer Linear 

Programming Problem. 

Solution Suppose the sheets of size 20 cm by 70 cm be cut in the following four patterns:  

Pattern 1, where entire sheet is used to cut it into the 14 taps of 10 cm diameter.  

Pattern 2, one 20 cm diameter top and ten 10 cm diameter tops are cut.  

Pattern 3, two 20 cm diameter and six 10 cm diameter tops are cut.  

Pattern 4, three 20 cm diameter and two 10 cm diameter tops are cut from the given sheet. 

Let x1, x2, x3 and x4 be the number of sheets cut according to first, second, third and fourth patterns 

respectively.  

Then the Integer Linear Programming Problem is 

             Max Z = x1+x2+x3+x4 

  s.t.  14x1+10x2+6x3+2x4 ≥ 30,000 

                      x2+2x3+3x4 ≥ 10,000 

    x1, x2, x3, x4 ≥ 0 and integers. 

 

13.4 Types of Integer Linear Programming Problem (ILPP) 

 

Integer Linear Programming Problem can be classified into following three types: 

1. All Integer Linear Programming Problem (AILPP) 

2. Mixed Integer Linear Programming Problem (MILPP) 

3. Zero-One Integer Linear Programming Problem 
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13.5 All Integer Linear Programming Problem (AILPP) 

 

An Linear programming problem is said to be an all Integer Linear Programming Problem if it contains 

all the decision variables restricted to integer values. 

 

13.6 Mixed Integer Linear Programming Problem (MILPP) 

 

An Linear programming problem is said to be an all Integer Linear Programming Problem if it contains 

some of the decision variables (not all) restricted to integer values. 

 

13.7 Zero-One Integer Linear Programming Problem  

 

An Linear programming problem is said to be an all Integer Linear Programming Problem if it contains 

all the decision variables restricted to take value either 0 or 1. 

 

13.8 Gomory’s Cutting Plane Method for All Integer Programming Problem 

 

In 1956, R.E. Gomory’s devised a method to determine the all-integer solution of an Integer Linear 

Programming Problem (ILPP). He accomplished this using the dual simplex method, creating a systematic 

approach based on generating a sequence of linear inequalities, referred to as cuts. The boundary of these 

cuts is termed the cutting plane. The key characteristic of Gomory's cutting plane method is that the cuts, 

or additional linear constraints, are generated in a way that avoids severing the portion of the original 

feasible solution space containing an integer solution. This method ensures the generation of additional 

linear constraints in a systematic manner, guaranteeing an integer solution to a given Linear Programming 

Problem (LPP) within a finite number of steps.  

The procedure involves initially applying the simplex method to solve the Integer Linear Programming 

Problem. If, in the optimal simplex table, all decision variables are integers, then it serves as the solution 

to the ILPP. However, if any decision variable is not an integer, the method identifies the basic variable 

(denoted as xr) in the optimal table with the largest fractional value among all basic variables, restricted 

to being integers. This step facilitates the systematic generation of cutting planes to move towards an all-

integer solution. Then the row (chosen) corresponding to xr in the optimal simplex table can be written as 




+=
rj

jrjrB xaxx
r

.1       or   


+=
rj

jrjrB xaxx
r  ….(13.1) 

Where rjx j , are all the non-basic variables of the chosen row. Let us now decompose the coefficients 

of 
jr xx , and

rBx into integer and non-negative fractional parts in (13.1) to get 
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    


++=+
rj

jrjrjrrB xfaxfx
r

][][     ….(13.2) 

Where ][
rBx and ][ rja  are the greatest integers in 

rBx  and rjarj , respectively. Rearranging equation 

(13.2) so that all integer coefficients appear on the left hand side, we get 

  


=








−−+
rj

jrj

rj

jrjrBr xfxaxxf
r

][][     ….(13.3) 

Where fr is strictly positive fraction (0 < fr < 1) and frj, r j is a non-negative fraction (0  frj < 1). In equation 

(13.3) right hand side is positive and the term fr on left hand side is a strictly positive fraction. Thus for 

equation (13.3) to hold good, the total of terms in the bracket on left hand side must be a non-negative 

integer (as all the variables including slacks assume integer values). Thus the equation (13.3) can be 

converted into an inequality  





rj

jrjr xff       ….(13.4) 

or                     


+=
rj

grjrj sfxf  

or                     


−=−
rj

jrjgr xfsf

                          

….(13.5) 

where sg is a non-negative slack variable. Equation (13.5) represents Gomory’s cutting plane constraint. 

When this new constraint is added to the bottom of simplex table, it would create a new additional row in 

the table along with a column of the new basic variable sg. 

 

13.9 Algorithm for Gomory’s Cutting Plane Method  

 

The following steps can be used to solve an Integer Linear Programming Problem by Gomory’s cutting 

plane method:  

Step-1: First solve the given Integer Linear Programming Problem to get its continuous solution using 

simplex method. If all the decision variables in the optimal table are integers, then problem is done. If not 

then go to step-II. 

Step-II: Identify the row of the basic variable say xr with largest fractional part in the optimal simplex 

table of step-I and write it down as an equation. Decompose the coefficients of all terms into integer and 

non-negative fractional part using the idea of greatest integer function.  

Note: The greatest integer in a number x is the largest integer and is denoted as [x]. As an example greatest 

integer in 2.1, denoted as [2.1] =2 and greatest integer in -1.1= [-1.1] =-2. 

Step-III: Construct an addition constraint (Gomory’s cut) 
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


−=−
rj

jrjgr xfsf  

Where fr (0< fr <1) is strictly positive fractional part of the basic variable xr (step-I), sg is the non-negative 

slack variable and frj, r j are the non-negative fractions of the coefficients of non-basic variables in the 

rth
 row equation. 

Step-IV: Add the constraint of step-III as a row at the bottom of simplex table of step-I and use dual 

simplex method to get optimal table. If the solution is all integer then problem is done. If not, then repeat 

step-II through step-IV till the final optimal solution of AILPP is obtained. 

All above steps of Gomory’s algorithm can be summarized in the form of following flow chart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Examples 

 

Example.2. Find the all integer solution to the following Integer Linear Programming Problem (ILPP): 

          Max Z = 3x1+2x2 

 s.t.          x1+x2  4 

    x1-x2  2 

Reformulate the given 

ILPP as a standard 

maximization ILPP 

Omitting the integer requirement, 

solve to get the optimum solution of 

corresponding LPP by using simplex 

method 

Modify the simplex table 

after adding one more row 

of Gomorian constraint and 

use dual simplex method to 

obtain the optimum 

solution treating the 

Gomorian slack variable as 

the starting leaving variable 

 

Does this 

optimum 

solution satisfy 

the integer 

requirement of 

the given 

Write down the constraint 

equation corresponding to this 

variable. Construct the 

Gomorian constraint and add it 

in the optimal table. 

Identify that basic 

variable which has the 

largest fractional part 

in its current solution 

value 

The 

current 

solution 

is the 

required 

optimum 

integer 

solution 

Yes 

No 
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            x1, x2 ≥ 0 and integers. 

Solution. Reformulated Integer Linear Programming Problem as a standard maximization Integer Linear 

Programming Problem is 

             Max Z = 3x1+2x2+0x3+0x4 

 s.t.          x1+x2+x3 = 4 

    x1-x2+x4 = 2 

            x1, x2, x3, x4 ≥ 0 and integers; x3, x4 are slack variables. 

Now omitting the integer requirement, we solve the given LPP using simplex method: 

Cost →         3              2                 0                  0 Minimum 

Ratio 

j
i

Bi
X



 
Variable →       x1               x2                 x3                  x4             

Table 

No. 

CB Basic 

Variable 

XB       1
               

2
                 

3                4 

 

 

1 

 

 

0 

0 

 

x3 

 x4 

 

4 

2 

    

      1         1              1                    0 

        -1                  0                   1   

     
4

1

4
=

       

 

→= 2
1

2  

cj-Zj       3          2                 0              0  

 

2 

 

0 

3 

 

 x3 

x1 

 

2 

2 

    

       0                    1                  -1 

     1       -1                 0                     1     

    

  
→= 1

2

2                  

cj-Zj      0        5                0             -3  

 

3 

 

2 

 

x2 

 

1 

    

     0    1      1/2                 -1/2 

    

                   

1 

2 
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3 x1 3      1        0               1/2                  1/2     

cj-Zj      0         0            -5/2           -1/2  

 

The optimum solution is x1=3, x2=1 and Max Z =11. This optimum solution satisfies the integer 

requirement of the given ILPP and hence is its optimum solution and no further application of Gomory’s 

cutting plane method is needed.   

 

Example.3. Find the all integer solution to the following Integer Linear Programming Problem (ILPP): 

          Max Z = 2x1-x2 

 s.t.          x1+x2  2 

    x1-x2  1 

            x1, x2 ≥ 0 and integers. 

Solution Reformulated Integer Linear Programming Problem as a standard maximization Integer Linear 

Programming Problem is 

             Max Z = 2x1-x2+0x3+0x4 

 s.t.          x1+x2+x3 = 2 

    x1-x2+x4 = 1 

            x1, x2, x3, x4 ≥ 0 and integers; x3, x4 are slack variables. 

Now omitting the integer requirement in above ILPP, we solve the resulting LPP as below: 

Cost →         2           -1                   0                0 Minimum 

Ratio 

j
i

Bi
X



 
Variable →       x1               x2                 x3                 x4             

Table 

No. 

CB Basic 

Variable 

XB       1
              

2
                 

3                4 
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1 

 

 

0 

0 

 

x3 

  x4 

 

2 

1 

    

      1          1              1                 0 

              -1                    0                1   

     
2

1

2
=

       

 

→= 1
1

1  

cj-Zj       2              -1          0                  0  

 

2 

 

0 

2 

 

 x3 

x1 

 

1 

1 

    

       0                              1                 -1 

     1   -1              0                  1     

    

  
→

2

1     

   …. 

cj-Zj      0               1             0        -2  

 

3 

 

-1 

2 

 

x2 

x1 

 

1/2 

3/2 

    

     0        1           1/2                -1/2 

     1            0         1/2                 1/2     

    

                   

cj-Zj      0            0       -1/2     -3/2  

 

This is optimal simplex table. The optimum solution is x1=3/2, x2=1/2 and Max Z =5/2, which is not all 

integer solution.  

To get all integer solution we select the basic variable corresponding to maximum fractional value .
iBf  

 Here 
2

1
0

111
+=+= BBB fIx   

 and 
2

1
1

222
+=+= BBB fIx .  

So .
2

1
21
== BB ff  

Therefore ( ) ,
2

1

2

1
,

2

1
max,max

21
=








=BB ff which is the same for )(

12 Bxx = and )(
21 Bxx =

basic variable rows so either of the two basic row equations can be chosen to construct Gomorian cut. 

1 

2 
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Let us choose basic variable x1 row equation (second row of the optimal table). Cut is  

 
22 424323 gB sxfxff +−−=−   

or                                     
243

2

1

2

1

2

1
gsxx +−−=−  

or                                     
24321

2

1

2

1
00

2

1
gsxxxx +−−+=−  

Adding this Gomorian cut in above simplex table 3, we get 

 

  Cost →    2   -1              0              0           0 

Variable →    x1          x2             x3              x4               
2gs  

Table 

No. 

CB Basic 

Variable 

XB   1
           

2
             

3            4                     2g  

 

 

4 

 

 

-1 

2 

0 

 

x2 

x1 

 
2gs  

 

 

1/2 

3/2 

-1/2 

    

  0   1              1/2    -1/2               0  

  1            0              1/2             1/2                0 

  0            0                               -1/2                1         

cj-Zj  0            0             -1/2             -2                0 

 

The solution is infeasible. Restore feasibility using dual simplex method. When
2gs leaves then x3 enters 













==












 −−
columnxfor

zczc
as 34

3

44

3

3

33 1)4,1min(,min


 to get the next simplex 

table:  

-1/2 
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  Cost →    2    -1               0              0         0 

Variable →    x1           x2            x3              x4             
2gs  

Table 

No. 

CB Basic 

Variable 

XB   1
           

2
            

3             4                     2g  

 

 

5 

 

 

-1 

2 

 

0 

 

x2 

x1 

x3 

 

0 

1 

1 

    

  0    1                0        -1                1 

  1            0                0                 0                 1 

  0            0                1                 1               -2   

cj-Zj   0            0                0               -3/2             -1 

 

This is the all integer optimal simplex table. The all integer optimal solution of the given ILPP is x1 = 1, 

x2 = 0 and Max Z = 2. 

 

13.10 Gomory’s Cutting Plane Method for MILPP 

 

If none of the variables in an Integer Linear Programming Problem (ILPP) are constrained to be integers, 

it is referred to as a Mixed Integer Linear Programming Problem (MILPP). The process of constructing a 

cut in a MILPP differs from that in an All Integer Linear Programming Problem (AILPP). In the case of 

a MILPP, the construction of a cut begins with the optimal solution of the Linear Programming Problem 

(LPP) obtained by applying the simplex method, disregarding the integer requirement(s).  

Unlike in AILPP, where the focus is on generating cuts to preserve the integer feasibility, in MILPP, the 

initial emphasis is on obtaining an optimal solution within the relaxed context of non-integer variables.  

The subsequent steps involve introducing additional constraints, or cuts, to progressively move towards a 

solution that satisfies the integer requirements while maintaining optimality. This distinction reflects the 

nuanced approach needed when dealing with Mixed Integer Linear Programming. Now from the optimal 
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table thus obtained, choose the ith-row corresponding to a basic variable 
iBx which has largest fractional 

value amongst those required to be integers.  

The 
iBx -row in the optimal table has the form 

i

q

pj

jij

p

j

jiji bxfxfx =++ 
+=

−

=

+

11  

or    
ibi

q

pj

jij

p

j

jiji fbxfxfx +=++ 
+=

−

=

+ ][
11               

….(13.6) 

where xj, j=1 to p and j=p+1 to q are the non-basic variables with positive coefficients 
+

ijf and negative 

coefficients 
−

ijf respectively.  10, 
ii bb ff  is the fractional part of right hand side and [bi] is greater 

integer in bi, which is less than or equal to bi. 

Equation (13.6) can be written as 

}]{[
11

iib

q

pj

jij

p

j

jij xbfxfxf
i

−+=+ 
+=

−

=

+

                            

….(13.7) 

The right hand side in equation (13.7) is a number which may be  0 or ≥ 0. 

Case-I: Consider the case when .0}]{[ −+ iib xbf
i

Then 0][ =− ii xb or 1 or 2,………………, as [bi] 

and xi are integers.  

Thus the equation (13.7) becomes, 

ibjijjij fxfxf  + −+

           

….(13.8) 

and clearly                         

               −++ + jijjijjij xfxfxf

        

….(13.9) 

as xj
’s ≥ 0 and .0−

ijf   

From equations (13.8) and (13.9), we have 

ibjij fxf +

     

….(13.10) 

Case-II: In case 0}]{[ −+ iib xbf
i

will imply ,..........,2,1][ −−=− ii xb as difference is an integer. 

Using this fact from (13.7), we have  
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1−+ 
−+

ibjijjij fxfxf

                    

….(13.11) 

So clearly                     

      
−+− + jijjijjij xfxfxf

       

….(13.12) 

From equations (13.11) and (13.12), we have 

               

1−
−

ibjij fxf

    

or                                  
10

1


−


−

ii

i

i

bbjij

b

b
fasfxf

f

f

      

 

….(13.13) 

From equations (13.10) and (13.13), we have 

    

i

i

i

bjij

b

b

ijij fxf
f

f
xf 

−
+ 

−+

1  

or     

    

i

i

i

i gjij

b

b

jijb sxf
f

f
xff +

−
−−=−  

−+

1
                     

….(13.14) 

This is Gomory’s cut for MILPP.  

Note that for MILPP in Gomory’s cut, 
−+

ijij ff , are just the positive and negative coefficients of non-

basic variables without being converted into positive fractional values but ibf  is non-negative fractional 

part of basic variable xi. 

 

Examples 

 

Example.4. Solve the following MILPP: 

          Max Z = 4x1+6x2+2x3 

 s.t.          4x1-4x2  5 

 -x1+6x2  5 

 -x1+x2+x3  5 
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              x1, x2, x3 ≥ 0 and x2 is integer. 

Solution The given problem in standard form can be written as 

Max Z = 4x1+6x2+2x3+0x4+0x5+0x6 

 s.t.          4x1-4x2+x4 = 5 

 -x1+6x2+x5 = 5 

 -x1+x2+x3+x6 = 5 

              x1, x2, x3, x4, x5, x6 ≥ 0; x2 is an integer and x4, x5, x6 are the slack variables. 

Ignoring the integer requirement, the optimal solution using simplex method is obtained as given in the 

following simplex table 1: 

 

Cost →      4       6              2    0                 0               0 

Variable →    x1            x2             x3              x4                x5                    x6 

Table 

No. 

CB Basic 

Variable 

XB   1
            

2
             

3           4                      5             6 

 

 

1 

 

 

4 

6 

2 

 

x1 

x2 

x3 

 

5/2 

5/4 

25/4 

    

  1 0             0            3/10              1/5            0 

  0           1             0             1/20              1/5            0 

  0           0            1              1/4                 0              1 

cj-Zj   0           0      0              -2                 -2             -2 

 

The non-integer optimal solution is x1=5/2, x2=5/4, x3=25/4 and Max Z=30.  

Here x2=5/4 which is non-integer is required to be integer. Thus the x2-row (second row in above simplex 

table) can be written as 

654321 0
5

1

20

1
010

4

5
xxxxxx +++++=  
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The Gomory’s cut for MILPP is
   

     
i

i

i

i gjij

b

b

jijb sxf
f

f
xff +

−
−−=−  

−+

1  

.0,
5

1
,

20

1
,

4

1
,2Here 262524 ===== −++ ffffi

ib  

Thus the Gomory’s cut is        

           
254

5

1

20

1

4

1
gsxx +−−=−

 

 

Adding this constraint in above table 1, the new simplex table 2 is 

 

  Cost →     4   6           2     0          0     0          0 

Variable →    x1        x2          x3          x4         x5         x6     
2gs  

Table 

No. 

CB Basic 

Variable 

XB  1
        

2
        

3         4             5            6           g2 

 

 

 2 

 

 

4 

6 

2 

0 

 

x1 

x2 

      x3 

 
2gs  

 

5/2 

5/4 

25/4 

-1/4 

    

   1   0         0    3/10       1/5       0         0 

   0        1         0          1/20       1/5       0        0 

   0        0         1          1/4          0         1        0 

   0        0         0         -1/20      -1/5      0        1               

cj-Zj   0         0         0         -2         -2        -2        0 

 

The solution is infeasible. Restore feasibility using dual simplex method. When
2gs leaves then x5 enters 
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.10)10,40(min,min 54

5

55

4

4

44














==













 −−
columnxfor

zczc
as


  

The next simplex table 3 is  

 

  Cost →     4    6         2  0           0   0           0 

Variable →    x1        x2        x3          x4         x5         x6         
2gs  

Table 

No. 

CB Basic 

Variable 

XB   1
       

2
       

3       4              5             6             g2 

 

 

 3 

 

4 

6 

2 

0 

x1 

x2 

      x3 

     x5 

9/4 

1 

25/4 

5/4 

 1         0         0       1/4         0          0           1 

  0        1         0        0           0          0           1 

 0         0        1        1/4         0         1           0 

 0        0         0        1/4        1          0          -5               

cj-Zj   0        0         0        -3/2       0       -2        -10 

 

This is the optimal table with x2 an integer. Thus the optimum solution is x1=9/4, x2=1, x3=25/4 and Max 

Z=55/2. 

 

 

13.11 Difference between Gomory’s Cutting Plane Method for AILPP and MILPP 

 

In All Integer Linear Programming Problem (AILPP), for Gomory’s cut we use fractional parts of all non-

basic variables of the optimum simplex table including the basic variable. In Mixed Integer Linear 

Programming Problem (MILPP), we use only coefficients and not the fractional parts of all non-basic 

variables. However, we use fractional part of basic variable having most positive fractional part in optimal 

simplex table. Because of above differences, the Gomory’s cut is different for AILPP and MILPP. 
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13.12 Summary 

 

Integer Linear Programming (ILP) techniques are employed to address optimization problems wherein 

some or all of the decision variables must assume integer values. Unlike traditional linear programming, 

which allows variables to be continuous, ILP imposes the constraint that certain variables must be integers. 

This restriction is particularly relevant in real-world scenarios where solutions need to be whole numbers, 

such as in resource allocation, scheduling, or network design problems. The goal of ILP is to find the 

optimal integer values for decision variables that satisfy the problem constraints and maximize or 

minimize the objective function. In contrast to All Integer Linear Programming Problems (AILPP), where 

the primary emphasis is on generating cuts to preserve integer feasibility, the approach in Mixed Integer 

Linear Programming Problems (MILPP) diverges. In MILPP, the initial focus is on attaining an optimal 

solution within the more flexible framework of non-integer variables. The process involves utilizing 

methods like the simplex method to find an optimal solution without strict adherence to integer constraints. 

Subsequently, additional constraints, or cuts, are introduced strategically to gradually transition towards a 

solution that not only satisfies the integer requirements but also maintains optimality. This distinction 

underscores the different strategic considerations in addressing MILPP compared to AILPP. 

 

13.13 Terminal Questions 

 

Q.1. Explain the Integer Linear Programming Problem. 

Q.2. Write a short note on Integer Linear Programming Problem. 

Q.3. Find the optimum all integer solution to the following ILPP: 

          Max Z = x1+2x2 

 s.t.          2x2  7 

    x1+x2  7 

2x1 11 

            x1, x2 ≥ 0 and integers. 

Q.4. Find the optimum all integer solution to the following ILPP: 

          Max Z = 2x1+20x2-10x3 

 s.t.          2x1+20x2+4x3  15 

   6x1+20x2+4x3 = 20 

               x1, x2, x3 ≥ 0 and integers. 

Q.5. Solve the following MILPP: 
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          Max Z = 2x1+x2 

 s.t.          3x1+2x2  5 

   x2  2 

               x1, x2 ≥ 0 and x1 is integer. 

 

Answer 

3.  x1=4, x2=3 and Max Z =10. 

4.   x1=2, x2=0, x3=2 and Max Z =-16. 

5.   x1=0, x2=2 and Max Z=2. 
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UNIT-14: Integer Programming Problem-II 

 

Structure 

14.1 Introduction 

14.2 Objectives 

14.3  Branch and Bound Techniques 

14.4 Zero-One Integer Linear Programming Problem 

14.5 Balas Additive Algorithm 

14.6  Solution Procedure of Zero-One Integer Linear Programming Problem 

14.7 Summary 

14.8  Terminal Questions 

 

14.1 Introduction 

 

Branch and Bound is a general algorithmic technique for finding optimal solutions to combinatorial 

optimization problems. It is commonly used for solving Integer Linear Programming (ILP) problems and 

other discrete optimization problems. Integer Linear Programming (ILP) techniques are used to solve 

optimization problems where some or all of the decision variables are required to take on integer values.  

Choosing the appropriate technique depends on the characteristics of the specific Integer Linear 

Programming Problem, including its size, structure, and the nature of the integer constraints. The most 

effective method may vary from one problem instance to another. 

 

14.2       Objectives 

After reading this unit the learner should be able to understand about: 

• Branch and Bound Technique to find the solution of an Integer Linear Programming  

Problem 

• Zero-One Integer Linear Programming Problem 
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• Balas Additive Algorithm 

• Solution Procedure of Zero-One Integer Linear Programming Problem 

 

14.3 Branch and Bound Techniques 

The Dankin’s branch and bound method is used for problems with a finite number of feasible solutions. 

As the number of variables in a problem increases, the total number of feasible solutions also grows 

exponentially, making it impractical to examine each one individually. In the Dankin’s branch and bound 

method, the approach involves systematically filtering large subsets of feasible solutions to identify and 

converge towards the optimal solution.  

This method is particularly useful for problems with a large number of variables and constraints, allowing 

for more efficient exploration of the feasible solution space. 

The following steps are used to find the optimal solution of an ILPP using Dankin’s branch and bound 

techniques: 

Step-I: Let the given Integer Linear Programming Problem be a maximization problem. If it is a 

minimization problem, convert it into maximization problem by multiplying the objective function with 

(-1). 

Step-II: Solve the given ILPP using simplex method ignoring the integer requirement. If the solution 

obtained is integer then it is optimal solution. If it is not an integer solution, then go to step III. 

Step-III: Consider the objective function value Z in a maximization problem as the upper bound along 

with the solution obtained in Step-II and call it node-1. 

Now if xk
* is the non-integer value of xk in node 1, which is required to be an integer, then introduce two 

branches (sub problems): 

(i) xk  [xk
*] and  

(ii) xk  [xk
*]+1, where [xk

*] is the greatest integer xk
*. 

Step-IV: Solve the above two sub problems (i) and (ii) using sensitivity analysis and dual simplex method 

getting two node say, node 2 and node 3. 

 With these nodes associate the value of Z as the upper bound for the purpose of comparison. 

Step-IV: Among the terminal nodes, branch off from the node for which the value of Z (upper bound) is 

largest.  

Finally the process will end if the terminal nodes are: 

(i) with integer solution  

(ii) non-feasible solution or  
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(iii) Fathomed nodes {Let  be the upper bound with best node (that is with largest Z) and  be the Z-

value of some another node such that .  

Then this node is not branched off further, as its branching will not give a better Z-value (Such nodes are 

called fathomed nodes}.  

The best out of the nodes of type (i) gives the optimal solution of ILPP. 

 

Examples 

 

Example.1. Solve the following ILPP using Dankin’s Branch and Bound Techniques: 

          Max Z = 5x1-3x2 

 s.t.                  -x1+x2  1 

2x1+x2  2 

     2x1  1 

                       x1, x2 ≥ 0 and integers. 

Solution The given problem in standard form can be written as 

Max Z = 5x1-3x2+0x3+0x4+0x5 

 s.t.          -x1+x2+x3 = 1 

 2x1+x2+x4 = 2 

          2x1+x5= 1 

              x1, x2, x3, x4, x5≥ 0 and integers; x3, x4, x5 are the slack variables. 

Now omitting the integer requirement in above ILPP, we solve the resulting LPP as below: 

 

Cost →     5        -3              0       0               0 Minimum 

Ratio 

j
i

Bi
X



 
Variable →    x1             x2               x3              x4             x5         

Table CB Basic XB    1
            

2
              

3              4            5 

PGMM-102/262



 

No. Variable 

 

 

 

1 

 

 

0 

 0 

0 

 

x3 

x4 

  x5 

 

1 

2 

1 

    

    -1    1       1             0              0 

     2    1            0             1              0 

                   0               0             0               1 

       

      
1

2

2
=    

     
→

2

1
 

cj-Zj    5       -3             0             0         0  

 

 

 

2 

 

 

0 

 0 

5 

 

x3 

x4 

x1 

 

3/2 

1 

1/2 

    

    0     1       1              0              1/2 

    0     1            0              1                -1 

    1              0             0              0               1/2 

   

 

 

cj-Zj    0        -3             0             0         -5/2  

 

The optimum solution is x1=1/2, x2=0 and Max Z =5/2, which is not all integer solution. Consider the 

objective function value Z in this maximization problem as the upper bound along with the solution 

obtained x1=1/2, x2=0 and Max Z =5/2 and call it node-1.  

Here 1/2 is the non-integer value of x1 at node 1, which is required to be an integer. To have x1 as an 

integer, [x1]=0, so introduce two branches (subproblems): 

(i) x11 and  

(ii) x10, where 0 is the greatest integer x1. 

Now solve the above two subproblems, using sensitivity analysis and dual simplex method getting two 

nodes say, node 2 and node 3 (Figure 14.1). 

(i)  For node 2, subproblem becomes: 

      Max Z = 5x1-3x2+0x3+0x4+0x5 

 s.t.          -x1+x2+x3 = 1 

 2x1+x2+x4 = 2 

       2x1+x5= 1 

2 
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       -x1+x6 = -1 

              x1, x2, x3, x4, x5, x6≥ 0 and integers; x3, x4, x5, x6 are the slack variables. 

 

 

 

 

 

 

 

 

 

Adding this additional constraint the new simplex table is: 

 

Cost →     5   -3             0        0             0             0 

Variable →    x1          x2             x3          x4            x5                 x6 

Table 

No. 

CB Basic 

Variable 

XB   1
           

2
           

3          4          5                6 

 

 

 

3 

 

 

0 

0 

5 

0 

 

x3 

x4 

x1 

x6 

 

3/2 

1 

1/2 

-1 

    

  0     1              1            0           1/2            0 

  0           1       0            1             -1            0 

  1           0              0            0           1/2            0 

 -1           0             0            0             0             1 

cj-Zj   0  -3     0            0      -5/2            0 

 

Node-1 

Node-2 

 

Node-3 

 

x1≥10 
x10 

  Figure 14.1 Branching at Node 1 
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Above simplex table is not in the standard format (as 1 column is not an identity column).  

To reduce it in the standard format, adding x1-row entries in the corresponding x6-row entries we get the 

following simplex table: 

 

Cost →   2   3            0     0              0              0 

Variable →  x1           x2           x3            x4             x5            x6 

Table 

No. 

CB Basic 

Variable 

XB  1
          

2
           

3           4            5          6 

 

 

4 

 

 

0 

0 

5 

0 

 

x3 

x4 

x1 

x6 

 

3/2 

1 

1/2 

 -1/2 

    

  0     1              1            0           1/2            0 

  0           1       0            1             -1            0 

  1           0              0            0           1/2            0 

  0           0              0            0           1/2            1 

cj-Zj   0  -3     0            0      -5/2           0 

 

The solution is infeasible. Restore feasibility using dual simplex method, variable x6 leaves but there is no 

variable to enter (as there is no negative entry in x6-row). Thus solution is infeasible and say it node-2. 

(i) For node 3, the subproblem becomes  

                   Max Z = 5x1-3x2+0x3+0x4+0x5 

 s.t.          -x1+x2+x3 = 1 

 2x1+x2+x4 = 2 

          2x1+x5= 1 

        x1+x7 = 0 

              x1, x2, x3, x4, x5, x7≥ 0 and integers; x3, x4, x5, x7 are the slack variables. 
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Adding this additional constraint in simplex table 2, the new simplex table obtained is: 

 

Cost →     5   -3             0      0             0             0 

Variable →    x1         x2           x3          x4            x5                  x6 

Table 

No. 

CB Basic 

Variable 

XB   1
         

2
           

3          4          5                 6 

 

 

 

5 

 

 

0 

0 

5 

0 

 

x3 

x4 

x1 

x7 

 

3/2 

1 

1/2 

0 

    

  0     1              1            0           1/2            0 

  0           1      0            1             -1            0 

  1           0             0            0           1/2            0 

  1           0              0            0             0             1 

cj-Zj   0  -3     0            0      -5/2           0 

 

Above simplex table is not in the standard format (as 1 column is not an identity column).. To reduce it 

in the standard format, subtracting x1-row entries from the corresponding x7-row entries we get the 

following simplex table: 

 

Cost →   5  -3            0     0              0              0 

Variable →  x1           x2           x3            x4             x5            x6 

Table 

No. 

CB Basic 

Variable 

XB  1
          

2
           

3           4            5          6 
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6 

 

 

0 

0 

5 

0 

 

x3 

x4 

x1 

x7 

 

3/2 

1 

1/2 

-1/2 

    

  0     1              1            0           1/2            0 

  0           1       0            1             -1            0 

  1           0              0            0           1/2            0 

  0           0              0            0           -1/2           1 

cj-Zj   0   -3        0            0           -5/2           0 

 

The solution is infeasible. Restore feasibility using dual simplex method. When x7 leaves then x5 enters, 

to get the next simplex table 7:  

Cost →   5  -3            0     0              0              0 

Variable →  x1           x2           x3            x4             x5            x6 

Table 

No. 

CB Basic 

Variable 

XB  1
          

2
           

3           4            5          6 

 

 

7 

 

 

0 

0 

5 

0 

 

x3 

x4 

x1 

x5 

 

3/2 

1 

0 

1 

    

  0     1              1            0             0             1 

  0           1       0            1             0            -2 

  1           0              0            0             0             1 

  0           0              0            0            1             -2 

cj-Zj   0   -3         0            0            0            -5 

 

The optimum solution is x1=0, x2= 0 and Max Z =0, which is all integer solution at node-3. 

Finally the process is end because node 2 has infeasible solution and node 3 has integer solution, which 

are fathomed nodes. Hence the optimum solution is x1=0, x2=0 and Max Z =0 of the given ILPP at node 
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3. 

 

14.4 Zero-One Integer Linear Programming Problem 

 

The first zero-one algorithm called the additive algorithm was proposed to solve in 1965 by E. Balas 

nearly seven years after the development of branch and bound techniques. In the beginning it (zero-one 

ILPP) appeared unrelated to branch and bound technique in the sense that it does not require solving LP 

problems but the main computational work is simple additions and subtractions. However short after, it 

becomes evident that zero-one algorithm is a special case of branch and bound algorithm. 

 

14.5 Balas Additive Algorithm 
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Thus for Balas additive algorithm following conditions must be satisfied: 

1. Problem must be of minimization type. 

2. All objective function coefficients Cj’s must be non-negative. 

3. All constraints must be of  “” type. 

Any zero-one LP (where variables assume value o or 1) can be put in the form of additive algorithm. 

 

The following terms are used in Baas additive algorithm to solve a zero-one ILPP: 
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Branching Nodes 

The partial solution (Solution of sub problem) from where branching is done is called a branching node.  

Branching Variable 

The variable selected to raise it from level 0 to level 1 is called branching variable. 

Slack Feasibility 

The sum of the non-positive slack values, given that a zero variable xj is elevated to level 1 is called slack 

infeasibility of slack variable si, denoted as Ij and is given as  

 −=
i

ijij asI ],0,[min                                                                               ….. (14.3) 

Where si= current value of slack variable i and aij = constraint coefficient of the jth variable xj in constraint 

i.    

Criterion of Selection of Branching Variable 

The variable xj for which the amount added to bring a non-positive Ij at zero level is minimum, is selected 

for branching. If the minimum amount is same for more than one variable then the variable whose 

objective function coefficient is smaller should be preferred for branching. In case objective function 

coefficients are also equal than break the tie arbitrarily. 

Note: Branching is done in both branch and bound and zero-one ILPP but the method and the selection 

criteria of branching variable are different for these. 

Fathomed Nodes 

A node (subproblem solution) is said to be fathomed if one of following happens: 

(i) Branching from this cannot give a feasible solution. 

(ii) Branching from this cannot yield a better upper bound. 

(iii) Branching from this cannot yield a feasible integer solution. 

Free Variables  

Variable which is free to assume value 0 or 1 is called a free variable. 

 

14.6 Solution Procedure of Zero-One Integer Linear Programming Problem 

                           

The following steps are used in solving zero-one ILPP: 

Step-I: Bring the problem in the initial form required by additive algorithm i.e., problem must be a 

minimization problem with all objective function coefficients non-negative and all of “” type. 
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Step-II: Express the slack variable si (si is the slack variable added to ith constraint) in terms of remaining 

variables by transposing every term except si on the right hand side of equality. 

Step-III: Find an initial all zero binary solution (slack solution) and call it node 1 attaching with it the Z-

value (objective function value) as upper bound. If all the slacks were non-negative, we would conclude 

that the all zero binary solution is optimum. If not go to step IV.  

Step-IV: If some of the slack variable(s) are infeasible (negative), then using slack infeasibility test 

identify the branching variable. Let it be xj. The two branches with xj as the branching variables are xj =1 

and xj=0 creating nodes 2 and 3 respectively.  

Proceeding this way we arrive at a situation where all terminal nodes are fathomed. Out of these we pick 

up the best one giving the optimal solution of given problem 

 

Examples 

 

Example.2. Convert the following 0-1 problem to satisfy the starting requirements of the additive 

algorithm: 

          Max Z = 2x1-7x2 

 s.t.                     x1+x2 = 5 

4x1+6x2  4 

     x1  4 

       x2  5 

                       xi’s = 0 or 1, i = 1, 2. 

Solution First convert the given problem to minimization with all ‘’ constraints as follows: 

(i) Multiplying the objective function row (Z-row) by (-1) to get minimize .72 21 xxZ +−=  

(ii)  Convert the first constraint equation into two constraints of ‘’ type to obtain  

x1+x2  5 

and -x1-x2  -5. 

(iii) Multiply the second and third constraints by (-1) to obtain constraints -4x1-6x2  -4 and –x1  -4 

respectively.  

Now using above computations the problem is written after adding slacks as  

21 72 xxZZMin +−=−=   
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s.t.            x1+x2+s1 = 5 

                 -x1-x2+s2 = -5 

-4x1-6x2+s3 = -4 

    -x1+s4 = -4 

      x2+s5 = 5 

                       si’s  0, i = 1, 2, ..., 5 are slack variables and  x1, x2 = 0 or 1. 

To ensure that the coefficients in objective function are non-negative, substitute x1=1-y1 (as x1 is with 

negative coefficient) and x2=y2 (as x2 is with positive coefficient). Change the left hand side of the 

constraints accordingly, to get the given 0-1 problem fulfilling the requirements of the additive algorithm. 

The required form for additive algorithm is 

21 7)1(2 yyZMin +−−=   

s.t.             (1-y1)+y2+s1 = 5 

                 -(1-y1) -y2+s2 = -5 

-4(1-y1)-6y2+s3 = -4 

    -(1-y1)+s4 = -4 

      y2+s5 = 5 

                       si’s  0, i = 1, 2, ..., 5 are slack variables and  y1, y2 = 0 or 1. 

or 

272 21 −+= yyZMin   

s.t.            -y1+y2+s1 = 4 

                 y1 -y2+s2 = -4 

4y1-6y2+s3 = 0 

      y1+s4 = -3 

        y2+s5 = 5 

                       si’s  0, i = 1, 2, ..., 5 are slack variables and  y1, y2 = 0 or 1. 

 

Example.3. Solve the following 0-1 problem: 

          Min Z = 2x1+3x2 
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 s.t.                     x1+x2  2 

-x1+x2  1 

                                      x1, x2 = 0 or 1. 

Solution The problem can be put in initial form required by the additive algorithm using following 

operations: 

(i) Add the two slack variables s1 and s2 to convert the two constraints into equations, we get .           x1+x2+s1 

=2 and  -x1+x2+s2 = 1. 

  Min Z = 2x1+3x2 

                     s.t.            s1 =2-x1-x2 

s2 = 1+x1-x2  

As we seek the minimum of the objective function, a logical starting solution is when all binary variables 

are at zero level. In this case slacks will act as basic variables and the initial all zero binary solution is 

s1=2, s2=1, Z=0. Here all the slacks are non-negative i.e., the all zero binary solution is the optimum 

solution. Hence the optimum solution is x1= x2=0 and Z=0.  

 

14.7 Summary 

 

Branch and Bound is particularly effective for solving discrete optimization problems where the solution 

space is large and needs to be systematically explored. It efficiently narrows down the search space by 

bounding and pruning, making it suitable for problems like ILP where integer solutions are sought. Branch 

and bound technique used only AILPP. To solve a zero-one ILPP using Balas additive algorithm, the 

problem must be a minimization problem with all objective function coefficients non-negative and all of 

“” type. 

 

14.8 Terminal Questions 

 

Q.1. Write a short note on Branch and Bound techniques. 

Q.2. What do you mean by Zero-one Integer Linear programming problem 

Q.3. Solve the following ILPP using Dankin’s Branch and Bound Techniques: 

          Max Z = 2x1+3x2 

 s.t.                  -x1+x2  1 
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2x1+x2  2 

                       x1, x2 ≥ 0 and integers. 

Q.4. Solve the following 0-1 problem: 

          Max W = 3x1+2x2-5x3-2x4+3x5 

 s.t.                     x1+x2+x3+2x4+x5 4 

7x1+3x3-4x4+3x5  8 

11x1-6x2+3x4-3x5  3 

                       xi’s = 0 or 1, i = 1, 2, ...., 5. 

Answer 

3.  is x1=0, x2= 1 and Max Z =3. 

4. x1=1,  x2=1,  x3=x4= x5=0 and W=5. 
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